Ionski kanal
Ionske kanaleformiraju porskimembranski proteinikoji omogućavajuionimaprolaz kroz pore kanala. Njihove funkcije uključuju uspostavljanjepotencijal membrane u mirovanju,[1]oblikovanjeakcijskog potencijalai drugih električnih signala, pomoćuizlazaza protokionakrozćelijsku membranu,kontrolirajući protok iona putemsekrecijskihiepitelnihćelija i reguliranje volumenaćelija.Ionski kanali su prisutni u membranama svih ćelija.[2][3]Ovi kanali su jedna od dvije klaseionofornihproteina, a druga suionski transporteri.[4]
Proučavanje ionskih kanala često uključuje više naučnih oblasti, kao što subiofizika,elektrofiziologijaifarmakologija,dok se koriste tehnikenaponska spona,stezna spona,imunohistohemija,rendgenska kristalografija,fluoroskopijaiRT-PCR.Njihova klasifikacija kao molekula naziva sekanalomika.
Osnovna obilježja
[uredi|uredi izvor]Dva obilježavajuća svojstva ionskih kanala ih razlikuju od ostalih vrsta proteina ionskih transportera
- Stopa brzine transporta iona kroz kanal je vrlo visoka (često 106iona u sekundi ili veća).
- Ioni prolaze kroz kanale niz svojelektrohemijski gradijent,što je funkcija koncentracije iona i membranskog potencijala, "nizbrdo", bez unosa (ili pomoći) metaboličke energije (npr.ATP,mehanizmikotransportailiaktivnog transporta). Ionski kanali nalaze se unutarmembranasvih podražaljivih ćelija[3]i mnogih unutarćelijskihorganela.Često se opisuju kao uski tuneli ispunjeni vodom koji propuštaju samo ione određene veličine i/ili naboja. Ova karakteristika se nazivaselektivna propusnost.U svojoj najužoj tački, pora arhetipskog kanala široka je samo jedan ili dva atoma i selektivna je za specifične ione, poputnatrijailikalija.Međutim, neki kanali mogu biti propusni za prolaz više od jednog tipa iona, obično dijeleći zajednički naboj: pozitivan (kationi) ili negativni (anioni). Ioni se često kreću kroz segmente pornih kanala u jednom skupu gotovo jednako brzo kao i ioni kroz slobodni rastvor. U mnogim ionskim kanalima prolaz kroz pore regulira se "kapijom", koja se može otvoriti ili zatvoriti kao odgovor na hemijske ili električne signale, temperaturu ili mehaničku silu.
Ionski kanali suintegralni membranski proteini,tipski formirani kao sklopovi nekoliko pojedinačnih proteina. Takvi sklopovi "multipodjedinica"obično uključuju kružni raspored identičnih ilihomolognihproteina, usko upakovanih oko vodom napunjene pore kroz ravninu membrane ililipidni dvosloj.[5][6]Za većinunaponski usmjerenih ionskih kanalapodjedinica (e) koja formira pore naziva se α podjedinica, dok se pomoćne podjedinice označavaju kao β, γ i tako dalje.
Biološka uloga
[uredi|uredi izvor]Budući da su kanali u osnovinervnog impulsai jer kanali "aktivirani predajnikom" posreduju u provođenju krozsinapse,kanali su posebno istaknute komponentenervnog sistema.Zapravo,brojni toksinikoji su evoluirali radi isključivanja nervnog sistema grabljivica i plijena (npr. otrovi koje proizvode pauci, škorpije, zmije, ribe, pčele, morski puževi i drugi) djeluju moduliranjem vodljivosti ionskog kanala i / ili njihove kinetike. Pored toga, ionski kanali su ključne komponente u širokom spektru bioloških procesa koji uključuju brze promjene u ćelijama, kao što susrčane,skeletneiglatkomišićnekontrakcije,epitelnitransport hranljivih sastojaka i iona, aktivacijaT-ćelijai oslobađanjeinsulinaiz beta-ćelijapankreasa,Ionski kanali su česta meta u potrazi za novim lijekovima.[7][8][9]
Detaljna struktura
[uredi|uredi izvor]Kanali se razlikuju u odnosu na ion koji propuštaju (naprimjer,Na+,K+,Cl–), kao i načine na koje se mogu regulirati, broj podjedinica od kojih su sastavljeni i druge aspekte strukture.[10]Kanali koji pripadaju najvećoj klasi, koja uključuje naponski ograničene kanale koji su u osnovi nervnog impulsa, sastoje se od četiri podjedinice, sa po šesttransmembranskih heliksa.Pri aktivaciji, ove spiralne kretnje se otvaraju, čim otvaraju i pore. Dvije od ovih šest spirala odvojene su petljom koja poravnava pore i primarna je odrednica selektivnosti i provodljivosti iona u ovoj klasi kanala i nekim drugim. Postojanje i mehanizam selektivnosti iona prvi su postuliraliBertil HilleiClay Armstrong,krajem 1960-ih.[11][12][13][14][15]
Ideja ionske selektivnosti za kalijeve kanale bila je da karbonilni kisici proteinskih okosnica "selektivnog filtra" (termin uveoBertil Hille) mogu efikasno zamijeniti molekule vode koje normalno štite kalijeve ione, ali da se ioni natrija, bili manji i ne, mogu potpuno dehidrirati da omoguće takvu zaštitu, pa stoga nisu mogli proći. Ovaj mehanizam je konačno potvrđen kada je razjašnjena prva struktura ionskog kanala. Kao model za proučavanje permeabilnosti i selektivnosti ionskih kanala u Mackinnonovoj laboratoriji korišten je bakterijski kalijev kanalKcsA,koji se sastoji samo od filtera za selektivnost, "P" petlje i dva transmembranska vijka. Određivanje molekularne strukture KcsA izveo jeRoderick MacKinnonpomoćukristalografije X-zrakai osvojio dioNobelove nagrade za hemiju,u 2003.[16]
Zbog njihove male veličine i poteškoća u kristalizaciji integralnih membranskih proteina za rendgensku analizu, tek su nedavno naučnici uspjeli izravno ispitati kako "kanali izgledaju". Pogotovo u slučajevima kada je kristalografija zahtijevala uklanjanje kanala s membrana deterdžentom, mnogi istraživači smatraju da su slike koje su dobijene okvirne. Primjer je dugo očekivana kristalna struktura naponskog kalijevog kanala, koja je objavljena u maju 2003.[17][18]Jedna neizbježna dvosmislenost oko ovih struktura odnosi se na snažne dokaze da kanali mijenjaju konformaciju dok djeluju (naprimjer, otvaraju se i zatvaraju), tako da bi struktura u kristalu mogla predstavljati bilo koje od ovih operativnih stanja. Većinu onoga što su istraživači do sada zaključili o radu kanala utvrdili su putem metodaelektrofiziologije,biohemije,poređenjagenskihsekvenci imutageneze.
Kanali mogu imati pojedinačne (CLIC) do višestruke transmembranske (K-kanale, P2X-receptore, Na-kanale) domene koji se protežu kroz plazmatsku membranu da bi stvorili pore. Pore može odrediti selektivnost kanala. Ulazi se mogu formirati unutar ili izvan područja pora.
Farmakologija
[uredi|uredi izvor]Hemijske supstance mogu modulirati aktivnost ionskih kanala, naprimjer tako što ih blokiraju ili aktiviraju.
Blokatori ionskih kanala
[uredi|uredi izvor]Raznovrsniblokatori jonskih kanala(anorganske i organske molekule) mogu modulirati aktivnost i provodljivost ionskih kanala. Neki od najčešće korištenih blokatora uključuju:
- Tetrodotoksin(TTX), za odbranu koriste neke vrsteribaidaždevnjaka.Blokira natrijeve kanale.
- Saksitoksinproizvodidinoflagelatpoznat i kao "crvena plima".Blokira natrijeve kanale ovisne o naponu.
- Conotoksinkoristapuževi u konusuza lov na plijen.
- LidokainiNovokainpripadaju klasilokalnih anestetikakoji blokiraju natrijeve ionske kanale.
- Dendrotoksinproizvodizmijamambai blokira kalijeve kanale.
- IberiotoksinproizvodiButhustamulus(istočnoindijski škorpion) i blokira kalijeve kanale.
- HeteropodatoksinproizvodiHeteropoda venatoria(smeđi pauk lovac ili laja) i blokira kalijeve kanale.
Aktivatori ionskih kanala
[uredi|uredi izvor]Poznato je nekoliko spojeva koji pospješuju otvaranje ili aktiviranje određenih ionskih kanala. Klasificirani su prema kanalu na kojem djeluju:
- Otvarač kalcijevih kanala,kao što jeBay K8644;
- Hloridni otvarač kanala,kao što jefenantrolin;
- Otvarač kalijevih kanala,kao što jeminoksidil;
- Otvarač natrijevih kanala,kao što jeDDT.
Također pogledajte
[uredi|uredi izvor]- Alfa-heliks
- Porodica ionskih kanalakako je definirano uPfamiInterPro
- Ki baza podataka
- Lipidni dvosloj
- Neurotoksin
- Pasivni transport
- Sintetski ionski kanali
- Transmembranski receptor
Reference
[uredi|uredi izvor]- ^Abdul Kadir L, Stacey M, Barrett-Jolley R (2018)."Emerging Roles of the Membrane Potential: Action Beyond the Action Potential".Frontiers in Physiology.9:1661.doi:10.3389/fphys.2018.01661.PMC6258788.PMID30519193.
- ^Alexander SP, Mathie A, Peters JA (novembar 2011)."Ion Channels".British Journal of Pharmacology.164(Suppl 1): S137–S174.doi:10.1111/j.1476-5381.2011.01649_5.x.PMC3315630.
- ^ab"Ion Channel".Scitable. 2014.Pristupljeno 28. 5. 2019.
- ^Hille, Bertil (2001) [1984].Ion Channels of Excitable Membranes(3rd izd.). Sunderland, Mass: Sinauer Associates, Inc. str.5.ISBN978-0-87893-321-1.
- ^Purves, Dale; Augustine, George J.; Fitzpatrick, David; Katz, Lawrence. C.; LaMantia, Anthony-Samuel; McNamara, James O.; Williams, S. Mark, ured. (2001)."Chapter 4: Channels and Transporters".Neuroscience(2nd izd.). Sinauer Associates Inc.ISBN978-0-87893-741-7.
- ^Hille B, Catterall WA (1999)."Chapter 6: Electrical Excitability and Ion Channels".u Siegel GJ, Agranoff BW, Albers RW, Fisher SK, Uhler MD (ured.).Basic neurochemistry: molecular, cellular, and medical aspects.Philadelphia: Lippincott-Raven.ISBN978-0-397-51820-3.
- ^Camerino DC, Tricarico D, Desaphy JF (april 2007)."Ion channel pharmacology".Neurotherapeutics.4(2): 184–98.doi:10.1016/j.nurt.2007.01.013.PMID17395128.
- ^Verkman AS, Galietta LJ (februar 2009)."Chloride channels as drug targets".Nature Reviews. Drug Discovery.8(2): 153–71.doi:10.1038/nrd2780.PMC3601949.PMID19153558.
- ^Camerino DC, Desaphy JF, Tricarico D, Pierno S, Liantonio A (2008).Therapeutic approaches to ion channel diseases.Advances in Genetics.64.str. 81–145.doi:10.1016/S0065-2660(08)00804-3.ISBN978-0-12-374621-4.PMID19161833.
- ^Lim C, Dudev T (2016). "Potassium Versus Sodium Selectivity in Monovalent Ion Channel Selectivity Filters". u Sigel A, Sigel H, Sigel R (ured.).The Alkali Metal Ions: Their Role for Life.Metal Ions in Life Sciences.16.Springer. str. 325–47.doi:10.1007/978-3-319-21756-7_10.ISBN978-3-319-21755-0.PMID26860306.
- ^Hille B (decembar 1971)."The permeability of the sodium channel to organic cations in myelinated nerve".The Journal of General Physiology.58(6): 599–619.doi:10.1085/jgp.58.6.599.PMC2226049.PMID5315827.
- ^Bezanilla F, Armstrong CM (novembar 1972)."Negative conductance caused by entry of sodium and cesium ions into the potassium channels of squid axons".The Journal of General Physiology.60(5): 588–608.doi:10.1085/jgp.60.5.588.PMC2226091.PMID4644327.
- ^Hille B (juni 1973)."Potassium channels in myelinated nerve. Selective permeability to small cations".The Journal of General Physiology.61(6): 669–86.doi:10.1085/jgp.61.6.669.PMC2203488.PMID4541077.
- ^Hille B (novembar 1975)."Ionic selectivity, saturation, and block in sodium channels. A four-barrier model".The Journal of General Physiology.66(5): 535–60.doi:10.1085/jgp.66.5.535.PMC2226224.PMID1194886.
- ^Hille B (mart 2018)."Journal of General Physiology: Membrane permeation and ion selectivity".The Journal of General Physiology.150(3): 389–400.doi:10.1085/jgp.201711937.PMC5839722.PMID29363566.
- ^Doyle DA, Morais Cabral J, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, et al. (april 1998). "The structure of the potassium channel: molecular basis of K+ conduction and selectivity".Science.280(5360): 69–77.Bibcode:1998Sci...280...69D.doi:10.1126/science.280.5360.69.PMID9525859.
- ^Jiang Y, Lee A, Chen J, Ruta V, Cadene M, Chait BT, MacKinnon R (maj 2003). "X-ray structure of a voltage-dependent K+ channel".Nature.423(6935): 33–41.Bibcode:2003Natur.423...33J.doi:10.1038/nature01580.PMID12721618.
- ^Lunin VV, Dobrovetsky E, Khutoreskaya G, Zhang R, Joachimiak A, Doyle DA, et al. (april 2006)."Crystal structure of the CorA Mg2+ transporter".Nature.440(7085): 833–7.Bibcode:2006Natur.440..833L.doi:10.1038/nature04642.PMC3836678.PMID16598263.
Vanjski linkovi
[uredi|uredi izvor]- "Voltage-Gated Ion Channels".IUPHAR Database of Receptors and Ion Channels.International Union of Basic and Clinical Pharmacology.
- "TRIP Database".a manually curated database of protein-protein interactions for mammalian TRP channels.Arhivirano soriginala,10. 8. 2016.Pristupljeno 21. 5. 2021.
- Ion ChannelsnaUS National Library of MedicineMedical Subject Headings(MeSH)