Vés al contingut

Inverses de les funcions trigonomètriques

De la Viquipèdia, l'enciclopèdia lliure

Enmatemàtiques,lesinverses de les funcions trigonomètriquessón lesfuncionsque desfan l'aplicació de lesfuncions trigonomètriquesi retornen l'angle original. Les principals són les que es presenten en la taula següent.

Nom Notació habitual Definició Domini dexper resultat real Recorregut delvalor principalhabitual
arc sinus y= arcsin(x) x=sin(y) −1 a +1 −π/2 ≤y≤ π/2
arc cosinus y= arccos(x) x=cos(y) −1 a +1 0 ≤y≤ π
arc tangent y= arctan(x) x=tan(y) tot −π/2 <y< π/2
arc cotangent y= arccot(x) x=cot(y) tot 0 <y< π
arc secant y= arcsec(x) x=sec(y) −∞ a −1 o 1 a ∞ 0 ≤y< π/2 o π/2 <y≤ π
arc cosecant y= arccsc(x) x=csc(y) −∞ a −1 o 1 a ∞ −π/2 ≤y< 0 o 0 <y≤ π/2

Si es permet quexsigui unnombre complex,llavors el recorregut deynomés s'aplica a la part real.

Les notacions sin−1,cos−1,etc., es fan servir de vegades en comptes de arcsin, arccos, etc

El valors principals habituals de les funcionsf(x) = arcsin(x) if(x) = arccos(x) representades al pla cartesià.
Els valors principals habituals de les funcionsf(x) = arctan(x) if(x) = arccot(x) representades al pla cartesià.
El valors principals habituals de les funcionsf(x) = arcsec(x) if(x) = arccsc(x) representades al pla cartesià.

En llenguatges de programació d'ordinadors, les funcions arcsin, arccos, arctan, es diuen normalmenr asin, acos, atan. Molts llenguatges de programació, també subministren la funció amb dos argumentsatan2,que calcula l'arctangent dey/xdonatsyix,però amb un recorregut de [−π, π].

Relacions entre les inverses de les funcions trigonomètriques

[modifica]

Angles complementaris:



Arguments negatius:

Arguments inversos:



si


si


si


si



En cas de disposar només d'un fragment de la taula trigonomètrica:

si

Cal indicar que, en aquestes expressions, quan surt una arrel quadrada d'un nombre complex, es tria l'arrel amb la part real positiva (o la part imaginaria positiva si el quadrat era un real negatiu).

A partir de lafórmula de la tangent de l'angle meitat,es té:



si


Solucions generals

[modifica]

Cada una de les funcions trigonomètriques és periòdica en la part real del seu argument, passant dos cops per cada valor del seurecorreguten cada interval de 2π. El Sinus i la cosecant comencen el període a 2πk- π/2 (onkés un enter), i l'acaben a 2πk+ π/2, i llavors es reverteixen des de 2πk+ π/2 fins a 2πk+ 3π/2. El cosinus i la secant comencen el seu període a 2πk,l'acaben a 2πk+ π, i llavors es reverteixen des de 2πk+ π fins a 2πk+ 2π. La Tangent comença el seu període a 2πk- π/2, l'acaba a 2πk+ π/2, i llavors el repeteix (cap endavant) des de 2πk+ π/2 fins a 2πk+ 3π/2. La Cotangent comença el seu període a 2πk,l'acaba a 2πk+ π, i llavors el repeteix (cap endavant) des de 2πk+ π fins a 2πk+ 2π.

Aquesta periodicitat es reflecteix en les inverses generals:

sin y = x si i només si y = arcsin x + 2kπ o y = π − arcsin x + 2kπ per algun enter k.
cos y = x si i només si y = arccos x + 2kπ o y = 2π − arccos x + 2kπ per algun enter k.
tan y = x si i només si y = arctan x + kπ for per algun enter k.
cot y = x si i només si y = arccot x + kπ for per algun enter k.
sec y = x si i només si y = arcsec x + 2kπ o y = 2π − arcsec x + 2kπ per algun enter k.
csc y = x si i només si y = arccsc x + 2kπ o y = π − arccsc x + 2kπ for per algun enter k.

Derivades de les funcions trigonomètriques inverses

[modifica]

Lesderivadespels valors reals desón les següents:

Per un exemple de demostració, fent,s'obté:

Per una demostració més rigorosa consulteu l'articleDerivades de les inverses de les funcions trigonomètriques.

Expressió com a integrals definides

[modifica]

Si s'integra la derivada i es fixa el valor en un punt de forma que coincideixi amb el de la funció primitiva, s'obté una expressió de les funcions trigonomètriques inverses com a integrals definides:

Quanxval 1, les integrals amb dominis limitats sónintegrals impròpiesperò continuen sent ben definides.

Sèries infinites

[modifica]

Igualment que les funcions sinus i cosinus, les funcions trigonomètriques inverses es poden calcular fent servirsèries infinites,tal com segueix:






EnLeonhard Eulerva trobar una sèrie més eficient per a l'arctangent, que és:

(Cal tenir en compte que el terme del sumatori den= 0 és elproducte buitque val 1.)

Fracció contínua per a l'arctangent

[modifica]

Una alternativa a la sèrie de potències per a l'arctangent és la sevafracció contínua generalitzada:


Aquesta expressió és vàlida en el tall del pla complex. Hi ha dos talls, des de −ifins al punt de l'infinit, anant cap avall per l'eix imaginari, i des deicap al punt de l'infinit, anat cap amunt de l'eix imaginari. Funciona millor per nombres reals entre −1 i 1. Els denominadors parcials són els nombres naturals senars, i els numeradors parcials (després del primer) són precisament (nz)², amb cada quadrat perfecte apareixent un cop. Va ser desenvolupada per enCarl Friedrich Gauss,utilitzant lasèrie hipergeomètrica.

Integrals indefinides de les funcions trigonomètriques inverses

[modifica]

Es demostren fàcilment usant laintegració per partsi les fromules simples de les derivades que s'han presentat més amunt.

Exemple de demostració

[modifica]

Fent servir,s'estableix

Llavors:

Substitute.Theni

Es torna a substituir perxper obtenir

Per més integrals vegeu l'articleLlista d'integrals d'inverses de funcions trigonomètriques.

Mètodes recomanats de càlcul

[modifica]

Per a calcular l'arcsinus:

Per a calcular l'arccosinus:

Per a calcular l'arctangent perxa prop de zero, feu servir la fracció contínua de més amunt. Per a calcular l'arctangent per altres valors dex:

Per a calcular l'arccotangent:

Per a calcular l'arcsecant:

Per a calcular l'arccosecant:

L'arctangent amb dos arguments

[modifica]

La funció arctangent amb dos argumentsatan2calcula l'arctangent dedonatsyix,però amb un recorregut de.Es va introduir inicialment en llenguatges de programació d'ordinadors, però avui en dia és també molt habitual en tots els camps de la ciència i de l'enginyeria.

Es defineix fent servir la funció arctan estàndard (és a dir amb recorregut de (−π/2, π/2)) tal com segueix:

Aquesta funció es pot calcular fent servir lafórmula de la tangent de l'angle meitattal com segueix:

Sempre que tantx> 0 comy≠ 0. Ara bé, en implementacions pràctiques, é més econòmic i més robust fer servir els signes dexeyper triar el recorregut correcte. Suposant que arctan(z) retorna un valor entre −π⁄₂ iπ⁄₂ per a tot realz,es té

L'ordre anterior dels argumentssembla el més habitual, i en particular es fa servir enl'estàndard ISOaixí com en elLlenguatge C,però alguns autors fan servir la convenció oposadaper tant convé anar amb cert compte. També l'estàndardIEEE 754per implementar l'aritmètica de coma flotant ha de manejar valors de l'argument excepcionals (no numèrics); FDLIBM (disponible a través dehttp://www.netlib.org/) mostra com això es pot fer fiablement.

La funcióatan2es pot implementar de forma numèrica fiable pel mètodeCORDIC. Per tant les implementacions deatan(y)probablement triaran de calcular de fetatan2(y,1).

Expressió en forma logarítmica

[modifica]

Igual que les funcions trigonomètriques que es poden expressar en forma exponencial (veurefórmula d'Euler), aquestes funcions es poden expressar vent servirlogaritmes complexes.Això estén de manera natural el seudominialpla complex.

Les demostracions d'aquestes relacions es fan a través de l'expansió a les formes exponencials de les funcions trigonomètriques.

Exemple de demostració

[modifica]
(definició exponencial del sinus)

Sia

Llavors

(solve for)
(es tria la branca positiva)
Q.E.D.

Identitat de la suma d'arctangents

[modifica]

Demostració

[modifica]

Es comença a partir de

i es fa

Aplicacions pràctiques

[modifica]

Les funcions trigonomètriques inverses són útils quan es tracta de determinar els angles d'untriangle rectanglequan es coneixen les longituds dels costats. De fet aquesta és la manera més precisa de mesurar angles donat que els instruments de mesurar longituds permeten obtenir molta més precisió que els instruments de mesurar directament angles

Sovint, la hipotenusa també és desconeguda i s'hauria de calcular abans de poder fer servir les funcions arcsin o arccos. En aquesta situació l'arctangent és la funció que ve a mà. Es pot calcular l'angle del triangle sense saber la hipotenusa.

Triangle rectangle Per exemple, es pot calcular el pendent d'una teulada si es coneix l'augment d'altura i la longitud de la teulada. Si la teulada cau 2 metres en una longitud de 5 metres llavors l'angle d'inclinació θ de la teulada respecte a l'horitzontal es pot calcular tal com segueix:

Vegeu també

[modifica]

Enllaços externs

[modifica]