电能质量

电力系统中电能的质量
展开2个同名词条
收藏
0有用+1
0
电能质量是指电力系统中电能的质量。理想的电能应该是完美对称的正弦波。一些因素会使波形偏离对称正弦,由此便产生了电能质量问题。一方面我们研究存在哪些影响因素会导致电能质量问题,一方面我们研究这些因素会导致哪些方面的问题,最后,我们要研究如何消除这些因素,从而最大程度上使电能接近正弦波。
中文名
电能质量
外文名
Power Quality
主要指标
电压、频率和波形
影响因素
电压暂降,暂升和短时中断
改善措施
扰动信号的提取、控制策略
发展趋势
大力发展用户电力技术

背景

播报
编辑
电能质量问题的提出由来已久,在电力系统发展的早期!电力负荷的组成糠习霉灶洪宙比较简单,主要由同步电动机、异步电动机和各种照明设备等线性负荷组凶仔成,因此衡量电能质量的指标也比较简虹洪单,主要有频率偏移和电压偏移两种20世纪80年代以来,随着电力电子技只料请术的发展,非线性电力电子器件和装置在现代巴祝汗工业中得到了广泛应用。同时,为了解决电力系统自身发展存在的问题,直流输电和FACTS技术不断投入实际工程应用!调速电机以及无功功率补偿电容器也大量投入运酷应糊妹营。这些设备的运行使得电网中电压和电流波形畸变越来越严重,谐波水平不断上升。另外,冲击性、波动性负荷,例如电弧炉、大型轧钢机、电力机车等,运行中不仅会产生大量的高次谐波,而且还会产生电压波动嫌翻、闪变、三相不平衡等电能质量问题。但另一方面,随着各种复杂的、精密的、对电能质量敏感的用电设备不断普及,人们对电能质量的要求越来越高,因而电能质量成为目前研究的热点。

概念

播报
编辑
电能质量(PowerQuality),从严格意思上讲,衡量电能质量的主要指标有电压、频率和波形。从普遍意义上讲是指优质供电,包括电压质量电流质量供电质量和用电质量。电能质量问题可以定义为:导致用电设备故障或不能正常工作的电压、电流或频率的偏差,其内容包括频率偏差电压偏差、电压波动与闪变三相不平衡、瞬时或暂态过电压、波形畸变(谐波)、电压暂降、中断、暂升以及供电连续性等。
一个理想的电力系统应以恒定的频率(50Hz)和正弦波形,按规定的电压水平(标称电压)对用户供电。在三相交流电力系统中,各相的电压和电流应处于幅值大小相等,相位互差120。的对称状态。由于系统各元件(发电机、变压器、线路等等)参数并不是理想线性或对称的,负荷性质各异且随机变化,加之调控手段的不完善以及运行操作、外来干扰和各种故障等原因,这种理想状态在实际当中并不存在,而由此产生了电网运行、电气设备和用电中的各种各样的问题,也就产生了电能质量(PowerQuality)的概念。
从普遍意义上讲,电能质量是指优质供电。但迄今为止,对电能质量的技术含义还存在着不同的认识,这一方面是由于人们看问题的角度不同,如电力企业可能把电能质量简单地看成是电压(偏差)与频率(偏差)的合格率,并且用统计数字来说明电力系统电能9%是符合质量要求的;电力用户则可能把电能质量笼统地看成是否向负荷正常供电;而设备制造厂家则认为合格的电能质量就是指电源特性完全满足电气设备正常设计工况的需要,但实际上不同厂家和不同设备对电源特性的要求可能相去甚远。另一方面,对电能质量的认识也受电力系统发展水平的制约,特别是用电负荷的性能和结构。 [1]

指标

播报
编辑
电能质量指标是电能质量各个方面的具体描述,不同的指标有不同的定义。参考国际电工委员会标准,从电磁现象及相互作用和影响角度考虑给出的引起干扰的基本现象分类如下。
a.电压中断(断电,interruption,outage):在一定时间内,一相或多相完全失去电压(低于0.8“标幺值”称为断电。按持续时间长短,分为瞬时断电(0.5周期~3S)暂时断电(3S~60S)和持续断电(大于60S)。
b.频率偏差(frequencydeviation):各国对此均已做出明确规定。
c.电压下跌(sag)(电压跌落,dip):持续时间为0.5周期~1min,幅值为0.1~0.9(标幺值),系统频率仍为标称值。
d.电压上升(电压隆起,swell):电压(或电流)持续时间为0.5周期~1min,幅值为1.1~1.8(标幺值),系统频率仍为标称值。
e.瞬时脉冲(impulse):在两个连续稳态之间的一种在极短时间内发生的电压(或电流)变化。瞬时脉冲可以是任一极性的单方向脉冲,也可以是发生在任一极性的阻尼振荡波第1个尖峰。
f.电压波动(fluctuation)与闪变(flicker):电压波动是在包络线内的电压的有规则变动,或是幅值通常不超出0.9~1.1电压范围的一系列电压随机变化。闪变则是指电压波动对照明灯的视觉影响。
电能质量监测改善前后对比图
g.电压切痕(notch):电压切痕是一种持续时间小于0.5周期的周期性电压扰动。电压切痕主要由于电力电子装置在相关的两相间发生瞬时短路时电流从一相转换到另一相而产生的。电压切痕的频率非常高,用常规的谐波分析设备很难检测出来,这就是过去从未有过此项电压扰动内容,直到最近才正式列入的原因。
h.谐波(harmonics):含有基波整数倍频率的正弦电压或电流称为谐波。谐波是由于电力系统和电力负荷设备的非线性特性造成的。
i.间谐波(inter-harmonics):含有基波非整数倍频率的正弦电压或电流称为间谐波。小于基波频率的分数次谐波也属于这一类。间谐波会使照明装置引发视觉闪变。
j.过电压(overvoltage):电压(或电流)持续时间为大于1min,幅值为1.1~1.2(标幺值),系统频率仍为标称值。
k.欠电压(undervoltage):电压(或电流)持续时间为大于1min,幅值为0.8~0.9(标幺值),系统频率仍为标称值。
电能质量问题归纳起来主要包括以下4个方面:①电压波动(fluctuation)和闪变(flicker);②谐波(harmonics);③电压三相不平衡(unbalance);④电压降低(dip)和供电中断(outage)。 [1]

具体指标

播报
编辑

电网频率

我国电力系统的标称频率为50Hz,GB/T15945-2008《电能质量电力系统频率偏差》中规定:电力系统正常运行条件下频率偏差限值为±0.2Hz,当系统容量较小时,偏差限值可放宽到±0.5Hz,标准中没有说明系统容量大小的界限。在《全国供用电规则》中规定"供电局供电频率的允许偏差:电网容量在300万千瓦及以上者为±0.2HZ;电网容量在300万千瓦以下者,为±0.5HZ。实际运行中,从全国各大电力系统运行看都保持在不大于±0.1HZ范围内。

电压偏差

GB/T12325-2008《电能质量供电电压偏差》中规定:35kV及以上供电电压正、负偏差的绝对值之和不超过标称电压的10%;20kV及以下三相供电电压偏差为标称电压的土7%;220V单相供电电压偏差为标称电压的+7%,-10%。

三相电压不平衡

GB/T15543-2008《电能质量三相电压不平衡》中规定:电力系统公共连接点电压不平衡度限值为:电网正常运行时,负序电压不平衡度不超过2%,短时不得超过4%;低压系统零序电压限值暂不做规定,但各相电压必须满足GB/T12325的要求。接于公共连接点的每个用户引起该点负序电压不平衡度允许值一般为1.3%,短时不超过2.6%。

公用电网谐波

GB/T14549--93《电能质量公用电网谐波》中规定:6~220kV各级公用电网电压(相电压)总谐波畸变率是0.38kV为5.0%,6~10kV为4.0%,35~66kV为3.0%,110kV为2.0%;用户注入电网的谐波电流允许值应保证各级电网谐波电压在限值范围内,所以国标规定各级电网谐波源产生的电压总谐波畸变率是:0.38kV为2.6%,6~10kV为2.2%,35~66kV为1.9%,110kV为1.5%。对220kV电网及其供电的电力用户参照本标准110kV执行。

公用电网间谐波

GB/T24337-2009《电能质量公用电网间谐波》中规定:间谐波电压含有率是1000V及以下<100Hz为0.2%,100~800Hz为0.5%,1000V以上<100Hz为0.16%,100~800Hz为0.4%,800Hz以上处于研究中。单一用户间谐波含有率是1000V及以下<100Hz为0.16%,100~800Hz为0.4%,1000V以上<100Hz为0.13%,100~800Hz为0.32%。

波动和闪变

GB/T12326-2008《电能质量电压波动和闪变》规定:电力系统公共连接点,在系统运行的较小方式下,以一周(168h)为测量周期,所有长时间闪变值Plt满足:≤110kV,Plt=1;>110kV,Plt=0.8。以及单个用户的相关规定。

电压暂降与短时中断

GB/T30137-2013《电能质量电压暂降与短时中断》定义:电压暂降是指电力系统中某点工频电压方均根值突然降低至0.1p.u.~0.9p.u.,并在短暂持续10ms~1min后恢复正常的现象;短时中断是指电力系统中某点工频电压方均根值突然降低至0.1p.u.以下,并在短暂持续10ms~1min后恢复正常的现象。 [2]

改善措施

播报
编辑
改善电能质量的装置和措施很多,以大功率电力电子器件为核心单元的新型装置可以用来有效地抑制或抵消电力系统中出现的各种短时、瞬时扰动,而常规措施则很好地适用于稳态电压调整。电能质量控制装置按功能可分为以下三大类:无功补偿装置、滤波器和着重于解决暂态电能质量问题的统一电能质量调节器(UPQC)。要想使电能质量控制装置充分发挥其设计功能,采用准确、高效的分析与控制方法是至关重要的。首先要获得及时、准确的有关“源”信息,如三相电压、三相电流、中线电流及中线对地电压等,然后对这些源信息进行实时、快速的分析,得到所需的控制信息,控制装置根据这些控制信息,采用适当的控制方法产生相应的动作,最终才能得到理想的补偿效果。
1、扰动信号的提取
对于电压波动和闪变、谐波、三相不平衡这些变化相对较缓慢、持续时间较长的电能质量问题,对称分量法、谐波分析法是最常用的时域分析方法。它们的特点是数学表达式简单,物理概念明确。但时域分析方法计算量大、耗时长,不能实现实时、在线控制,因此必须采用变换的方法,快速、准确地得到所需的控制信号。傅里叶变换作为最经典的信号处理手段在电能质量检测中发挥了重要作用。目前,各种算法的离散傅里叶变换(DFT)和快速傅里叶变换(FFT)已经成为频谱分析和谐波分析的基础。
对于电压下跌、电压上升、瞬时脉冲以及电压瞬时中断等这类电能质量扰动,由于它持续时间短,发生时间具有很大的随机性,傅里叶变换已不能满足要求,因此必须采用新的信号分析方法,如加窗傅里叶变换、短时傅里叶变换和小波变换等。另外,将传统的分析方法与新兴的智能方法相结合也是分析电能质量问题的一个趋势。
谐波电流的检测与分析是电能质量分析的另一个重要方面。现有的谐波电流检测方法有基于Fryze功率定义的检测方法、模拟带通滤波器检测方法、基于频域分析的FFT检测方法、同步测定法、自适应检测法、基于瞬时无功功率理论的畸变电流瞬时检测法等,此外还有基于小波变换的时变谐波检测法、基于鉴相原理的谐波电流检测法、基于人工神经网络的谐波检测法等。其中,根据1984年由H.Akagi等人提出的瞬时无功功率理论的谐波电流检测法实时性强,在有源滤波方面得到了广泛的应用。但这一方法忽略了零序分量的影响,在电压有畸变的情况下求出的谐波电流与实际值是有差别的,采用基于广义瞬时无功功率理论的dq0变换则能更精确地实时检测出谐波电流。 [3]
2、控制策略
一旦检测、分析出存在的有关电能质量问题的信息,就必须采用有效的控制方法消除或抑制这些信息。采用何种控制方法与电能质量问题类型以及控制装置密切相关。
传统的一些用于稳态电压调整的装置,如并联电容器并联电抗器、变压器分接头等都是机械式的,它们对电能质量问题反应速度慢、控制不精确、调节能力有限,过去一般采用手动控制的方法,现在有一部分装置采用了自动投切的方法,其控制策略既有非常简单的开环控制,也有采用模糊控制、智能控制等现代控制策略的。
基于电力电子技术、通过变流器与电力系统相连接的电能质量控制装置,例如SVG(静止无功发生器)、APF(有源电力滤波器)、DVR(动态电压恢复器)、DSTATCOM(即并联型DVR)、UPQC等的控制方法更多。对变流器PWM控制技术是目前最常用的控制方法,通过调节导通角∆和调制脉宽Η可以四象限控制能量存储装置与电网间的有功或?和无功交换,而且可以有效地抑制交流侧的谐波。根据提取出的电能质量扰动信号来确定最终变流器的触发信号,目前研究及应用比较广泛的控制方法有以下几种:
a.PID控制:这是电力系统中最常用的方法,其理论完善、鲁棒性强、稳定性好、稳态精度高,易于在工程中实现。经典PID控制采用比例、积分、微分等典型的控制模块,加上几种校正网络,能改善系统动态、稳态性能。但PID控制也存在响应有超调、对系统参数摄动和抗负载扰动能力差等缺点,因此出现了变参数PID控制、将PID与变结构控制相结合等控制方法。
b.滞环比较控制:目前在跟踪谐波电流方面应用最广泛的控制方法是滞环比较控制。滞环比较控制的原理是将被控制量与它的给定值在给定范围内进行比较以确定电能变换器开关元件的开关时序。滞环比较控制具有反应速度快、控制精度高、容易实现和不需要了解负载特性等优点;主要缺点是开关频率不固定,用于三相三线系统时有严重的相间干扰,在负载换路时被控制量往往不能得到有效控制等。与矢量控制等方法相结合可以有效地克服上述缺点。
c.空间矢量控制:空间矢量控制的原理是将测量得到的基于三相静止坐标系的交流量(abc)经过Park变换得到基于两相旋转坐标系的直流量(dq),实现解耦控制,具有良好的稳态性能与暂态性能。常规的矢量控制方法需要进行复杂的正弦、反正切函数运算,一般采用DSP进行处理;为了缩短实时运算时间和降低对硬件的要求,可以采用一些简化算法。
d.无差拍控制:K.P.Gokhale等人在1987年首先提出逆变器无差拍控制方法,它的主要思想是根据系统的状态方程和当前的状态信息推算出下一周期的开关控制量,最终达到使输出量跟踪输入量的目的。采用无差拍控制可以消除稳态误差,并在最短的时间内结束过渡过程;但它也存在鲁棒性较差、瞬态响应超调量大、计算实时性强因而对硬件要求很高等缺点。采用带扰动状态观测器的无差拍控制或最优预见控制技术都可以大大改善无差拍控制的性能。
e.反馈线性化:直接反馈线性化(DFL——directfeedbacklinearization)方法即通过对系统非线性因素的精确补偿,将原系统转换为线性系统,即可用线性控制理论加以控制。
f.非线性鲁棒控制:考虑SMES(超导储能装置)实际运行时会受到各种不确定性的影响,因此可通过对SMES的确定性模型引入干扰,得到非线性二阶鲁棒模型。对此非线性模型,既可应用反馈线性化方法使之全局线性化,再利用所有线性系统的控制规律进行控制;也可直接采用鲁棒控制理论设计控制器。以某种性能指标的优化为设计依据的鲁棒控制理论最典型的代表就是加拿大学者G.Zames于1981年开创的H∞控制理论。该理论目前已经发展得比较成熟,成为分析和设计不确定系统的有力工具。
g.自适应控制:实际的SMES系统在运行过程中必然会受到负载扰动及其他环境因素变化的影响。采用常规的控制器,以一组不变的控制器参数去适应各种变化显然难以取得满意的结果。自适应控制方法可以在线辨识系统模型,然后根据系统模型和控制指标及时整定控制器参数,实现高精度控制。
h.模糊逻辑控制:用经典控制理论的“频域法”和现代控制理论的“时域法”设计控制器时,必须知道被控对象精确的数学模型。自适应控制、自校正控制虽然在很大程度上降低了对建模精度的要求,但需要使用大量的先验数据,而且要对模型进行在线辨识,算法复杂、计算量大,限制了其应用范围。模糊控制作为一种智能控制方法,不需要对系统建立精确的数学模型,通过对系统特征的模糊描述,可以大大降低获取系统动态和静态特征量付出的代价。模糊控制有较强的鲁棒性,对外来干扰、过程参数变化和非线性因素均不敏感。但模糊控制存在稳态误差,在工作点附近容易引起小范围振荡。可以将其他控制方法与模糊控制相结合,如变结构控制、人工神经网络等,从而改善模糊控制的性能。
i.人工神经网络(ANN):人工神经网络具有自适应和自组织能力,可以根据输入、输出学会它们之间的非线性关系,而不需要系统的数学模型;ANN的容错性和自适应性可以应付复杂系统在运行过程中的众多不确定因素,提高系统的抗干扰能力;ANN固有的并行结构和并行处理能力使它可以快速处理系统的大量数据。
总之,无功电能的余、缺状况是影响供电电压偏差的重要因素。传统的电能质量测试手段存在着局限性。海亿达能源科技研发EPDS™智能配电系统即电能质量监测改善系统,建立了遍及全网的电能质量在线监测网,以及一套统一开放的监控和管理平台,动态监测电网电能质量水平,进而针对严重影响电网电能质量的干扰性负荷进行改造,有效地提高了电能质量管理水平。也是利用现代测量控制技术和数据处理与通讯技术,在经济合理的成本下实现对用户端包括电源进线到终端用电设备在内的全部配电用电系统设施的管理控制,大幅提高配电用电系统与设施的运行与管理效率,降低运营成本。 [1]

电能质量控制技术的发展趋势

播报
编辑
电能质量控制是一个复杂的系统工程,它涉及到电力系统、电力电子、自动控制等多个方面。目前国外有关电能质量控制的研究正掀起高潮,其内容包括所适用的功率理论的扩展,电能质量评价指标体系的建立,新的电能质量分析方法的提出,以及基于用户电力技术的电能质量控制装置的设计与实现。国际上比较知名的几家大公司都已经生产出了自己的电能质量调节器,如西门子的SIPCON2S,GE的SSVR(staticseriesvoltageregulator),ABB的DVR,以及Softswitching的DSC(dynamicsagcorrector)。Westinghouse为美国电科院研制的世界上第1台DVR已于1996年8月投入工业运行;美国IGC和ASC的小型(1MJ~10MJ)低温SMES已经商品化,日本、德国、法国和意大利等也都对低温SMES展开了深入的研究。我国在电能质量方面的研究总的来说才刚刚起步,大部分研究都局限在谐波和无功补偿的范围内,与国外还存在着很大的差距。各种APF,SVC,UPQC,DVR等电能质量补偿装置仍处在理论研究和实验研究阶段。西安交通大学已研制出120kVA并联型有源电力滤波器,中国科学研究院电工所、清华大学电机系也已研制出小型SMES样机。结合目前国内外电能质量的研究现状以及社会发展对电能质量提出的新要求,应在以下3个方面对电能质量控制技术进行研究和完善:
a.基础理论研究:电能质量评价指标的科学界定以及各项指标的合理计算方法,新的分析与控制方法的研究,新的电能质量控制装置并网运行对系统可能产生的影响(包括稳态与动态性能)等。
b.积极采用其他领域的新技术,为电能质量控制技术带来新的活力:采用基于高速数字信号处理器(DSP)的数字化控制装置取代传统的用模拟量控制的电能质量控制装置,用固态电子开关取代常规高压开关以实现同步开断,利用燃料电池和微型燃汽轮机等分布式清洁能源提高供电可靠性和电能质量,计算机和通信技术的发展使得电能质量远程监测成为可能,大功率、可自关断电力电子器件与现代控制技术相结合研制出新型的电能质量调节装置,超导电力装置(SMES和SFCL(超导故障限流器))也将在提高供电质量方面发挥重要的作用。
c.大力发展用户电力技术(custompower):这是一种应用现代电力电子技术和控制技术为实现电能质量控制和为用户提供用户特定要求的电力供应的技术。DVR和DSTATCOM是用户电力技术控制器的典型代表。用户电力技术与FACTS本质上是一样的,其差别仅是额定电气值不同,前者应用于配电网,后者应用于输电网,因此用户电力技术也可称为配电网的FACTS技术(D2FACTS)。 [4]

图书信息

播报
编辑
书名:电能质量 [5]
作者:程浩忠
定价:53元
出版日期:2006-10-1

内容简介

《电能质量》
本书共分9章,分别论述了电能质量的基本概念、电力系统电压偏差、电力系统频率偏差、电力系统谐波、电压波动与闪变、电力系统三相不平衡、暂态过电压和瞬态过电压、配电系统可靠性、电压跌落。只要具有电力系统分析知识的读者都能顺利阅读并理解本书的内容。本书可作为电气工程、电力系统专业工程硕士研究生的教材,也可作为电力工程类专业高年级本科生和研究生学习电能质量的教材,还可作为从事电能质量工作的工程技术人员和技术管理人员的专业培训教材或参考书。 [5]

目录

第1章电能质量的基本概念/1
1.1电能质量的主要内容2
1.2关于电磁干扰和电能质量的分类3
1.2.1IEC关于电磁干扰及其对电能质量影响的分类3
1.2.2IEEE关于电磁现象和电能质量的分类3
1.2.3根据电能质量及电磁干扰现象特征的分类5
1.3中国电能质量标准与主要内容5
1.3.1电能质量标准化5
1.3.2电能质量国家标准简介7
1.3.3电力系统频率9
1.3.4供电电压允许偏差9
1.3.5三相电压不平衡度9
1.3.6电压波动和闪变10
1.3.8暂时过电压和瞬态过电压11
1.4关于电能质量的一些概念12
1.5动态电能质量15
1.6IEEE电压容限曲线及分类16
1.6.1电压容限曲线16
1.6.2ITIC曲线17
1.6.3IEEEStd.1159—1995中的有关定义18
1.7电能质量的研究概况19
1.7.1电能质量定义20
1.7.2电能质量问题起因21
1.7.3电能质量研究意义21
1.7.4电能质量特点22
1.7.5电能质量分析方法23
1.7.6电能质量标准26
参考文献27 [5]
第2章电力系统电压偏差/31
2.1电压偏差的国家标准31
2.1.1中国国家标准GB12325-199031
2.1.2国外电压偏差的标准32
2.2电压偏差超标的危害33
2.2.1电压偏差对用电设备的影响33
2.2.2电压偏差对电力系统稳定和经济运行的影响39
2.3.1有功、无功功率传输对电压水平的影响47
2.3.2负荷无功功率与电压水平的关系49
2.3.3电力系统电压调整50
2.3.4无功电压的自动控制60
2.4电力系统无功潮流62
2.4.1无功电源的优化62
2.4.2无功潮流优化的模型及算法65
2.4.3电网电压调整标准74
2.4.4无功补偿规划原则76
2.4.5无功补偿容量的配置78
2.5无功和电压管理80
2.5.1无功和电压管理的目标和方法80
2.5.2电压监测点和中枢点的选择81
2.5.3电力系统的电压监测82
2.5.4电压偏差的统计考核84
2.5.5无功功率补偿设备的运行和管理85
参考文献86 [5]
第3章电力系统频率偏差/87
3.1电力系统频率概念87
3.1.1频率偏差87
3.1.2频率的基本属性87
3.1.3电力系统频率、电源频率和负荷节点频率88
3.1.4频率波动89
3.1.5电力系统的频率特性89
3.1.6频率突然下降及崩溃93
3.1.7频率与电压的关系95
3.2频率偏差对电力系统的影响96
3.2.1影响频率的因素96
3.2.2系统低频率运行对水电厂的影响97
3.2.3系统低频率运行对火电厂的影响98
3.2.4系统低频率运行对负荷的影响100
3.2.5冲击负荷引起的电力系统频率波动108
3.2.6电力系统高频率运行的危害109
3.3电力系统频率的检测与评价110
3.3.1电力系统频率的4种运行工况110
3.3.2电力系统的动态频率112
3.3.3电力系统频率的检测113
3.3.4电力系统频率的评价113
3.4电力系统频率偏差的标准和规定114
3.4.1国内外有关的标准和规定115
3.4.2频率偏差标准和规定的讨论119
3.5.1频率的一次调整120
3.5.2频率的二次调整122
3.5.3调频厂的选择125
参考文献127
第4章电力系统谐波/128
4.1电力系统谐波的基本概念128
4.1.1电力系统中正弦波形129
4.1.2谐波的定义和性质129
4.1.3非正弦波形的有效值和畸变率132
4.1.4特征谐波和非特征谐波134
4.1.5谐波和非特征谐波135
4.1.6谐波计算的等值电路参数135
4.2电力系统非正弦波形的分析方法136
4.2.1非正弦波形及其频域分解136
4.2.2非正弦电路的电压和电流142
4.2.3非正弦电路的功率和功率因数145
4.2.4非正弦波形有功功率、无功功率的时域定义150
4.3电力系统谐波的来源152
4.3.1发电机和电动机152
4.3.2变压器和电抗器154
4.3.3电弧的非线性伏安特性158
4.3.4整流换流装置159
4.3.5电力机车161
4.3.6家用电器163
4.4电力系统谐波潮流计算163
4.4.1电网各元件等值电路的谐波参数164
4.4.2对称系统的谐波潮流计算167
4.4.3谐波潮流的简化计算法168
4.5电力系统谐波测量技术171
4.5.1概述171
4.5.2非正弦周期信号的采样172
4.5.3非正弦波形下常用电量的测量173
4.5.4谐波阻抗的测量184
4.5.5对电压互感器电流互感器的要求189
4.6谐波对电网的影响和危害191
4.6.1谐波对电网的影响192
4.6.2谐波对高压设备的影响193
4.6.3谐波对低压用电设备的影响196
4.6.4谐波对继电保护的影响和危害200
4.6.5谐波对远动自动装置的影响202
4.6.6谐波对通信线路的干扰203
4.7电力系统谐波的抑制204
4.7.1减少谐波源的谐波含量204
4.7.2在电容器回路串接电抗器207
4.7.3安装交流滤波器208
4.7.4采用有源滤波器209
4.7.5加大供电系统容量和合理选择供电电压210
4.7.6采用相数倍增法211
4.7.7谐波对并联电容器的影响211
4.7.8电力电容器组的谐波过载能力215
4.7.9电容器对系统谐波阻抗的影响217
4.7.10并联电容器对谐波电流的放大作用217
4.7.11电容器的无功补偿方案219
4.8交流滤波装置219
4.8.1滤波装置接线方式和滤波方案219
4.8.2滤波器的滤波效益221
4.8.5滤波装置参数选择的条件229
4.9谐波对电能计量的影响231
4.9.1引言231
4.9.2电能表的分类231
4.9.3电能表运行原理232
4.9.4谐波引起电能表误差的分析233
4.9.5计量误差的改进措施及相关标准237
4.10电力系统谐波的标准及其管理238
4.10.1国外的谐波标准238
4.10.2国内公用电网谐波管理的标准242
4.10.3家用和低压电器的谐波限制标准243
4.10.4对谐波的管理245
4.10.5电力系统谐波的监测246
参考文献248 [5]
第5章电压波动与闪变/251
5.1电压波动与闪变的基本概念251
5.1.1电压波动251
5.1.2闪变252
5.1.3灯—眼—脑模型255
5.1.4电压波动和闪变的危害256
5.2电压波动和闪变的标准257
5.2.1电压波动和闪变的国家标准257
5.2.2我国新老标准以及与国际标准的比较259
5.3电压波动和闪变的测量260
5.3.1电压波动的检测方法261
5.3.2IEC闪变检测方法265
5.3.3不同类型的闪变仪269
5.4电压波动和闪变的产生和抑制275
5.4.1电压波动的产生275
5.4.2电压闪变的产生277
5.4.3电压波动的抑制279
参考文献288
第6章电力系统三相不平衡/290
6.1三相不平衡的概念及计算290
6.1.1三相不平衡的概念及表达式290
6.1.2三相不平衡的计算294
6.2三相不平衡的标准及测量299
6.2.1三相不平衡的国家标准299
6.2.2三相不平衡的测量仪器301
6.3三相不平衡的危害及改善措施304
6.3.1三相不平衡的危害304
6.3.2三相不平衡的改善措施308
参考文献312
第7章暂时过电压和瞬态过电压/313
7.1暂时过电压和瞬态过电压的概念313
7.1.1电力系统过电压的定义和分类313
7.1.2电力系统过电压与绝缘配合315
7.2工频过电压的机理与限制319
7.2.1空载线路的电容效应与限制方法319
7.2.2单相接地时的工频电压升高322
7.2.3甩负荷引起的工频电压升高323
7.3谐振过电压的机理与限制325
7.3.1线性谐振325
7.3.2铁磁谐振329
7.3.3参数谐振340
7.4操作过电压的机理与限制344
7.4.1概述344
7.4.2单频振荡回路的过渡过程344
7.4.3空载线路的合闸和重合闸过电压348
7.4.4空载线路的拉闸过电压350
7.5雷电过电压的保护354
参考文献354
第8章配电系统可靠性/355
8.1配电系统可靠性355
8.1.1配电系统可靠性的概念355
8.1.2配电系统可靠性工作的重要性355
8.1.3配电系统供电可靠性的概念356
8.1.4供电可靠性评价指标与计算公式357
8.1.5可靠性统计的有关规定361
8.2配电系统可靠性准则364
8.2.1电力系统可靠性准则364
8.2.2配电系统可靠性准则366
8.3我国城市电力网可靠性的规定366
8.3.1概述366
8.3.2城市电力网对可靠性的一般要求367
8.3.3城市电力网可靠性标准368
8.3.4城市电力网可靠性应用370
8.4以元件组合关系为基础的配电系统可靠性预测方法373
8.4.1配电系统可靠性预测评估指标374
8.4.2简单放射状网络的评价377
8.4.3复杂网络的评价383
8.5配电系统缺电和停电损失的计算389
8.6配电系统可靠性经济评价391
8.6.1经济评价的原则391
8.6.2常用的可靠性经济评价方法391
8.7提高配电系统可靠性的措施393
8.7.1防止故障的措施393
8.7.2改善系统可靠度的措施396
8.7.3加速故障探测及故障修复397
8.8提高配电系统可靠性措施实施效果的计算399
8.8.1提高配电系统可靠性措施的效果分析399
8.8.2提高可靠度措施效果分布的计算方法400
参考文献402
第9章电压跌落/403
9.1电压跌落概述403
9.1.1电压跌落的相关概念403
9.1.2电压跌落的原因404
9.1.3电压跌落的研究现状404
9.2电压跌落的危害性405
9.2.1概述405
9.2.2电压跌落对计算机及电子设备的影响406
9.2.3电压跌落对交流驱动设备的影响410
9.3电压跌落的标准421
9.4电压跌落值的测量和计算422
9.4.1电压跌落幅值计算的基本方法422
9.4.2同时计算电压跌落幅值和相位跳变的算法423
9.4.3电压跌落持续时间的测量425
9.5抑制电压跌落的措施426
9.5.1概述426
9.5.2动态补偿技术428
9.5.3动态电能质量调节装置介绍431
参考文献432 [5]