Vés al contingut

Refrigerant del reactor nuclear

De la Viquipèdia, l'enciclopèdia lliure
Generador de vapor nuclear genèric PWR Hi ha dos bucles en un generador de vapor PWR, el bucle primari i el bucle secundari. El bucle primari connecta el generador de vapor amb el reactor, i el bucle secundari connecta el generador de vapor amb la turbina. Es tracta d'un generador de vapor de recirculació, on l'aigua secundària normalment fa uns quants viatges al voltant del bucle secundari dins del generador de vapor abans de convertir-se en vapor. El camí de flux per al bucle primari és normalment: El refrigerant primari flueix sobre el feix de combustible del reactor i s'escalfa. El refrigerant primari surt del recipient del reactor a través de la pota calenta. El refrigerant primari entra al recipient inferior del generador de vapor (el cap del canal). El refrigerant primari flueix a través del "costat del tub" del generador de vapor, dins dels tubs del generador de vapor, que estan soldats a la làmina de tubs del generador de vapor. A mesura que el refrigerant flueix pels tubs, la calor es transfereix a l'aigua del sistema secundari (que envolta l'exterior dels tubs) El refrigerant surt dels tubs al costat de la cama freda del recipient inferior, que està separat de la cama calenta per la placa divisoria. El refrigerant primari surt de la pota freda del generador de vapor i es retorna al recipient del reactor, on es torna a escalfar pel combustible, completant el bucle del refrigerant primari. El camí de flux per al bucle secundari és normalment: L'aigua d'alimentació secundària entra al costat de la "closca" del generador de vapor a través de l'alimentació, que és un torus amb broquets curts i en forma de J invertida espaiats al voltant de la seva circumferència principal. L'aigua secundària continua per la baixada, que és l'espai anular entre la carcassa exterior del generador de vapor i la coberta que cobreix el feix de tubs. L'aigua secundària flueix sobre els tubs a l'espai curt entre la part inferior de la coberta i la part superior de la làmina de tubs. A mesura que l'aigua secundària s'escalfa per la calor transferida a través del gruix de la paret del tub, es torna menys densa i tendeix a pujar. L'aigua secundària es continua escalfant a mesura que flueix pels tubs fins que es converteix en una barreja de vapor i aigua. La barreja de vapor i aigua es fa passar a través de separadors de paletes, que utilitzen l'acció centrífuga per separar el vapor de l'aigua. L'aigua es torna a la baixadora per escalfar-la més. Després de sortir dels separadors de paletes de remolí, la mescla de vapor i aigua de més qualitat es fa passar per separadors de chevron, la qual cosa obliga la barreja a prendre un camí tortuós i tendeix a separar més aigua, per tornar a la baixada. El vapor d'alta qualitat surt del generador de vapor, on s'enviarà a la turbina per fer girar el generador elèctric i generar electricitat. El vapor d'escapament es condensarà i es retornarà a través del sistema d'aigua d'alimentació, completant el bucle secundari. També hi ha diversos suports per mantenir situats els tubs i evitar que entrin en contacte. Es tracta de les plaques de suport dels tubs, que suporten la secció recta dels tubs, i les barres antivibracions, que suporten la secció corba dels tubs (de vegades anomenada "corba en U" ).

Unrefrigerant d'un reactor nuclearés unrefrigerantd'unreactor nuclearque s'utilitza per eliminar la calor delnucli del reactor nucleari transferir-la alsgeneradors elèctricsi almedi ambient.Sovint, s'utilitza una cadena de dos bucles de refrigerant perquè el bucle de refrigerant primari prenradioactivitata curt termini del reactor.[1]

Refrigerant Punt de fusió Punt d'ebullició
Aigua pesadaa 154 bar 345 °C
NaKeutèctic -11 °C 785 °C
Sodi 97,72 °C 883 °C
FLiNaK 454 °C 1570 °C
FLiBe 459 °C 1430 °C
Dirigir 327,46 °C 1749 °C
Eutèctic plom-bismut 123,5 °C 1670 °C

Aigua

[modifica]

Gairebé totesles centrals nuclearsque funcionen actualment sónreactors d'aigua lleugeraque utilitzen aigua normal a alta pressió com a refrigerant imoderador de neutrons.Al voltant d'1/3 sónreactors d'aigua bullinton el refrigerant primari experimentauna transició de faseavapordins del reactor. Al voltant de 2/3 sónreactors d'aigua a pressióa una pressió encara més alta. Els reactors actuals es mantenen sota elpunt crítical voltant dels 374 °C i 218baron desapareix la distinció entre líquid i gas, la qual cosa limital'eficiència tèrmica,però elreactor d'aigua supercríticproposat funcionaria per sobre d'aquest punt.

Aigua borada

[modifica]

L'aigua borada s'utilitza com a refrigerant durant el funcionament normal delsreactors d'aigua a pressió(PWR), així com enels sistemes de refrigeració del nucli d'emergència(ECCS) tant dels PWR com delsreactors d'aigua bullint(BWR).[2][3][4]

Metall fos

[modifica]

Els reactors ràpidstenen una altadensitat de potènciai no necessiten, i han d'evitar, moderació de neutrons. La majoria han estatreactors refrigerats per metall líquidambsodifos. També s'han proposat iocasionalment utilitzatsplom,eutèctic plom-bismuti altres metalls.El mercuries va utilitzar en elprimer reactor ràpid.

Sal fosa

[modifica]

Les sals fosescomparteixen amb els metalls l'avantatge de la baixapressió de vaporfins i tot a altes temperatures i són menys reactives químicament queel sodi.Les sals que contenen elements lleugers comFLiBetambé poden proporcionar moderació. En l'experiment del reactor de sal fosa,fins i tot va servir com a dissolvent per transportar el combustible nuclear.

També s'han utilitzat gasos com a refrigerant.L'heliés extremadament inert tant químicament com pel que fa a les reaccions nuclears, però té una baixacapacitat calorífica.

Hidrocarburs

[modifica]

Els reactors moderats i refrigerats orgànicamentvan ser un concepte primerenc estudiat, utilitzant hidrocarburs com a refrigerant. No van tenir èxit.

Referències

[modifica]
  1. AuthorWhat is the purpose of the reactor coolant?» (en anglès americà), 09-05-2023. [Consulta: 30 març 2024].
  2. «Pressurized Water Reactor Systems» (en anglès).USNRC Technical Training Center.[Consulta: March 12, 2019].
  3. Aaltonen1, Hanninen2,P.1, H.2. «Water Chemistry and Behavior of Materials in PWRs and BWRs» (en anglès).VTT Manufacturing Technology.[Consulta: March 12, 2019].
  4. Buongiorno,Jacopo. «Nuclear Safety» (en anglès).MIT OpenCourseWare.[Consulta: March 12, 2019].