Vés al contingut

Itri

De la Viquipèdia, l'enciclopèdia lliure
Per a altres significats sobre el municipi italià, vegeu «Itri (municipi)».
Itri
39Y
estronciitrizirconi
Sc

Y

Lu
Itri té una estructura cristal·lina hexagonal
Electrons per capa
Aspecte
Blanc platejat



Línies espectrals de l'itri
Propietats generals
Nom,símbol,nombre Itri, Y, 39
Categoria d'elements Metalls de transició
Grup,període,bloc 3,5,d
Pes atòmic estàndard 88,90585
Configuració electrònica [Kr] 4d15s2
2, 8, 18, 9, 2
Configuració electrònica de Itri
Propietats físiques
Fase Sòlid
Densitat
(prop de lat. a.)
4,472 g·cm−3
Densitat del
líquid en elp. f.
4,24 g·cm−3
Punt de fusió 1.799K, 1.526 °C
Punt d'ebullició 3.609 K, 3.336 °C
Entalpia de fusió 11,42kJ·mol−1
Entalpia de vaporització 365 kJ·mol−1
Capacitat calorífica molar 26,53 J·mol−1·K−1
Pressió de vapor
P (Pa) 1 10 100 1 k 10 k 100 k
a T (K) 1.883 2.075 (2.320) (2.627) (3.036) (3.607)
Propietats atòmiques
Estats d'oxidació 3,2, 1 (òxidbàsicfeble)
Electronegativitat 1,22 (escala de Pauling)
Energies d'ionització 1a: 600 kJ·mol−1
2a: 1.180 kJ·mol−1
3a: 1.980 kJ·mol−1
Radi atòmic 180pm
Radi covalent 190±7 pm
Miscel·lània
Estructura cristal·lina Hexagonal
Itri té una estructura cristal·lina hexagonal
Ordenació magnètica Paramagnètic[1]
Resistivitat elèctrica (t. a.) (α, poli) 596 nΩ·m
Conductivitat tèrmica 17,2 W·m−1·K−1
Dilatació tèrmica (t. a.) (α, poli)
10,6 µm/(m·K)
Velocitat del so(barra prima) (20 °C) 3.300 m·s−1
Mòdul d'elasticitat 63,5 GPa
Mòdul de cisallament 25,6 GPa
Mòdul de compressibilitat 41,2 GPa
Coeficient de Poisson 0,243
Duresa de Brinell 589 MPa
Nombre CAS 7440-65-5
Isòtops més estables
Article principal:Isòtops de l'itri
Iso AN Semivida MD ED(MeV) PD
87Y sin 3,35d ε - 87Sr
γ 0,48
0,38D
-
88Y sin 106,6 d ε - 88Sr
γ 1,83
0,89
-
89Y 100% 89Y ésestableamb 50neutrons
90Y sin 2,67 d β 2,28 90Zr
γ 2,18 -
91Y sin 58,5 d β 1,54 91Zr
γ 1,20 -

L'itriés l'element químicde símbolYinombre atòmic39. És unmetall de transiciódel grup 3 de lataula periòdicai de l'agrupament de lesterres rares.Fou descobert pel químic finlandèsJohan Gadolinel 1794, essent el primer element de les terres rares en ser descobert. A la naturalesa se'l troba en abundància als mineralsbastnäsita-(Y)ixenotima-(Y),dels quals s'obté. Té importants aplicacions en la societat actual, hom els troba al làser YAG (granat sintètic d'itri i alumini), també emprat enjoieriacom a substitut deldiamant;en elsuperconductor;en elsdíodes emissors de llumo LEDs blancs; en lespantalles de cristall líquido LCD i en lespantalles de plasma.

Història

[modifica]

El 1787, el químic i lloctinent de l'armada suecaCarl Axel Arrheniustrobà una roca negra pesada en una vella pedrera prop de la poblaciósuecadeYtterby(actualment part de l'arxipèlag d'Estocolm).[2]Pensant que era un mineral desconegut que contenia un element acabat de descobrir eltungstè,[3]el va anomenariterbita[nota 1]i envià mostres a químics per a la seva anàlisi.[2]

Black and white bust painting of a young man with neckerchief in a coat. The hair is only faintly painted and looks grey.
Johan Gadolindescobrí l'òxid d'itri.

Johan Gadolinde l'Acadèmia d'Åboidentificà un nou òxid o "terra"a la mostra d'Arrhenius el 1789, i publicà l'anàlisi completa el 1794.[4][nota 2]Anders Gustaf Ekebergconfirmà el 1797 i anomenà el nou òxiditria.[5]PosteriormentAntoine Lavoisierdesenvolupà la primera definició moderna d'element químic,es pensava que les terres podien reduir-se als seus elements, el que volia dir que el descobriment d'una nova terra volia dir el descobriment del nou element que hi havia dins, que en aquest cas hagués estat l'itri.[nota 3]

El 1843,Carl Gustav Mosandertrobà que les mostres d'itriacontenien tres òxids: blancòxid d'itri(itria), grocòxid de terbi(que va ser anomenat de forma confusaerbiaa l'època) i el rosatòxid d'erbi(anomenatterbiaa l'època).[6]Un quart òxid, l'òxid d'iterbi,fou aïllat el 1878 perJean-Charles Galissard de Marignac.[7]Nous elements foren aïllats de cada un d'aquests òxids posteriorment, i cada element fou anomenat d'alguna manera a partir d'Ytterby, el poble prop de la pedrera,iterbi,terbiierbi.[8]Posteriorment se'n descobriren set nous metalls en laitriade Gadolin.[2]Com que l'itriaera un mineral i no un òxid,Martin Heinrich Klaprothla reanomenàgadolinitaen honor de Gadolin.[2]

El metall d'itri fou aïllat per primera vegada el 1828 quanFriedrich Wöhlerescalfà clorur d'itri ambpotassi:[9][10]

Fins als anys 20, s'usà el símbol químicYtper aquest element, després s'utilitzàY.[11]

El 1987, es troba l'òxid d'itri bari coure per aconseguir lasuperconductivitat d'alta temperatura.[12]Fou el segon material conegut que exhibí aquesta propietat,[12]i fou el primer material conegut en aconseguir lasuperconductivitatper sobre del (econòmicament important) punt d'ebullició del nitrogen.[nota 4]

Estat natural i obtenció

[modifica]

Quant a la seva abundància, l'itri es col·loca en la trentena posició en ordre decreixent, amb un 0,0029 % d'abundància en l'escorça terrestre (el qual el fa pràcticament tan profús com elcobalt,elcoureo elzinc). Tanmateix, els seus composts presenten una gran importància tecnològica, el que ha dut a que, a causa de la sobreexplotació, laComunitat Europeal'hagi declarat com un dels elements "en perill d'extinció" en els propers 100 anys.[13]

Xenotima-(Y)

A la natura se'l troba formant desenes de minerals amb elevades proporcions. Els que superen un percentatge del 45 % són:Iimoriïta-(Y)53,9 %,bastnäsita-(Y)52,95 %,thalenita-(Y)50,52 %,fluorthalenita-(Y)50,33 %,xenotima-(Y)48,35 %,kuliokita-(Y)45,28 % irowlandita-(Y)45,26 %.[14]Són de gran importància minera la bastnäsita-(Y) i la xenotima-(Y).

A l'anàlisi dels aproximadament 300 kg de materials que lesmissions Apollode laNASAdugueren de laLlunas'ha determinat una relativament elevada quantitat d'itri.[15]

Se sol preparar comercialment de manera similar a com ho va fer Wöhler al seglexix,per reducció metalotèrmica de clorur d'itri amb calci:[13]

Propietats

[modifica]

Propietats físiques

[modifica]

L'itri és un metall platejat de densitat 4,469 g/cm³, punt de fusió 1522 °C i punt d'ebullició 3345 °C. És moderadament blan i és dúctil.[16]El metall ésparamagnètici té unasusceptibilitat magnèticaindependent de la temperatura entre 10 i 300 K (−263 i 27 °C). Es converteix ensuperconductora 1,3 K (−271,9 °C) a pressions superiors als 110kilobars.[7]

L'itri existeix en dues formesal·lotròpiques(estructurals). La fase α és hexagonal compacta a temperatura ambient. La fase β és cúbica centrada en el cos a una temperatura de 1478 °C. La sevaconfiguració electrònicaés.[7]

Propietats químiques

[modifica]
Nitrat d'itri

L'itri s'oxidalentament exposat a l'aire i es crema fàcilment per formar l'òxid d'itri de fórmula:[17]És forçaelectropositiui actua sempre com a trivalent. Finament dividit o escalfat, reacciona amb l'aigua formant el catió itri(3+) amb despreniment d'hidrogengas:[17] Amb l'àcid clorhídrictambé dona cations itri(3+) i es desprèn hidrogen:

Reacciona fàcilment amb tots elshalògensdonant els corresponentshalogenursd'itri(3+):[17]

Granat sintètic d'alumini i itri, YIG o òxid d'alumini i itri

Altres composts d'itri que s'han descrit són: l'antimonur d'itri,l'arsenur d'itri,l'hexaborur d'itri,el dicarbur d'itri,el fosfur d'itri,el sulfur d'itri,el carbonat d'itri—aigua(1/3),l'hidròxid d'itri,el nitrat d'itri i dos hidrats seus,,i el sulfat d'itri—aigua(1/8).Altres composts més complexos són el granat sintètic de ferro i itri, YIG o òxid d'itri i ferro,i el granat sintètic d'alumini i itri, YAG o òxid d'alumini i itri.[16]

Isòtops

[modifica]

L'itri 89 és estable i és l'únic isòtop que es hom pot trobar de manera natural. S'han detectat un total de 33radioisòtops(excloent elsisòmers nuclears) de l'itri que van ennombre màssicde 77 a 109 iperíode de semidesintegracióde 41 mil·lisegons (itri 108) fins a 106,63 dies (itri 88).[7]

Aplicacions

[modifica]
Làser emprat en el tallat de materials

Indústria metal·lúrgica

[modifica]

L'itri s'afegeix aaliatgesdemagnesiialuminiamb la finalitat d'aportar protecció contra lacorrosió.El granat sintètic YAG (acrònim de l'anglèsyttrium aluminium garnet) de fórmula,això és, òxid d'alumini i itri, dopat ambneodimi,és el component bàsic dels potentslàsers Nd:YAGque emeten llum de longitud d'ona 1 064 nm a la zona de l'infraroig,i que són emprats en soldadures i en el tallat de materials.[18]

Indústria electrònica

[modifica]
LED blanc

L'itri té un ús destacat en la tecnologia delsdíodes emissors de llum,o LEDs, de color blanc. També s'usa en elsllums fluorescentsper a produir una llum blanca intensa amb un estalvi important d'energia. L'itri, activat pelterbi,és usat com amaterial fosforescent(fosforòfor) blau i lila en la fabricació depantalles de plasmaipantalles de cristall líquidLCD.[18]

Per altra banda, el granat d'itri i ferro o YIG (acrònim de l'anglèsyttrium iron garnet) és l'òxid d'itri i ferroque és un materialferromagnèticusat com a transmissor itransductord'energia acústica, en el disseny deradarso en filtres per amicroones.[13]

Medicina

[modifica]

Els làsers Nd:YVO₄-YAG (neodimi-itri-vanadat/itri-alumini-granat) són de gran utilitat enoftalmologia,dermatologiaiotorrinolaringologia.L'isòtop radioactiu itri 90 és usat en el tractament dels càncers d'ossos, ovaris, pàncrees i de laleucèmia.[18]

Levitació d'un imant superconductorrefredat amb nitrogen líquid a –196 °C

Joieria

[modifica]

El granat de itri i alumini (YAG) presenta una duresa (8 en l'escala de Mohs) i aspecte similar a la deldiamant(duresa 10 en l'escala de Mohs), sent usat en joieria. La seva estructura és igual a la delsgranatsnaturals. Es poden obtenir YAGs acolorits afegint els dopants apropiats. Els liles tenenneodimi,terres raresen colors grocs i verds,erbiper a pedres roses,cobaltper blau icromper verd.[19]

Altres camps

[modifica]
Zircònia estabilitzada amb itri

Un ús important de l'itri és en la fabricació desuperconductorsd'altes temperatures, com ara,que té una temperatura de transició superconductora de –180 °C, per damunt del punt d'ebullició del nitrogen líquid que és de –196 °C. S'empra per a línies de transmissió d'energia elèctrica i imants superconductors.[7]

L'òxid d'itri i el delantanisón els substituts deltorien les camises dels llums de gas, perquè són resistents a la calor i donen una llum molt intensa quan s'escalfen.[18]També serveix com a precursor d'un bon nombre de materials de gran interès. Afegit a l'òxid de zirconien proporcions variables pot donar lloc a la formació de YSZ (zircòniaestabilitzada amb itri) o PSZ (zircònia parcialment estabilitzada). La primera té estructura cúbica i presentaconductivitatiònica en estat sòlid i propietats refractàries, fet que permet el seu ús com aelectròlit,tant en sensors d'oxigen d'alta temperatura com en cel·les de combustible d'òxid sòlid (SOFC) per a la generació d'electricitat a partir de la reacció electroquímica d'oxigen de l'aire i hidrogen. La segona, amb estructura tetragonal, és unaceràmicaaltament tenaç.[13]

Vegeu també

[modifica]

Referències

[modifica]
  1. Magnetic susceptibility of the elements and inorganic compounds,aHandbook of Chemistry and Physics,81a edició, CRC press.
  2. 2,02,12,22,3Van der Krogt 2005
  3. Emsley 2001,p. 496
  4. Gadolin 1794
  5. Greenwood 1997,p. 944
  6. Carl Gustav,Mosander«Ueber die das Cerium begleitenden neuen Metalle Lathanium und Didymium, so wie über die mit der Yttererde vorkommen-den neuen Metalle Erbium und Terbium» (en alemany).Annalen der Physik und Chemie,60, 2, 1843, pàg. 297–315.DOI:10.1002/andp.18431361008.
  7. 7,07,17,27,37,4«Yttrium | chemical element» (en anglès).Encyclopædia Britannica.Encyclopædia Britannica, inc., 26-02-2017. [Consulta: 13 febrer 2020].
  8. Stwertka 1998,p. 115
  9. Heiserman,David L. «Element 39: Yttrium». A:Exploring Chemical Elements and their Compounds.New York: TAB Books, 1992, p. 150–152.ISBN 0-8306-3018-X.
  10. Wöhler,Friedrich«Ueber das Beryllium und Yttrium».Annalen der Physik,89, 8, 1828, pàg. 577–582.DOI:10.1002/andp.18280890805.
  11. Coplen,Tyler B.; Peiser, H. S. «History of the Recommended Atomic-Weight Values from 1882 to 1997: A Comparison of Differences from Current Values to the Estimated Uncertainties of Earlier Values (Technical Report)».Pure Appl. Chem..IUPAC's Inorganic Chemistry Division Commission on Atomic Weights and Isotopic Abundances, 70, 1, 1998, pàg. 237–257.DOI:10.1351/pac199870010237.
  12. 12,012,1Wu,M. K.; Ashburn, J. R.; Torng, C. J.; Hor, P. H.; Meng, R. L.; Gao, L.; Huang, Z. J.; Wang, Y. Q. and Chu, C. W. «Superconductivity at 93 K in a New Mixed-Phase Y-Ba-Cu-O Compound System at Ambient Pressure».Physical Review Letters,58, 1987, pàg. 908–910.DOI:10.1103/PhysRevLett.58.908.
  13. 13,013,113,213,3Berenguer Marín,J.R. «Z = 39, itrio, Y. El “portal” de las tierras raras en tu móvil».An. Quím.,115, 2, 2019. Arxivat de l'originalel 2020-02-07 [Consulta: 13 febrer 2020].
  14. «Mineral Species sorted by the element Y Yttrium». [Consulta: 13 febrer 2020].
  15. Emsley, John..Nature's building blocks: an A-Z guide to the elements.Oxford: Oxford University Press, 2001.ISBN 0-19-850341-5.
  16. 16,016,1William M. Haynes.CRC handbook of chemistry and physics: a ready-reference book of chemical and physical data..2016-2017, 97a edició. Boca Raton, Florida: CRC Press, 2016.ISBN 978-1-4987-5429-3.
  17. 17,017,117,2«WebElements Periodic Table » Yttrium » reactions of elements». [Consulta: 14 gener 2020].
  18. 18,018,118,218,3Sanz Balagué,J.;Tomasa Guix,O.Elements i recursos minerals: aplicacions i reciclatge.3a. Iniciativa Digital Politècnica, 2017.ISBN 978-84-9880-666-3.
  19. «YAG – Fichas Gemas – Gemología MLLOPIS» (en castellà). [Consulta: 14 febrer 2020].

Notes

[modifica]
  1. Pel nom del poble on va ser descobert més la terminació -ita de mineral.
  2. Stwertka 1998,p. 115 diu que la identificació fou 1789 però no diu quan es produí l'anunci.Van der Krogt 2005cita la publicació original amb l'any1794, de Gadolin.
  3. A les terres se'ls donà la terminació -a i als nous elements la terminació -i
  4. Tcper l'OYBC és 93 K i el punt d'ebullició del nitrogen és 77 K.

Enllaços externs

[modifica]