Přeskočit na obsah

Quaoar (planetka)

Tento článek patří mezi dobré v české Wikipedii. Kliknutím získáte další informace.
Z Wikipedie, otevřené encyklopedie
Na tento článek jepřesměrovánohesloQuaoar.Tento článek je o transneptunickém vesmírném tělese. Další významy jsou uvedeny na stránceQuaoar (rozcestník).
Quaoar
Quaoar na snímku Hubblova vesmírného dalekohledu
Quaoar na snímku Hubblova vesmírného dalekohledu
Symbol planety🝾
Identifikátory
Označení(50000) Quaoar
Předběžné označení2002 LM60[1]
Objeveno
Datum4. června 2002[1]
MístoPalomar
ObjevitelChad Trujillo,
Michael E. Brown
Elementy dráhy[2]
(EkvinokciumJ2000,0)
Velká poloosa43,2195 ± 0,0015au
Výstřednost0,037898 ± 0,000011
Perihel41,5816 au
Afel44,8575 au
Perioda (oběžná doba)103 781 d
(284,14a)
Sklon dráhy
- kekliptice7,996°
Délka vzestupného uzlu189,026°
Argument šířky perihelu161,701°
Střední anomálie276,434°
Počet
přirozených satelitů
1
Fyzikální charakteristiky
Zdánlivá hvězdná velikost19,05[2]
Absolutní hvězdná velikost2,5[2]
Rovníkový průměr1170 km[3]
890 ± 70 km[4]
844+207
−190
[5]km
Hmotnost1,6 ± 0,3×1021[4]
Průměrná hustota4,2 ± 1,3 g/cm3[4]
3,5[6]g/cm³
Albedo0,199+0,13
−0,07
[5]

(50000) Quaoar([qʷɑoɑr]IPA) jetransneptunické tělesoobíhající kolemSluncevKuiperově pásu.Objeveno bylo 4. června 2002 astronomyChadem TrujillemaMichaelem Brownemna fotografiích pořízených naObservatoři Palomar.Pojmenováno bylo pobožstvuspojovaném vmytologiiindiánského kmeneTongvasestvořením světa.[7]Těleso je kandidátem na zařazení mezi tzv.trpasličí planety.Podle Trujillova a Brownova měření má průměr 1 260 ± 190 km, ovšem novější měření naznačují, že je možná až o 400 km menší. KolemSlunceobíhá po kruhové, vůči roviněekliptikyjen mírně nakloněné dráze ve vzdálenosti asi 6 miliard km. Jeho oběžná doba je 287 let. Těleso je tvořeno směsíkamenía vodníholedus malou příměsímethanuaethanu.[8]Obíhá kolem něj malý satelit, jehož průměr astronomové odhadují přibližně na 100 km.[9]

Objev[editovat|editovat zdroj]

Transneptunické těleso Quaoar objeviliameričtíastronomové Chad Trujillo a Michael Brown 4. června 2002 vKalifornském technologickém institutuna fotografiích pořízenýchteleskopemSamuela Oschina na Observatoři Palomar a svůj objev oznámili 7. října 2002 na setkáníAmerické astronomické společnosti.Tělesohvězdné velikosti18,5 vyfotografovali vsouhvězdí Hadonoše.Nejstaršípředobjevový snímek,pořízený rovněž palomarskou observatoří, však pochází již z 25. května 1954.

Tento objev je do jisté míry výsledkem závodu o nalezení nového objektu vesluneční soustavěvelikostiPluta.Roku 2000 mu předcházel objev tělesaVarunaa po něm následovala celá řada dalších významných objevů, až se nakonec v říjnu 2003 podařilo pořídit snímkytrpasličí planetyEris,tělesa podobně velkého jako Pluto.

Název[editovat|editovat zdroj]

Těleso, které nejprve obdrželopředběžné označení2002 LM60,bylo pojmenováno v souladu s pravidlyMezinárodní astronomické unie,která stanovují, že transneptunická tělesa mají nést jména božstev spojovaných smýtyostvoření.„Quaoar“je jméno boha stvořitele pocházejícího z mytologie indiánského kmeneTongva,který sídlil v okolí dnešníhoLos Angeles,kde bylo těleso objeveno.

S ohledem na svůj význam a velikost dostal Quaoar kulaté katalogové číslo 50000.

Velikost[editovat|editovat zdroj]

ZeměDysnomia(136199) ErisCharonPluto(136472) Makemake(136108) Haumea(90377) Sedna(90482) Orcus(50000) Quaoar(20000) VarunaNejvětší známá transneptunická tělesa
Quaoar v porovnání s tělesy Eris, Pluto, Makemake, Haumea, Sedna, Orcus, Varuna a se Zemí.

Astronomové Chad Trujillo a Michael Brown změřili roku 2004 průměr Quaoaru na 1260 ± 190 km,[10]což by znamenalo, že k datu svého objevu (roku 2002) by byl největším nově nalezeným tělesem sluneční soustavy od objevu Pluta. Tento rozměr odpovídá asi jedné desetině průměruZeměa jedné třetině průměruMěsíce,dost na to, aby (pokud by se měření potvrdilo) těleso mohlo být řazeno mezi trpasličí planety. Později následovaly objevy ještě větších transneptunických těles, zejménaEris,Sedna,(136108) Haumeaa(136472) Makemake.Podobné rozměry má pravděpodobně iplutinoOrcus.

Quaoar byl také prvním transneptunickým tělesem, jehož průměr se na snímcíchHubblova vesmírného dalekohledu(HST) astronomové pokusili změřit přímo. Vzhledem ke své vzdálenosti od Země se pohybuje na hranicirozlišeníHST (40úhlových milivteřin), takže jeho obraz byl „rozmazaný “na několikapixelech.Novou metodou pečlivého srovnání tohoto obrazu s obrazyhvězdna pozadí (tzv.bodová rozptylová funkce) Brown a Trujillo odhadli velikost disku, který by na snímcích dával podobný rozostřený obraz. Tuto metodu později také uplatnili při měření velikostiEridy.

Jejich odhady však příliš nesouhlasí s měřeními vinfračerveném oboru spektra,provedenými roku 2007 pomocíSpitzerova vesmírného dalekohledu.[5]Ukazuje se totiž, že Quaoar má podobné vlastnosti jako například ledovéměsíce UranuaNeptunu.[4]To by znamenalo mnohem většíodrazivost povrchu(0,19), a tím pádem také mnohem menší průměr (844,4+206,7
−189,6
km).[5]Roku 2010 Michael Brown a Wesley Fraser vzali tyto výsledky v potaz a zveřejnili nový odhad, vycházející ze střední hodnoty zveřejněných měření, a sice 890 ±70 km.[4]

4. května 2011 Quaoar zakryl hvězdu 16. magnitudy a tento zákryt byl pozorován ze 16 různých stanovišť na Zemi. Nejdelší změřená doba zákrytu (64 sekund) odpovídá průměru tělesa 1170 km, což by bylo v poměrně dobré shodě s původním měřením z roku 2004. Z jiných stanovišť však byly naměřeny kratší doby, což naznačuje, že těleso by mohlo mít podlouhlý tvar.[3]Analýzasvětelné křivkyvšak neprokázala významnější změny jasnosti, což zřejmě znamená, že tvar Quaoaru se blíží buďkoulinebo zploštělému rotačnímuelipsoidu.[11]

Kandidát na trpasličí planetu[editovat|editovat zdroj]

Z pozorování dráhy měsíce Weywotu obíhajícího kolem Quaoaru lze vypočítat celkovou hmotnost tohoto systému, která činí1,6 ± 0,3 × 1021kg,přičemž hmotnost Weywotu je jen 1/2000 hmotnosti Quaoaru. Odhadovaná hustota Quaoaru je4,2 ± 1,3 g/cm3.Pokud by jeho průměr byl 890 km, jak odhaduje Michael Brown,[4]znamenalo by to, že těleso by svými vlastnostmi spadalo mezi trpasličí planety.[12]Jednou z charakteristik trpasličí planety je, že se nachází ve stavu tzv.hydrostatické rovnováhy,přičemž v prohlášeníMezinárodní astronomické uniez roku 2006 se uvádí, že takový stav obvykle nastává u těles s hmotností přesahující 5×1020kg a průměrem větším než 800 km.[13]Podle Browna je však nutné brát v úvahu také hustotu, takže čistě kamenná tělesa se dostávají do hydrostatické rovnováhy při průměru kolem 900 km, ovšem ledová již při průměru kolem 400 km.[14]Výše uvedená analýza světelné křivky, která naznačuje, že těleso má tvar koule či zploštělého rotačního elipsoidu, také podporuje závěr, že Quaoar stavu hydrostatické rovnováhy dosáhl.[11]

Kolize s jiným tělesem[editovat|editovat zdroj]

Quaoar se zdá být mnohem hutnějším tělesem, než je u transneptunických objektů, sestávajících do velké míry z ledu, obvyklé. Podle jedné z teorií by to mohl být důsledek srážky Quaoaru s jiným tělesem, možná až velikostiMarsu,při níž přišel o většinu svého ledového pláště. Americký astronom Eric Asphaug odhadl, že před touto případnou srážkou mohl být Quaoar o 300 až 500 km větší, než je tomu dnes.[15]

Oběžná dráha[editovat|editovat zdroj]

Oběžné dráhy Quaoaru, Pluta a Neptunu – pohled rovnoběžný s rovinou ekliptiky
Oběžné dráhy Quaoaru (modrá), Pluta (červená) a Neptunu (šedá) – pohled kolmý na rovinu ekliptiky

Quaoar obíhá ve vzdálenosti přibližně 43 astronomických jednotek (6,4 miliard kilometrů) od Slunce a jeho oběžná doba je 287 let.

Oběžná dráhamá téměř kruhový tvar a vůči roviněekliptikyje jen mírně nakloněná (~8°), což je typické pro tzv. klasické objekty Kuiperova pásu, známé též jakokubewana,ale výjimečné mezi objekty Kuiperova pásu této velikosti. Oběžné dráhyVaruny,HaumeyiMakemakejsou mnohem excentričtější a mají mnohem větší sklon.

Na obrázku vpravo lze porovnat téměř kruhovou dráhu Quaoaru s velmi excentrickou dráhouPluta.Kružnice zobrazují pozice těchto dvou těles z dubna 2006, jejich relativní velikosti,perihélia(q),afélia(Q) a data průchodů těmito body.

Na rozdíl od Pluta, který je vrezonanci2:3 splanetouNeptun,není Quaoar vzhledem ke své vzdálenosti (43AUod Slunce) a téměř kruhové dráze při svém oběhu Neptunem nijak významně rušen. Pohled na jejich oběžné dráhy rovnoběžný s rovinou ekliptiky ukazuje jejich sklon. Protože afélium Pluta je za (apod.) oběžnou dráhou Quaoaru, v některých obdobích se dostává ke Slunci blíže a v jiných je od něj zase dále než Quaoar.

Roku 2008 byl Quaoar pouze asi 14 AU od Pluta a roku 2013 bude tato vzdálenost činit přibižně 15 AU.[16]To je na poměry v Kuiperově pásu velmi blízko, a Quaoar je tak nejbližším velkým tělesem systému Pluto-Charon.

Fyzikální charakteristika[editovat|editovat zdroj]

Astronomové se domnívají, že Quaoar se skládá, podobně jako jiné objekty Kuiperova pásu, ze směsikameníaledu.Velmi nízká míra odrazivosti jeho povrchu (odhadovaná na pouhých 0,1, což je ale stále více, než má Varuna – 0,04) však naznačuje, že ze svrchních vrstev led vymizel. Povrch je načervenalý, což znamená, že v pásmu červeného a blízkého infračerveného záření je odrazivější než v modrém. Totéž platí například i o tělesech Varuna aIxion.Větší objekty Kuiperova pásu často bývají mnohem jasnější, protože jsou více pokryty ledem.

Fotografie z Hubblova vesmírného dalekohledu použitá k měření rozměru Quaoaru

Roku 2004 vědci ke svému překvapení na Quaoaru nalezli známkykrystalickéholedu, což naznačuje, žeteplotyzde někdy v průběhu posledních 10 milionů let stouply na určitou dobu nejméně na −160 °C (110 K).[17]Současně se objevily spekulace, co zapříčinilo zahřátí Quaoaru z jeho přirozené teploty −220 °C (55 K). Někteří vědci přišli s názorem, že vzestup teploty mohlo způsobit bombardovánímeteority,ale nejčastěji diskutovaná teorie spekuluje, že by se na tělese mohl vyskytovatkryovulkanismus,poháněný rozpademradioaktivníchprvkůvjádřeQuaoaru.[17]Od té doby (roku 2006) byl krystalický vodní led nalezen také na tělese (2003) EL61,ovšem ve větším množství, což je asi důvod, proč má toto těleso tak vysokou odrazivost (0,7).[18]

Přesnější pozorování Quaoaru v pásmu blízkém infračervenému záření z roku 2007 naznačují přítomnost malého množství (5 %)methanuaethanuvpevném skupenství.[19]Methan je vzhledem ke svémubodu varu112 K při průměrných teplotách, jaké panují na povrchu Quaoaru, v pevném skupenství nestálý, na rozdíl od vodního ledu nebo ethanu (s bodem varu 185 K). Vypracované modely i provedená pozorování ukazují, že pouze několik větších těles, jako Pluto, Eris nebo (2005) FY9si může udržet nestálé druhy ledu, zatímco převážná většina transneptunických těles je ztratila. Quaoar se svým malým množstvím methanu patrně v tomto ohledu patří někam mezi tyto dvě kategorie.[19]

Satelit[editovat|editovat zdroj]

Quaoar a Weywot

Quaoar má jeden známý satelit,Weywot,oficiálně označený jako (50000) Quaoar I Weywot. Jeho objev oznámili astronomové Michael Brown a Terry-Ann Suerová 22. února 2007.[20][21]Satelit byl nalezen 0,35 úhlových vteřin od Quaoaru, rozdílhvězdných velikostíobou těles činil 5,6.[9]Satelit obíhá mateřské těleso ve vzdálenosti 14 500 km avýstřednost jeho oběžné dráhyčiní 0,14.[4]Za předpokladu, že jehoalbedoa hustota jsou stejné, jako u mateřského tělesa, lze ze zdánlivé jasnosti měsíce usuzovat, že jeho průměr dosahuje přibližně 74 km (tj. 1/12 průměru Quaoaru) a jeho hmotnost činí 1/2000 hmotnosti Quaoaru.[4]Michael Brown se domnívá, že satelit pravděpodobně vznikl po srážce Quaoaru s jiným tělesem, během níž Quaoar přišel o velkou část svého pláště.[6]

Jméno měsíce vybírali příslušníci kmeneTongva,kteří se rozhodli pro jméno boha nebesWeywota,syna boha Quaoara. Mezinárodní astronomická unie nové jméno oficiálně zveřejnila 4. října 2009.[22]

Odkazy[editovat|editovat zdroj]

Reference[editovat|editovat zdroj]

V tomto článku byl použitpřekladtextu z článku50000 Quaoarna anglické Wikipedii.

  1. abDiscovery Circumstances: Numbered Minor Planets (45001)–(50000)[online]. Harvard-Smithsonian Center for Astrophysics, rev. 2012-2-8 [cit. 2012-02-17].Dostupné online.(anglicky)
  2. abcMILANI, Andrea, et al.(50000) Quaoar[online]. AstDyS [cit. 2012-01-09].Dostupné online.(anglicky)
  3. abBRAGA-RIBAS, F.; SICARDY, B.;ORTIZ, J. L.,et al. Stellar Occultations by TNOs: the January 08, 2011 by (208996) 2003 AZ84 and the May 04, 2011 by (50000) Quaoar. In:EPSC Abstracts, EPSC-DPS Joint Meeting 2011.Nantes: American Astronomical Society, 2011.Dostupné online.Bibcode:2011epsc.conf.1060B.Svazek 6. S. 1060. (anglicky)
  4. abcdefghFRASER, Wesley C.;BROWN, Michael E.Quaoar: A Rock in the Kuiper Belt.The Astrophysical Journal.2010-5-10, roč. 714, čís. 2, s. 1547–1550.Dostupné online[PDF].ISSN0004-637X.DOI10.1088/0004-637X/714/2/1547.Bibcode:2010ApJ...714.1547F,arXiv:1003.5911.(anglicky)
  5. abcdSTANSBERRY, J.; GRUNDY, W.;BROWN, M.,et al. Physical Properties of Kuiper Belt and Centaur Objects: Constraints from the Spitzer Space Telescope. In: BARUCCI, M. A., et al.The Solar System Beyond Neptune.Tucson: The University of Arizona Press, 2008.Dostupné online.ISBN978-0-8165-2755-7.Bibcode:2008ssbn.book..161S,arXiv:astro-ph/0702538.S. 161–179. (anglicky)
  6. abFRASER, Wesley C.;BROWN, Michael E.Quaoar: A Rock in the Kuiper Belt. In:DPS meeting #41.[s.l.]: American Astronomical Society, 2009.Dostupné online.Bibcode:2009DPS....41.6503F.(anglicky)
  7. Největší z nejmenších – Quaoar[online]. IAN.cz [cit. 2008-03-14].Dostupné v archivupořízeném dne 2007-07-12.
  8. E. L. SCHALLER A M. E. BROWN.Detection of Methane on Kuiper Belt Object (50000) Quaoar[online]. [cit. 2008-03-14].Dostupné online.(anglicky)[nedostupný zdroj]
  9. abPARKER, Joel. News & Announcements.Distant EKOs[online]. 15. březen 2007 [cit. 2008-03-01]. Čís. 57.Dostupné online.(anglicky)
  10. BROWN, Michael E.;TRUJILLO, Chadwick A.Direct Measurement of the Size of the Large Kuiper Belt Object (50000) Quaoar.The Astronomical Journal.Duben 2004, roč. 127, čís. 4, s. 2413–2417.Dostupné online[PDF].ISSN0004-6256.DOI10.1086/382513.Bibcode2004AJ....127.2413B.(anglicky)
  11. abTANCREDI, Gonzalo; FAVRE, Sofía. Which are the dwarfs in the Solar System?.Icarus.Červen 2008, roč. 195, čís. 2, s. 851–862.Dostupné online[PDF].ISSN0019-1035.DOI10.1016/j.icarus.2007.12.020.Bibcode:2008Icar..195..851T.(anglicky)
  12. BROWN, Mike.How many dwarf planets are there in the outer solar system?[online].California Institute of Technology,rev. 2012-2-19 [cit. 2012-02-19].Dostupné online.(anglicky)
  13. The IAU draft definition of "planet" and "plutons".IAU News Release[online]. 2006-8-16. Čís. iau0601.Dostupné online.(anglicky)
  14. BROWN, Michael.The Dwarf Planets[online].California Institute of Technology,Division of Geological and Planetary Sciences [cit. 2012-02-07].Dostupné online.(anglicky)
  15. COWEN, Ron. On the Fringe.Science News.2010-1-16, roč. 177, čís. 2, s. 16–20.Dostupné online.ISSN0036-8423.(anglicky)
  16. 50000 Quaoar distance (AU) from Pluto[online]. [cit. 2008-03-01].Dostupné online.(anglicky)
  17. abJEWITT, David; LUU, Jane. Crystalline water ice on the Kuiper belt object (50000) Quaoar.Nature.9. prosinec 2004, svazek 432, s. 731–733.ISSN0028-0836.DOI10.1038/nature03111.Reprint online(anglicky)
  18. TRUJILLO, Chadwick A.; BROWN, Michael, et al. The Surface of 2003 EL61in the Near-Infrared.The Astrophysical Journal.1. únor 2007, svazek 655, s. 1172–1178.ISSN0004-637X.DOI10.1086/509861.arXiv:astro-ph/0601618.(anglicky)
  19. abSCHALLER, E. L.; BROWN, M. E. Detection of Methane on Kuiper Belt Object (50000) Quaoar.The Astrophysical Journal.20. listopad 2007, svazek 670, s. L49–L51.Dostupné online.ISSN0004-637X.DOI10.1086/524140.arXiv0710.3591.(anglicky)
  20. BROWN, M. E.;SUER, T.–A. Satellites of 2003 AZ_84, (50000), (55637), and (90482).IAU Circular[online]. 2007-2-22 [cit. 2012-2-2]. Čís. 8812.Dostupné online.ISSN0081-0304.Bibcode:2007IAUC.8812....1B.(anglicky)
  21. JOHNSTON, Wm. Robert.(50000) Quaoar[online]. Rev. 2007-03-04 [cit. 2008-03-01].Dostupné online.(anglicky)
  22. New names of minor planets. S. M.P.C. 67220.The Minor Planet Circular[PDF]. 2009-10-4 [cit. 2012-2-2]. S. M.P.C. 67220.Dostupné online.ISSN0736-6884.(anglicky)

Související články[editovat|editovat zdroj]

Externí odkazy[editovat|editovat zdroj]