Přeskočit na obsah

Doba ledová

Z Wikipedie, otevřené encyklopedie
Tento článek je o etapě vývoje země. O animovaném filmu pojednává článekDoba ledová (film).
Relativní rozdíl průměrných teplot vzhledem k současnosti za posledních 800 000 let podle ledovcových záznamů (projektEPICA)
Relativní rozdíl průměrných teplot vzhledem k současnosti, koncentrace oxidu uhličitého (menší v dobách ledových) aprachu(větší prašnost v dobách ledových) z proxy dat (Vostok)
Nárůst hladiny moří po poslední době ledové

Doba ledováje období vhistorii Země,kdy jsou na obou polokoulích ve středníchzeměpisných šířkáchapolárních oblastechpřítomny ve velkém rozsahuledové příkrovy.Obvykle je takové období doprovázeno rozšířenímmořských ledovců,permafrostůahorských ledovcůve všech zeměpisných šířkách[1]a poklesem mořské hladiny[2]díky přesunu mořské vody do ledovců.[3]Jde osuché[4]aprašnéobdobí.[5][6]V rámcihistorie Zeměnastaly doby ledové mnohokrát. Jsou doložené vprekambriu,vproterozoiku,ordoviku,karbonu,permuakenozoiku(v posledních 15 miliónech letech).[1] V užším smyslu se za dobu ledovou považuje výrazné ochlazení planetárního rozsahu ve čtvrtohorách (kvartéru).[7] V kvartéru se opakovaně střídají výkyvy chladnější, jež se nazývajíglaciály,a teplejší –interglaciály.V glaciálech docházelo k růstu kontinentálních ledových příkrovů zejména vEvropě,Severní AmericeaAsii,zmohutněly též horské ledovce.[8]Ve svém největším rozšíření zasahovaly ledovce až na jihAngliea k hraniciČeského masivu.[7]Poslední glaciál skončil 10 000 let před našímletopočtem.Příčiny střídání chladnějších a teplejších období, tzn.glaciálůainterglaciálů,jakož i příčiny celkově relativně chladnějšího období v rámci historie Země nejsou přesně vysvětleny.[7][8][9]

Historie výzkumu[editovat|editovat zdroj]

Zkamenělinu třetihorního velemlokaAndrias scheutzerijejí objevitel v 18. století považoval za člověka, svědka potopy světa.Georges Cuvierroku 1837 rozpoznal, že jde o zkamenělinuobojživelníka.

Prvnígeologyv18. stoletízaujaly tzv.bludné balvany,které se hojně vyskytují v severnímNěmeckui dalších severnějších oblastech kontinentálníEvropy.Bylo odhaleno, že složení bludných balvanů se shoduje se složenímhorninveSkandinávii.Tyto balvany byly označeny za důkaz dávnépotopy,jak ji popisujeBible.Proudy vod je měly přesunout ze vzdálené Skandinávie až sem.[10]

ŠvédskýgeologNils Gabriel Selfströmpři výzkumu bludných balvanů sestavil mapu výskytu a směrování skalních škrábanců, jež se vyskytují v severní Evropě včetně Skandinávie, a označil je za stopy odvalování skalních bloků při katastrofické potopě.Charles Lyellve svém dílePrinciples of Geologyz let 1830–1833 přišel s teorií, že bludné balvany se na kontinent dostaly sledovými kramiv době, kdy tato část pevniny byla zaplavena mořem. Ovšem namísto náhlé katastrofické události již připouštěl, že se jednalo o důsledek pomalých přírodních (geologických) procesů, které kontinuálně probíhají i v současnosti. Ve stejné době skupina geologů rozpoznala příznaky rozsáhlého zalednění valpskéoblasti, ale existenci mohutného kontinentálního ledovce si ještě nikdo nedovedl představit.[10]

Ve 30. letech19. stoletíReinhard Bernhardia na začátku 40. letCharles Frédéric Martinsformulovali první teorie o kontinentálním evropském ledovci. Jejich práce však nevzbudily pozornost. Ve 40. letechLouis Agnassizvyslovuje další katastrofickou teorii. Tentokrát však nešlo o povodeň, ale o gigantický pevninský ledovec, který se měl rozkládat odAlpaž k pólu a měl zasahovat až do středníAsiea zde měl zdevastovat veškerý život. Později však Agnassiz tuto extrémní teorii upravil: pevninský ledovec měl zasahovat jen část územíEvropya izolovaně od něj měl existovat ještě ledovec asijský a ledovec americký. V revidované teorii, která se již blíží současnému stavu poznání, byl také poprvé použit termín „doba ledová “, a to ve smyslu jediné dlouhotrvající události. Teorie jediné ledové doby byla v19. stoletízpřesňována terénními výzkumy, které mapovaly rozsah kontinentálních ledovců.[10]

Teorie jediné ledové doby začala dostávat trhliny, když někteří vědci nejprve uvažovali o existenci dvou ledových dob. V letech 1901–1909 vydaná práce německých badatelůAlbrechta PenckaaEduarda Brücknerapředpokládala, že došlo k nejméně čtyřem ledovým dobám, jež autoři nazvali (podle přítokůDunaje)Günz,Mindel,RissaWürm.Ledové doby byly pojmenovány po těchto řekách, protože výzkum probíhal na říčních terasách těchto řek a ledovcovýchmorénáchpřilehlých Alp. Je to tzv. kvadriglacialistické schéma.[10]

Postupně nastal problém s přiřazením morén kontinentálního ledovce k tomuto alpskému systému čtyř ledových dob. Z tohoto důvodu bylo kvadriglacialistické schéma upřesněno. Kromě dob ledových (glaciálů) a dob meziledových (interglaciálů) byla v rámci glaciálů zavedena ještě další období většího ochlazení nebo naopak oteplení. Chladnější období se označuje jakostadiála teplejší jakointerstadiál.[10]

Při dalším studiuříčních terasa zejména souvrstvísprašíse vynořila mnohem složitější realita klimatických výkyvů, patrných hluboko do minulosti. Zrodil se tak polyglacialistický koncept předpokládající množství chladných (výzkumy naznačují, že jich bylo kolem dvaceti) a teplejších období v průběhu celéhokvartéru.S alpským systémem dělení ledových a meziledových dob se přesto lze setkat často, a to nejen ve starší literatuře.[10][11]

Ledové doby v hlubší minulosti Země[editovat|editovat zdroj]

Proterozoikum[editovat|editovat zdroj]

Časová osa významných zalednění na planetě Zemi. Ledové doby jsou označeny modře

Pod ledovými dobami se obvykle rozumí série klimatických výkyvů vkvartéru (čtvrtohorách).K významnému ochlazení však mohlo docházet i v jiných obdobích geologické minulosti, například v mladšímproterozoiku,v průběhuprvohorpak vordovikua na rozhraníkarbonuapermu.[12]Přesnější průběh klimatických změn v takto vzdálené minulosti je však obtížně zjistitelný, ačkoliv některá tato zalednění mohla býti výraznější než ta z relativně nedávné minulosti. Modely se sice mohou rozcházet, ale vesměs ukazují na klima, které neumožňovalo vPrekambriuextrémně chladné či horké podnebí.[13]

První předpokládanou ledovou dobou je tzv.Huronské zalednění,ke kterému mělo dojít před 2,4 až 2,1 miliardami let na základě sedimentů v okolíHuronského jezera,které popsal Arthur Philemon Coleman roku 1907. Měla mu předcházetvelká oxidační událosta spustit ochlazení. Není ovšem jisté, zda došlo k tak razantním změnám kyslíku v atmosféře (a to ani pro oxidační událost vneoproterozoiku).[14]Iproxy datateploty odporují tomu, že by došlo k poklesu teplot.[15]

Ve velmi starýchhornináchz doby před 700 miliony let (kryogén) jsou nacházeny ledovcové uloženiny a to i z oblastí, které se tehdy měly nacházet v blízkostirovníku.Rozšíření těchto uloženin bylo tak rozsáhlé, že jejich interpretace vedla ke vzniku tzv.teorie Země – sněhová koule.Předpokládalo se, že průměrná teplota povrchuZeměbyla hluboko pod bodem mrazu a celouplanetupokrývaly kontinentální ledovce a vrstva mořského zalednění. Ukázalo se však, že zalednění nemohlo být tak úplné („rozbředlá koule “),[16]jelikož život by v takových podmínkách byl možný jen stěží. Tato extrémní teorie tak byla revidována a podle současného stavu vědění se zdá, že kolem rovníku přece jen existoval pás volnéhooceánu,ve kterém život přežil. Náhlý konec této gigantické ledové doby nejspíše stál za populační explozí tzv.ediakarskéfauny,tedy za rozšířením mnohobuněčných živočichů, a za pozdějším prudkým rozšířením faunykambrické– tzv.kambrická exploze.Jako možná příčina rozsáhlého zalednění je uváděna nerovnováha v poměru plynů vatmosféře,za kterou stála činnost prvníchjednobuněčných organismů,jež odčerpaly část skleníkových plynů. Dalším faktorem bylo tehdejší rozmístění kontinentů. K ukončeníproterozoickéledové doby vedlo nejspíše hromaděníoxidu uhličitéhov atmosféře, který se tehdy nemohl kvůli zalednění vázat na povrchu planety, až nakonec došlo k prudkému oteplení. Důkazem pro tuto teorii jsou vrstvy karbonátů pokrývající proterozoické ledovcové uloženiny. Vznikly při intenzivních deštích v atmosféře naplněné oxidem uhličitým.[17][18]Přesto však jde stále o kontroverzní teorii. Stejně jako pro hurónské zalednění platí, že nemuselo dojít k náhlé změně atmosféry, byť obě zalednění mohla hrát roli v rozvoji jednobuněčných respektive mnohobuněčných organismů.[14]Teploty moří však byly podle izotopických dat značně vyšší než dnes.[15]

Fanerozoikum[editovat|editovat zdroj]

Izotopické poměry indikující změny teploty (podle Veizera)[19]
Odhadovaný rozsah zalednění (modře) před zhruba 300 milióny let (Karoo) nasuperkontinentěGondwana

Průměrná teplota Země ve fanerozoiku byla přibližně 20 °C a pohybovala se od 10 °C do více než 25 °C, přičemž dnešní teplota je podprůměrná a rovna přibližně 14,5 °C.[20]

K dalšímu významnému ochlazení došlo na konciprvohorníhoobdobíordovikupřed 440 miliony let (andsko-saharské zalednění). Tehdejší ledová doba mohla být výraznější než tačtvrtohorní,navíc probíhala souběžně s velkým vymíráním organismů.[21]Prostředí pro teplomilné organismy však zůstalo zachováno. Další známá doba ledová (Karoo) je datována na rozhraní prvohorních obdobíkarbonuapermu,tedy před asi 290 miliony let, kdy se v prostorujižního pólunacházela rozsáhlá pevnina, na které se rozšířil velký kontinentální ledovec podobný dnešnímu antarktickému příkrovu.[22][23]Zalednění v období před 300 miliony let bylo ve fanerozoiku patrně to nejrozsáhlejší.[24]Mohl za něj patrněvulkanismus.[25]Usazeniny prachu jsou v době zalednění řádově mocnější.[26]

Po dlouhém teplém obdobídruhohorse ve druhé poloviněterciéruzačalo opět postupně ochlazovat a podle toho se částečně adaptovaly i tehdejší organismy.[27] Pod pojmem ledová doba (resp. ledové doby) se obvykle myslí následující období klimatických výkyvů, které trvá dodneška. Ačkoliv mořské proudy udržují podnebí severských oblastí Evropy, Severní Ameriky a přilehlých ostrovů relativně mírné, stále existující rozsáhlé ledovcové příkrovy v Arktidě i Antarktidě indikují, že ledová doba stále trvá.[28]

Stratigrafické členění[editovat|editovat zdroj]

Odvozený vývoj teploty z doby před 500 milióny let až po současnost
Současná poloha ledu (sezónnímořský ledna Antarktidě není zobrazen)

Geologická éra,do které spadají klimatické změny posledních ledových dob, se nazývákenozoikum.Stratigrafickéčlenění této nejmladší geologické éry prošlo mnoha změnami, jelikož je klimaticky i geologicky složitým obdobím. Dříve se kromě termínu kenozoikum používaly termínyterciér (třetihory)akvartér (čtvrtohory).Později se pro celé období od koncedruhohorzačal používat termínkenozoikum.Kenozoikum se dělí na staršípaleogén,mladšíneogéna nejmladšíkvartér.[29]Pojmu terciér – třetihory – se však i nadále používá jako pomocné jednotky, která je dobře známa i laické veřejnosti.

Kvartér se dále dělí na staršípleistocéna mladšíholocén.K dobám ledovým docházelo zejména v průběhu pleistocénu. Spodní hranice tohoto období je stále předmětem diskusí. Jedna z teorií stanovuje začátek pleistocénu na dobu před 1,64–1,81 miliony let, zatímco druhá až k hranici 2,58 milionu let. V současnosti se oficiálně užívá pro přelom terciéru a kvartéru hranice před 2,588 milionu let.Holocén,který trvá až do současnosti, je takřka jistě jen další z dob meziledových.[30]Nicméně celý kvartér (pleistocén a holocén) lze považovat za dobu ledovou.[31]AvšakAntarktidamá led nepřetržitě 14 miliónů let, tedy déle než se předpokládalo.[32]K poklesu teplot začalo docházet již před 34 milióny let, kdy se objevuje ihromadné vymírání živočišných a rostlinných druhů.

V průběhu kvartéru lze vysledovat cyklus výrazných období – chladnýchglaciálůa teplýchinterglaciálů.V rámci těchto základních cyklů bylo na základě výzkumu rozeznáno množství dílčích klimatických výkyvů, a to zejména v průběhu glaciálů, jelikož doba jejich trvání se pohybuje kolem 100 000 let, zatímco trvání interglaciálů se počítá na pouhých několik málo desítek tisíc let.[33] Je jasné, že čím je zkoumané období blíže k současnosti, tím lépe je možné takové období poznat. Nejlépe je tak prozkoumána poslední doba ledová, ze které se dochovaly vrstvy zalednění; důležité jsou zejména staré pevninské ledovcové štíty, například vGrónskunebo vAntarktidě,přičemž nejstarší led je starý 250 000 let.[pozn. 1]Ze starých rašelinišť či vrstvy trvale zmrzlé půdy lze poznat složení vegetace v jejich blízkosti. Nacházejí se i zmrzlé mršiny vyhynulých zvířat. Příznačná je faunaměkkýšů,kteří citlivě reagují na změny životního prostředí. Důležitým pramenem poznání jsou hlubokomořské sedimenty, podle nichž lze sledovat vývoj klimatu více než 100 milionů let do minulosti.[34][35]

Stratigrafické schéma pleistocénu
Geologické období Kontinentální zalednění sev. Evropy Horské zalednění Alp Stáří (miliony let)
Pleistocén Svrchní viselský glaciál Würm 0,126
eemský interglaciál Riss/Würm
Střední sálský glaciál Riss 0,781
holštýnský interglaciál Mindel/Riss
halštrovský glaciál Mindel
Cromer(několik gl. a igl.) Haslach
Günz/Mindel
Spodní Bavel(několik gl. a ingl.) Günz 1,806
Donau/Günz
Menap (glaciál) dunajský glaciál
Waal (integlaciál)
Eburon (glaciál)
Spodní (gelas) 2,588

Možné příčiny vzniku ledových dob[editovat|editovat zdroj]

Procesy a příčiny vedoucí k přechodu do doby ledové respektive k jejímu konci (události, které jsou kvaziperiodické) nejsou dostatečně známy. Může jít také o souhru více vzájemně se ovlivňujících faktorů, jako jsou tyto převážně uznávané faktory:

Impakty také mohou způsobit vulkanismus[41]a ten až dobu ledovou. Poslední tři období dob ledových (před 455–440 miliony let, před 335–280 miliony let a před 35 miliony let až po dnešek) mohla vyvolat i ukončittektonická činnost,kdy nově obnažené horniny začaly absorbovat skleníkový plyn oxid uhličitý, a tím mohly přispět ke snížení teplot atmosféry.[42]Mohla to způsobit i zvýšená reaktivita zemského povrchu.[43]

Příčiny vzniku ledových dob vkenozoiku[editovat|editovat zdroj]

Pohyb zemské osy:R= rotace Země kolem osy,P= precese,N= nutace
Animace o vlivu sklonu zemské osy a albeda

Ve vzniku klimatických výkyvů označovaných jakoglaciályainterglaciályhrají důležitou roli tzv.Milankovičovy cykly.Jde oprecesi zemské osy,tedy hlavní krouživý pohyb osy, kolem které seZeměotáčí, dále o změny náklonu zemské osy a pohyb oběžné dráhy Země vůči Slunci při jejíexcentricitě.Tyto skutečnosti ovlivňují přísun slunečního světla a tepla v jednotlivých oblastech Země podle jejich zeměpisné výšky a délku slunečního svitu v těchto oblastech. Každá oblast má nerovnoměrně jinéalbedo,což mění míru absorbce tepla Zemí. Vzájemná konfigurace těchto faktorů způsobuje pravidelné cyklické změny v přísunu tepla a světla pro ony oblasti, což se projevuje v globálnímklimatuZemě.[44][45]

Samotné změny v přísunu tepla způsobené Milankovićovými cykly však nestačí k vyvolání tak rozsáhlých změn klimatu, jaké představuje série ledových dob.[zdroj?]AtmosféračiklimaZemě je totiž velice složitý systém, který ovlivňuje nepřeberné množství faktorů, které se pak dále navzájem ovlivňují, vznikají zpětné vazby, kdy důsledky určitých příčin tyto příčiny dále zvýrazňují a konkrétní jev pak rychle nabývá na intenzitě nebo naopak jsou příčiny utlumovány. Tak je to i s Milankovićovými cykly, ke kterým dochází bez ohledu na klima po celou geologickou historii Země a které za určitých okolností mohou být spouštěčem výrazných globálních změn klimatu.[10]

Nelze hovořit o konkrétní příčině vzniku ledových dob, ale o spouštěcích mechanismech. V průběhutřetihortak existovala řada faktorů, které vedly k postupnému ochlazení a ke zdůraznění vlivu Milankovićových cyklů. V této době došlo k odděleníAntarktidyodAustrálie.Antarktida se dostala do oblastijižního pólua byla oddělena od teplejších mořských proudů, jelikož kvůli volnému moři, jež se kolem ní nachází, obíhají tento kontinent v důsledku otáčení Země studené mořské proudy. Tento kontinent se tak pokryl velkým pevninským ledovcem už před miliony let. Dalším důležitým faktorem je posun kontinentů směrem k severnímu pólu, protože ledovce nemohou vyrůstat na volném moři, a dále vznik pevniny přialpinském vrásnění,čímž se rozšířily teplotně nestabilní kontinenty. Výzdvih pohoří na stykuindo-australskéaeurasijské tektonické deskyvytvořil další místo, kde je teplý vzduch přicházející od moře vyzdvižen a ochlazen.

Příklad druhů migrujících mezi Amerikami (v Jižní Americe zakresleny druhy ze Severní Ameriky a naopak). Migraci spustil pokles hladiny oceánů v důsledku (stále trvajícího) ochlazení, když obnažil spojující šíji[46]

Před 3–4 miliony let vznikla meziSeverníaJižní AmerikouPanamská šíje.Tato nová pevnina otočila teplé mořské proudy spojujícíAtlantiksTichým oceánemk severu. Přísun teplé vody do severních oblastí paradoxně způsobuje vyšší srážky, jež jsou za určitých okolností sněhové, navíc se zde teplá voda ochlazuje a studená stéká zpět do tropů. Důležitá je též teplotní setrvačnost jevů v atmosféře, jakož i změna tepelné odrazivosti povrchu planety v době, kdy se na něm rozšiřují sníh či ledovce. V důsledku těchto a dalších změn na povrchu Země došlo k tomu, že Milankovićovy cykly se projevují jako sérieglaciálů,interglaciálůa jemnějšíchstadiálůainterstadiálů.Svou roli jistě hraje i výrazné kolísání mořské hladiny v důsledku růstu a ubývání ledovců.[10][47] [48][49]V době před asi jedním milionem let se prosazuje cyklus, jehožglaciáltrvá v průměru 100 000 let ainterglaciálasi 15 000 let.[50]Změnu stavu meziinterglaciálemaglaciálem(s periodou okolo 100 000 let) patrně ovlivňujíledové horyplovoucí od Antarktidy.[51]

Zalednění[editovat|editovat zdroj]

Rozsah maximálního zalednění na severní polokouli
Rozsah maximálního zalednění na jižní polokouli
Oblasti vegetace během posledního maxima doby ledové

Během glaciálu dochází ke vzniku či rozrůstání pevninských ledovců, a to zejména naseverní polokouli.ZeSkandináviese doEvropyněkolikrát rozšířil tzv.fennoskandinávský ledovec,který se při svém maximálním rozšíření vsaalském obdobídostalmoravskou bránouaž do částimoravskéhovnitrozemí a na západě se zastavil na severních svazíchKrkonoš.Pod tímto ledovcem se ocitala celáSkandinávie,většinaVelké Britániea velká část severní Evropy. Na východě ledovec končil až ve středníSibiři.[52]

Ještě mohutnější byly ledovcekeevanskýalabradorský,které zakrývaly většinu územíSeverní Amerikya zastavily se až jižně odVelkých jezer.Další ledovec se rozkládal na území východníSibiře.Většina velkých pohoří byla zakryta menšími kontinentálními ledovci. V Evropě to bylyAlpy,PyrenejeneboKavkaz.[52]

Na jižní polokouli v čase glaciálu došlo k rozšířeníantarktickéhokontinentálního ledovce, led pokryl částiKordiller,Nového ZélandučiTasmánie.Kromě toho celkové ochlazení klimatu vedlo k tvorbě menších horských ledovců v mnoha pohořích, kde dnes ledovce nejsou. VČeskuto byly napříkladKrkonoše,ŠumavaneboHrubý Jeseník.[30]Zdá se, že na českém území se menší ledovcové útvary vytvářely i na tak těžko představitelných místech, jako bylyJizerské hory,a to v nadmořské výšce pod 1000 m.[53]

V tomto popisu však mluvíme o rozsahu maximálního zalednění. Rozsah ledovců se totiž v průběhu glaciálu průběžně měnil a ne při každém glaciálu došlo k tak velkému rozšíření ledovců. Při poslednímweichselském (würmském)glaciálu takového rozšíření nebylo zdaleka dosaženo. Skandinávský ledovec se zastavil poměrně daleko severně od českých hranic, menší rozšíření bylo i východním směrem – a to vše jen v glaciálním maximu před 27 000 až 22 000 lety. V předcházejícím období se ledovec rozkládal jen na územíSkandinávie.[54]Studie z roku 2019 ukázala, že v období před 57 000 až 29 000 lety (kyslíkové izotopové stadiumMIS3) byla hladina moře až o 40 metrů výše, než se dříve předpokládalo, a že rozsah ledovce na severní polokouli byl zhruba poloviční než v obdobní posledního maxima zalednění před 29 000 až 14 000 lety.[55]

Přes rozsáhlé zalednění vEuroasiiaSeverní Americezůstala i v severských oblastech nezaledněná území, například na východěSibiřenebo naAljašce.Tím, že voda zůstávala celoročně vázána v kontinentálních ledovcích, došlo k poklesu mořské hladiny i přes 100 m oproti současnému stavu. Důsledkem bylo obnažení nových pevnin. Významné je odhalení tzv.Beringie,což byl pás pevniny spojujícíAsiiseSeverní Amerikou.Došlo k odděleníStředozemního mořeodAtlantského oceánua k následujícímu podstatnému vysušení moře. Významné pevninské mosty vznikly též v oblastiIndonésie,došlo také ke spojeníAustrálieaTasmánieneboBritských ostrovůaEvropy.[33]

Tyto pevninské mosty umožnily migracifaunyaflóry.Mezi Amerikou a Euroasií tak mohli migrovat napříkladvelbloudiakoně,opačným směrem pakmamuti,lidéaj. Některé pevninské mosty zanikaly stovky až tisíce let po ústupu největších ledovců.[33]

Samotné pevninské ledovce zabíraly plochu až 45 mil. km² a dosahovaly mocnosti až 2,5 km. Zatímco dnes ledovce zabírají 10 % povrchu pevniny, v době největšího zalednění to bylo 28 %. Masy ledu měly významný vliv na tvar pevniny. Skandinávský ledovec vlastní hmotností zamáčklSkandinávský poloostrovdo hloubky; po ústupu ledovce se pevnina začala vyzvedávat nahoru. Tento pohyb pokračuje dodneška a Skandinávie tak stoupá rychlostí kolem 9 mm za rok.[30][56]

Ledovce vytvořily též jezerní krajinu na severuSpojených státůa vKanaděa ovlivnily tvář mnoha pohoří.

Důsledky ledových dob pro život[editovat|editovat zdroj]

Mezi tzv.megafaunu,jejíž zástupci vymřeli na konci poslední doby ledové, patří i evropský obří jelenMegaloceros giganteus

Příroda se v souvislosti s globálním ochlazením v průběhutřetihorzačala proměňovat. Vyhranila se výrazná klimatická pásma s charakteristickou faunou a flórou. Klimatická pásma se v průběhu glaciálů posouvala a s nimi se stěhovaly i organismy, které tato pásma obývaly. Mnohé druhy rostlin a živočichů se změněným podmínkám nedokázaly přizpůsobit a vymřely. Teplá klimatická pásma však v glaciálních časech nemizí, jen se zužují blíže k rovníku a díky tomu přežívají i teplomilné druhy. Naopak v interglaciálech nikdy nedošlo k takovému oteplení, že by se vytrácely velmi chladnébiotopyv blízkosti pólů nebo ve velkých nadmořských výškách. Existence ledovců se projevovala po celém světě i citelným nedostatkem srážek. V blízkosti ledových štítů se rozšiřovaly chladné prašnépouště,takřka zbavenévegetace.Přesto mohly existovat i oázy díky horkým pramenům.[57]V rovníkových oblastech mizelydeštné lesy,jež byly nahrazoványsavanami.[11]

Vymírání[editovat|editovat zdroj]

Podrobnější informace naleznete v článkuVymírání v pleistocénu.

Konec posledníhoglaciáluje v tomto směru patrně jiný, jelikož v této době vyhynulo množství živočišných druhů, zejména velkýchsavců– tzv.megafauny.Jde o známémamutyi mnohé další druhy –srstnaté nosorožce,jeskynní medvědy,obří americké lenochody a další. Vymírání se dotklo i jižní polokoule, kde vymřela řada druhů včetně velkých druhůvačnatců.

Příčiny tohoto vymírání nejsou zcela jasné.[58]Diskutuje se o dvou možných příčinách – o ztrátě životního prostředí a o hubení člověkem, v té době rozšířeným již po celém světě. Fakta mluví ve prospěch kombinace obou faktorů. Závěr posledního glaciálu končil velmi studenýmstadiálempřed 27 000 až 18 000 lety, kdy pevninské ledovce postoupily hodně k jihu a poškodily životní prostředí megafauny zejména vEvropě.Pak došlo k prudkému oteplení až o 6 °C průměrné teploty během pouhých desítek let, načež toto oteplení bylo před 12,7 000 až 11,5 000 lety přerušeno návratem velmi chladného a suchého podnebí. Pak již se začalo oteplovat na úroveň současnosti. Velká zvířata se v této době stáhla do prostorově omezených útočišť a jejich populace značně prořídly. Možná v této době mohly být malé izolované populace poškozeny lovem lidmi vzhledem k nízké reprodukční schopnosti zvířat, což mohlo vést k jejich vyhubení.[58]Megafauna přežila řadu jinýchinterglaciálůa byla lovena již v předcházejícím interglaciáluneandertálci.[58]

Lidská populace Evropy se před 24 000 až 14,5 000 lety během posledního glaciálu snížila až o 90 % a lidské osídlení se udrželo jen v nejjižnějších částech kontinentu.[59]

Vznik nových druhů[editovat|editovat zdroj]

Před zhruba miliónem let přišlo střídání dob ledových a meziledových. Před 900 000 lety se vyvinulališka polární.[60]Před 800 000 lety se vyvinulmamut srstnatýz mamuta stepního. Později se vlivem takových změn klimatu vyvinulmedvěd lední.[61]

Doby ledové na území Česka[editovat|editovat zdroj]

Bludné balvany veFrýdku-Místkuze skandinávské červené žuly a ruly

Na počátkutřetihorpanovalo na českém území ve srovnání s dneškem poměrně teplé, subtropicképodnebí.Postupně se však ochlazovalo a podnebí se měnilo na sušší – důvodem bylo jednak globální ochlazování, jednak konečný ústup moře z blízkostiČeského masivu.S nástupem ochlazení panovalo poměrně vlhké mírné podnebí vinterglaciálecha suché chladné kontinentální klima tzv.periglaciální oblastiv glaciálech. (Periglaciální je oblast, kde se silně projevují vlivy kontinentálních ledovců, ale oblast samotná ledovcem pokrytá není.)[52]

Na územíČeské republikyse projevoval vliv skandinávského ledovce nacházejícího se severně od pohraničních pohoří, který v některých glaciálech pronikal až do okrajových oblastí dnešní republiky, a menšího kontinentálního ledovce pokrývajícíhoAlpy.O tom, jak vypadala zdejší krajina, se vedou diskuse. Dříve se předpokládalo, že v průběhu glaciálů zde převažovalo životní prostředí obdobné dnešnísibiřskébezlesétundřes chudou mrazuvzdornou vegetací. Tento předpoklad však dostává trhliny na základě pylových analýz a dalších výzkumů. Minimálně během posledního glaciálu vypadala zdejší krajina mnohem pestřeji. Předpokládá se, že zde zůstávalaútočiště (refugia)s teplomilnějšíflórou,zejména s některými druhydřevin.Pylovédiagramy naznačují, že česká krajina se minimálně během posledního glaciálu vyznačovala mimořádnoudiverzitourůzných stanovišť od otevřenější krajiny až k lesu podobnému sibiřskétajze.Analogie s dnes existujícími severskýmibiotopyvětšinou selhává, jelikož obdobnou krajinu v současnosti na Zemi nelze nalézt.[54]

Co se týče klimatických podmínek, v době toho největšího zalednění mohlo počasí v česku připomínat to, které se dnes vyskytuje například naEllesmerově ostrově,nejsevernějším z ostrovů vkanadskéoblastiNunavut.Tedy velmi dlouhé, ledové zimy s teplotami klesajícími běžně i pod minus 40 stupňů. Po kterých následovalo kratičké, maximálně dva měsíce trvající léto, jenž by se na dnešní poměry dalo přirovnat k období na přelomu března a dubna. Jen s podstatně sušším charakterem počasí a teplotami dosahujícímu maximálně hodnot okolo dvaceti stupňů.

Důsledky glaciálů pro českou krajinu[editovat|editovat zdroj]

Žulové kamenné moře naMařském vrchu

Střídání chladnějších, teplejších, sušších a vlhčích období výrazně ovlivnilo tvář české krajiny. V údolích řek se vytvořily soustavy tzv.říčních teras,které vznikají při přechodu ze studenějšího do teplejšího období glaciálního cyklu, kdy řeka přechází mezi vodním režimem divočící ameandrujícířeky. Vznikala též mocná souvrství navátých hornin –spraší.Dodnes jsou patrné stopy mrazového zvětrávání, při němž vznikajíkamenná mořeasuťová pole.Jiným důležitým procesem, který byl koncem glaciálu velmi aktivní, jepůdotokneboli soliflukce. Při půdotoku dochází k pomalému tečení rozbředlé půdy po zmrzlém podloží, a to i při poměrně malém sklonu. Koncem glaciálu se rovněž zvýrazňují asymetrická údolí – mnoho českých údolí má strmý východní svah a pozvolný západní svah. To je způsobeno tím, že slunce již od rána rozehřívá východní svah, který se trhá a sjíždí do údolí. Naopak západní svah je dopoledne stíněný a odpolední slunce nemá vždycky sílu rozehřát promrzlou stráň, která zůstává stát jako strmý či skalnatý stupeň. Později jsou oba svahy pokryty lesem, který konzervuje tvary vzniklé právě koncem glaciálu.[62]

V důsledku nižšího pokryvu vegetací v průběhu glaciálu dochází v některých oblastech k odkrytí skalního podkladu a následující mrazovéerozi.Po oteplení nastávají vhodné podmínky k rozšíření rostlin náročnějších na živiny. Máme doklady o rychlém rozšíření na živiny náročnéhosmrkupo konci posledního glaciálu, který však na většině lokalit brzy vymíral a byl nahrazen nenáročnějšími dřevinami, zejménabukem.[54]

Glaciální relikty[editovat|editovat zdroj]

Ostružiník moruška– glaciální relikt vyskytující se vKrkonoších

Reliktyjsou druhy živočichů a rostlin, které jsou v dnešní přírodě živými svědky dob dávno minulých. Nejpočetnější skupinou reliktů jsou glaciální relikty – chladnomilné druhy, které po skončení ledové periody přežívají v horách či na jiných místech připomínajících již vymizelé biotopy, například narašeliništíchaslatinách.Všechny glaciální relikty ovšem nemusí být severského původu, jsou to někdy i původně středoevropské horskédruhy,které se v glaciálech přesunuly do nižších poloh a po oteplení se vracely zpět do hor. Některé příklady glaciálních reliktů jsou dost známé, z rostlin napříkladostružiník moruška,bříza zakrsláčivšivec krkonošský;k méně známým patřílepnice alpínská,kohátka nízká,šídlatka jezerníči zřejmě vymizelýzimozel severní.Z živočichů je to napříkladploštěnka horská,hronatka jezerní,plachetnatka rohatá,vrkoč severní,kulík hnědýamyšivka horská.Obecně se nalézá více reliktů – nejen glaciálních – mezi rostlinnými než pohyblivými organismy.

Poznámky[editovat|editovat zdroj]

  1. Antarktický a grónský ledovcový štít jsou sice staré mnoho milionů let, ale led, jenž se na nich tvoří, neustále stéká k moři, proto na nich není led starší 250 000 let.

Odkazy[editovat|editovat zdroj]

Reference[editovat|editovat zdroj]

  1. abTHOMAS, David S. G.; GOUDIE, Andrew.The Dictionary of Physical Geography.3. vyd. Massachusetts (United States): Blackwell Publishing Ltd, 2000. 610 s.Dostupné online.ISBN0-631-20473-3.S.262.(anglicky)
  2. http://www.geology.cz/aplikace/encyklopedie/term.pl?doba_ledovaČeská geologická služba,Geologická encyklopedie: Doba ledová: "Zalednění způsobilo mj. pokles mořské hladiny"
  3. https://pubs.usgs.gov/fs/fs2-00/pdf/fs002-00_williams_508.pdfUnited States Geological Survey,Sea Level and Climate: "During cold-climate intervals, known as glacial epochs or ice ages, sea level falls because of a shift in the global hydrologic cycle: water is evaporated from the oceans and stored on the continents as large ice sheets and expanded ice caps, ice fields, and mountain glaciers."
  4. https://www.ncdc.noaa.gov/abrupt-climate-change/Glacial-Interglacial%20CyclesArchivováno24. 8. 2018 naWayback Machine.-NOAA,Glacial-Interglacial Cycles: "Glacial periods are colder, dustier, and generally drier than interglacial periods."
  5. Unmatched dust storms raged over Western Europe during Ice age maximum.phys.org[online]. 2021-02-01 [cit. 2022-01-16].Dostupné online.(anglicky)
  6. SCHMITZ, Birger; FARLEY, Kenneth A.; GODERIS, Steven; HECK, Philipp R.; BERGSTRÖM, Stig M.; BOSCHI, Samuele; CLAEYS, Philippe. An extraterrestrial trigger for the mid-Ordovician ice age: Dust from the breakup of the L-chondrite parent body. S. eaax4184.Science Advances[online]. 2019-09-06. Roč. 5, čís. 9, s. eaax4184.Dostupné online.DOI10.1126/sciadv.aax4184.(anglicky)
  7. abcUniversum: všeobecná encyklopedie. 2. díl, C–E.1. vyd. Praha: Odeon, 2000. 681 s.ISBN80-207-1062-0.Kapitola doba ledová, s. 420.
  8. abheslo Doba ledová; Geologická encyklopedie
  9. MAZUCH, Martin. Když světu vládl led. S. 9–12.Přírodovědci.cz[online]. Univerzita Karlova, 2017 [cit. 2.1.2024]. Roč. 6, čís. 4, s. 9–12.Dostupné online.
  10. abcdefghPOKORNÝ, Petr.Neklidné časy: kapitoly ze společných dějin přírody a lidí.Praha: Dokořán, 2011.ISBN978-80-7363-392-9.Kapitola O čtvrtém řádu a o tom, jak věda objevila dějiny, s. 9–50.
  11. abWARD, Peter Douglas; BROWNLEE, Donald.Život a smrt planety Země.Praha: Dokořán, 2004. (Aliter, sv. 17).ISBN80-86569-75-6.Kapitola Návrat ledovců, s. 85.
  12. CHLUPÁČ, Ivo; BRZOBOHATÝ, Rostislav; KOVANDA, Jiří; STRANÍK, Zdeněk.Geologická minulost České republiky.Praha: Academia, 2011.ISBN978-80-200-1961-5.Kapitola Paleozoikum, s. 55–237.
  13. KRISSANSEN-TOTTON, Joshua; ARNEY, Giada N.; CATLING, David C. Constraining the climate and ocean pH of the early Earth with a geological carbon cycle model. S. 4105–4110.Proceedings of the National Academy of Sciences[online]. 2018-04-17 [cit. 2022-01-16]. Roč. 115, čís. 16, s. 4105–4110.Dostupné v archivupořízeném zorigináludne 2021-11-04.DOI10.1073/pnas.1721296115.(anglicky)
  14. abMOSKAL, Emily. Earth's oxygen increased in gradual steps rather than big bursts.phys.org[online]. 2018-08-31.Dostupné online.(anglicky)
  15. abTARTÈSE, R.; CHAUSSIDON, M.; GURENKO, A.; DELARUE, F.; ROBERT, F. Warm Archaean oceans reconstructed from oxygen isotope composition of early-life remnants. S. 55–65.Geochemical Perspectives Letters[online]. 2017. S. 55–65.Dostupné online.DOI10.7185/geochemlet.1706.(anglicky)
  16. SCHIRBER, Michael. "Snowball Earth" Might Have Been Slushy.giss.nasa.gov[online]. 2015-08 [cit. 2022-01-16].Dostupné online.(anglicky)
  17. BRUTHANS, Jiří. Země jako ledová koule. S. 254.Vesmír[online]. 2002 [cit. 2.1.2024]. Roč. 81, čís. 5, s. 254.Dostupné online.ISSN1214-4029.
  18. BUFFETAUT, Eric. Velká vymírání (1): ordovik.Scienceworld[online].Dostupné online.
  19. VEIZER, Jan. In:Isotope Data - Jan Veizer[online]. [1999] [cit. 2. 1. 2024]. Přístup z:https://mysite.science.uottawa.ca/jveizer/isotope_data/
  20. SCOTESE, Christopher Robert. A new global temperature curve for the phanerozoic. S. 287167.www.researchgate.net[online]. 2016. Čís. 7, s. 287167.Dostupné online.DOI10.1130/abs/2016AM-287167.(anglicky)
  21. SOCHA, Vladimír.Poslední den druhohor.Praha: Vyšehrad, 2018.ISBN978-80-7429-908-7.Kapitola Další hromadná vymírání, s. 276–287.
  22. CÍLEK, Václav;HOUSER, Pavel. O největší době ledové.Scienceworld[online]. 19.03.2003 [cit. 2.1.2024].Dostupné online.
  23. Geologists Find Evidence of Paleozoic Ice Age in Southern Africa | Sci-News.com.sci-news.com[online]. 2019-02-06 [cit. 2022-01-16].Dostupné online.(anglicky)
  24. MYERS, Timothy S. CO2 and late Palaeozoic glaciation. S. 803–804.Nature Geoscience[online]. 2016-11. Roč. 9, čís. 11, s. 803–804.Dostupné online.DOI10.1038/ngeo2832.(anglicky)
  25. SOREGHAN, Gerilyn S.; SOREGHAN, Michael J.; HEAVENS, Nicholas G. Explosive volcanism as a key driver of the late Paleozoic ice age. S. 600–604.Geology[online]. 2019-07-01. Roč. 47, čís. 7, s. 600–604.Dostupné online.DOI10.1130/G46349.1.(anglicky)
  26. SARDAR ABADI, Mehrdad; SOREGHAN, Gerilyn S.; HINNOV, Linda; HEAVENS, Nicholas G.; GLEASON, James D. Atmospheric dust flux in northeastern Gondwana during the peak of the late Paleozoic ice age.GSA Bulletin[online]. 2020-10-05.Dostupné online.DOI10.1130/B35636.1.(anglicky)
  27. Life in Antarctica's ice mirrors human disease.phys.org[online]. 2019-06-11 [cit. 2022-01-16].Dostupné online.(anglicky)
  28. Switching on the Atlantic heat pump.phys.org[online]. 2019-08-22 [cit. 2022-01-16].Dostupné online.(anglicky)
  29. Stratigrafická tabulka.Geofyzikální ústav Akademie věd České republiky, v. v. i[online]. ©2005 [cit. 2.1.2024].Dostupné v archivupořízeném dne 2012-12-09.
  30. abcBRANDOS, Otakar. Poslední doba ledová, kontinentální (pevninský) ledovec zasahoval i na území dnešního Česka. Doba ledová (glaciál) a interglaciál: Kolik bylo dob ledových v českých horách a slovenských Karpatech?.Treking.cz[online]. 10.1.2013 [cit. 2.1.2024].Dostupné online.ISSN1214-4029.
  31. Pliestocene glaciations[online]. Department of Geology, Aligarh Muslim University [cit. 2022-01-16].Dostupné online.(anglicky)
  32. BAILLIE, Katherine Unger. East Antarctic Ice Sheet has stayed frozen for 14 million years.phys.org[online]. 2015-12-15 [cit. 2022-01-16].Dostupné online.(anglicky)
  33. abcLISTER, Adrian; BAHN, Paul.Mamuti.Praha: Mladá fronta, 2007.ISBN978-80-204-1748-0.Kapitola Původ mamutů, s. 11–43.
  34. MACDOUGALL, John Douglas.Stručné dějiny planety Země: kámen a život, oheň a led.Praha: Dokořán, 2004.ISBN80-86569-92-6.Kapitola Velká doba ledová, s. 207–232.
  35. LOŽEK, Vojen.Příroda ve čtvrtohorách.Praha: Academia, 1973. 372 s.Dostupné online.Kapitola Zvířena a květena ve čtvrtohorách, s. 192–242.
  36. KOUTAVAS, Athanasios. Temperature correlations between the eastern equatorial Pacific and Antarctica over the past 230,000 years. S. 43–54.Earth and Planetary Science Letters[online]. 2018-03. Roč. 485, s. 43–54.Dostupné online.DOI10.1016/j.epsl.2017.12.041.(anglicky)
  37. ZANDONELLA, Catherine. Dust in the wind drove iron fertilization during ice age.News[online].Princeton University,2014-03-21 [cit. 2022-01-16].Dostupné online.(anglicky)
  38. In the Southern Ocean, a carbon-dioxide mystery comes clear.phys.org[online]. 2016-02-03 [cit. 2022-01-16].Dostupné online.(anglicky)
  39. SHAFFER, Gary; LAMBERT, Fabrice. In and out of glacial extremes by way of dust−climate feedbacks. S. 2026–2031.Proceedings of the National Academy of Sciences[online]. 2018-02-27. Roč. 115, čís. 9, s. 2026–2031.Dostupné online.DOI10.1073/pnas.1708174115.(anglicky)
  40. http://archive.ipcc.ch/pdf/assessment-report/ar5/wg1/WG1AR5_Chapter05_FINAL.pdf- IPCC, AR5, WG1, Chapter 5, str. 385
  41. ELKINS-TANTON, Linda T.; HAGER, Bradford H. Giant meteoroid impacts can cause volcanism. S. 219–232.Earth and Planetary Science Letters[online]. 2005-11. Roč. 239, čís. 3–4, s. 219–232.Dostupné online.DOI10.1016/j.epsl.2005.07.029.(anglicky)
  42. Tectonics in the tropics trigger Earth's ice ages, study finds.phys.org[online]. 2019-03-14 [cit. 2022-01-16].Dostupné online.(anglicky)
  43. More 'reactive' land surfaces cooled the Earth down.phys.org[online]. 2019-07-03 [cit. 2022-01-16].Dostupné online.(anglicky)
  44. Milankovičovy cykly; agentura Cenia.vitejtenazemi.cenia.cz[online]. [cit. 2013-04-24].Dostupné v archivupořízeném dne 2014-08-29.
  45. Modulation of ice ages via precession and dust-albedo feedbacks.www.sciencedirect.com[online]. [cit. 2024-02-18].Dostupné online.
  46. O’DEA, Aaron; LESSIOS, Harilaos A.; COATES, Anthony G.; EYTAN, Ron I.; RESTREPO-MORENO, Sergio A.; CIONE, Alberto L.; COLLINS, Laurel S. Formation of the Isthmus of Panama. S. e1600883.Science Advances[online]. 2016-08-05. Roč. 2, čís. 8, s. e1600883.Dostupné online.DOI10.1126/sciadv.1600883.PMID27540590.(anglicky)
  47. CÍLEK, Václav. Milankovičovy cykly, astronomické teorie klimatických změn.Vesmír[online]. 1995 [cit. 2013-04-05]. Roč. 74, čís. 9.Dostupné online.ISSN1214-4029.
  48. MACDOUGALL, J. Douglas.Stručné dějiny planety Země.Praha: Dokořán, 2004.ISBN80-86569-92-6.Kapitola Savci, horstva a ledovce: třetihory a čtvrtohory, s. 183–206.
  49. Climate change caused by ocean, not just atmosphere, study finds.phys.org[online]. 2014-10-24 [cit. 2022-01-16].Dostupné online.(anglicky)
  50. Quaternary Period.National Geographic Magazine[online]. 2017-01-06 [cit. 2022-01-16].Dostupné online.(anglicky)
  51. BISHOP, Michael. Melting icebergs key to sequence of an ice age, scientists find.phys.org[online]. 2021-01-13 [cit. 2022-01-16].Dostupné online.(anglicky)
  52. abcKOVANDA, Jiří. Kvartér (čtvrtohory) – nejmladší geologická minulost. In:Geologická minulost České republiky.2., oprav. vyd. Praha: Academia, 2011, s. 359–392.ISBN 978-80-200-1961-5.
  53. PILOUS, Vlastimil.Pleistocénní glacigenní a nivační modelace Jizerských hor[online]. Hostinné: KRNAP, 2006 [cit. 2014-08-15].Dostupné v archivupořízeném dne 2014-08-05.
  54. abcPOKORNÝ, Petr.Neklidné časy.Praha: Dokořán, 2011.ISBN978-80-7363-392-9.Kapitola Tajga za humny a velké vymírání, s. 137–160.
  55. BATCHELOR, Christine L.; MARGOLD, Martin; KRAPP, Mario; MURTON, Della K.; DALTON, April S.; GIBBARD, Philip L.; STOKES, Chris R. The configuration of Northern Hemisphere ice sheets through the Quaternary. S. 3713.Nature Communications[online]. 2019-12. Roč. 10, čís. 1, s. 3713.Dostupné online.DOI10.1038/s41467-019-11601-2.PMID31420542.(anglicky)
  56. DVOŘÁK, Josef; RŮŽIČKA, Bohuslav.Geologická minulost Země: úvod do historické geologie a paleontologie.Praha: SNTL – Nakladatelství technické literatury, 1972. (Řada hornické literatury). Kapitola Čtvrtohory, s. 283–298.
  57. Scientists find evidence of hot spring oasis during last ice age in central Europe.phys.org[online]. [cit. 2024-06-03].Dostupné online.
  58. abcLISTER, Adrian; BAHN, Paul.Mamuti.Praha: Mladá fronta, 2007.ISBN978-80-204-1748-0.Kapitola Zánik, s. 141–163.
  59. PRÁVO a mcm. Doba ledová vylidnila téměř celou tehdejší Evropu. In:Novinky.cz[online]. 9. 2. 2016 [cit. 2. 1. 2024]. Dostupné z:https://www.novinky.cz/clanek/veda-skoly-doba-ledova-vylidnila-temer-celou-tehdejsi-evropu-340955
  60. Genetic signatures of adaptation revealed from transcriptome sequencing of Arctic and red foxes.www.ncbi.nlm.nih.gov[online]. [cit. 2023-11-05].Dostupné online.
  61. Complete mitochondrial genome of a Pleistocene jawbone unveils the origin of polar bear.www.pnas.org[online]. [cit. 2023-11-05].Dostupné online.
  62. CZUDEK, Tadeáš. Asymetrie pramenných úseků údolí v České republice. S. 267–270.Geomorfologický sborník 2: stav geomorfologických výzkumů v roce 2003: příspěvky z mezinárodního semináře Geomorfologie '03 (22.–23. 4. 2003, Nečtiny)[online]. Plzeň: [Západočeská univerzita v Plzni], 2003 [cit. 2.1.2024]. Čís. 2, s. 267–270.Dostupné v archivupořízeném dne 2016-03-04.ISBN80-7082-946-X.

Literatura[editovat|editovat zdroj]

  • BUFFETAUT, Éric.Tak jako dinosauři: hromadná vymírání druhů a život na Zemi.Překlad Jan Švábenický. 1. vyd. v čes. jazyce. Praha: Dokořán, 2005. 199 s. Aliter, sv. 23.ISBN 80-7363-003-6.
  • CZUDEK, Tadeáš.Vývoj reliéfu krajiny České republiky v kvartéru.Brno: Moravské zemské muzeum, 2005. 238 s.ISBN978-80-7028-270-0.
  • CHLUPÁČ, Ivo; [BRZOBOHATÝ, Rostislav; KOVANDA, Jiří a STRÁNÍK, Zdeněk].Geologická minulost České republiky.2., oprav. vyd. Praha: Academia, 2011. 436 s., xvi s. obr. příl. Neživá příroda.ISBN 978-80-200-1961-5.
  • LOŽEK, Vojen.Zrcadlo minulosti: česká a slovenská krajina v kvartéru.2. vyd. Praha: Dokořán, 2011. 198 s.ISBN978-80-7363-340-0.
  • MARTINS, Charles Frédéric.Observations sur les glaciers du Spitzberg, comparés à ceux de la Suisse et de la Norvège.1840. 36 s.
  • MARTINS, Charles-Frédéric.Remarques et expériences sur les glaciers sans névé de la chaine du Faulhorn.1842. 26 s. [Dotisk z:Annales des sciences géologiques(publ. M. Rivière)]
  • MIKULA, Jiří.Dvacetkrát starší než Altamira: pro čtenáře od 12 let.Praha: Albatros, 1983. 109 s.

Související články[editovat|editovat zdroj]

Externí odkazy[editovat|editovat zdroj]