Přeskočit na obsah

Argon

Z Wikipedie, otevřené encyklopedie
Argon
[Ne] 3s23p6
40 Ar
18
↓ Periodická tabulka ↓
Zářící argon

Zářící argon

Obecné
Název,značka,číslo Argon, Ar, 18
Cizojazyčné názvy lat.Argon
Skupina,perioda,blok 18. skupina,3. perioda,blok p
Chemická skupina Vzácné plyny
Koncentracevzemské kůře 0,04 až 4 ppm
Koncentracevmořské vodě 0,6 mg/l
Vzhled Bezbarvý plyn
Identifikace
Registrační číslo CAS
Atomové vlastnosti
Relativní atomová hmotnost 39,944
Atomový poloměr 71 pm
Kovalentní poloměr 106 pm
Van der Waalsův poloměr 188 pm
Elektronová konfigurace [Ne] 3s23p6
Ionizační energie
První 1520,6 KJ/mol
Druhá 2665,8 KJ/mol
Třetí 3931 KJ/mol
Látkové vlastnosti
Krystalografická soustava Krychlová plošně centrovaná
Molární objem 22,56×10−6m3/mol (pevný)

22,4134×10−3m3/mol (plynný)

Mechanické vlastnosti
Hustota 1,7838 kg/m3
Skupenství Plynné
Tlak syté páry 100 Pa při 53K
Rychlost zvuku 323 m/s
Termické vlastnosti
Tepelná vodivost 17,72×10−3W⋅m−1⋅K−1
Termodynamické vlastnosti
Teplota tání −189,35°C(83,8K)
Teplota varu −185,85°C(87,3K)
Skupenské teplo tání 1,1084 KJ/mol
Skupenské teplo varu 6,274 KJ/mol
Měrná tepelná kapacita 520 Jkg−1K−1
Elektromagnetické vlastnosti
Magnetickéchování Diamagnetický
Bezpečnost
GHS04 – plyny pod tlakem
GHS04
[1]
Varování[1]
Izotopy
I V (%) S T1/2 Z E (MeV) P
36Ar 0,337% jestabilnís 18neutrony
37Ar umělý 35,011 dne ε 0,813 87 37Cl
38Ar 0,063% jestabilnís 20neutrony
39Ar umělý 269 roků β 0,565 39K
40Ar 99,600% jestabilnís 22neutrony
41Ar umělý 109,34 min β 2,49 41K
42Ar umělý 32,9 roků β 0,600 42K
Není-li uvedeno jinak, jsou použity
jednotkySIaSTP(25 °C, 100 kPa).
Ne
Chlor Ar

Kr

Argon,(chemická značkaAr,latinskyArgon) jechemický prvekpatřící mezivzácné plyny,které tvoří přibližně 1 %zemskéatmosféry.

Základní fyzikálně-chemické vlastnosti

[editovat|editovat zdroj]
Jedna ze dvou doposud známých sloučenin argonu – HArF

Bezbarvý plyn, bez chuti a zápachu, velmi málo reaktivní. V 1 litruvodyse rozpustí 33,6 ml argonu (je dokonce rozpustnější nežkyslík). Ještě o něco lépe se rozpouští v nepolárních organickýchrozpouštědlech.Argon lze adsorbovat naaktivním uhlí.

Argon se stejně jako ostatní vzácné plyny snadnoionizujea v ionizovaném stavu září. Toho se využívá v osvětlovací technice. Argon září při větší koncentraci červeně, při nižších přechází přes fialovou a modrou až k bílé barvě.

V roce 2000 byla připravena první sloučenina argonu -hydrofluorid argonu,HArF.[2]Syntéza byla provedena reakcí argonu sfluorovodíkemv matrici zjodidu cesnéhopři teplotě 8 K. Sloučenina je stabilní do teploty 40 K.

Kousek tajícího argonu

Historický vývoj

[editovat|editovat zdroj]

Henry CavendishaJoseph Priestleypředpokládali přítomnost argonu ve vzduchu již v roce1785,když se jim podařilo ze vzduchu odstranitkyslík(reakcí s rozžhavenoumědí),oxid uhličitý(rozpuštěním ve vodě) adusík(působením elektrických výbojů na jeho směs skyslíkem,při čemž vznikajíoxidy dusíkua ty se rozpouští ve vodě za vznikukyseliny dusičné). Plyn, který v nádobě zůstal, je atmosférický argon, který obsahuje pouze další vzácné plyny.

Objev argonu je oficiálně připisovánlordu RayleighoviaWilliamu Ramsayoviroku1894,kteří prvek objevili stejným způsobem jakoHenry CavendishaJoseph Priestleya pomocí zkoumání spektrálních čar došli k názoru, že se jedná o nový prvek a pojmenovali ho podle jeho netečnosti argon – líný.

Výskyt a získávání

[editovat|editovat zdroj]

Argon je hojně zastoupen v zemské atmosféře. Tvoří přibližně její 1 % (ve 100 l vzduchu je 934 ml argonu) a je proto poměrně snadno získávánfrakční destilacízkapalněného vzduchu. Atmosférický argon lze získat způsobem popsaným v historickém vývoji nebo frakční adsorpcí naaktivní uhlípři teplotě kapalnéhovzduchu.

Argonovávýbojka
  • Inertních vlastností argonu se využívá především přisvařováníkovů, kde tvoří ochrannou atmosféru kolem roztaveného kovu a zabraňuje vznikuoxidůanitridůa tím zhoršování mechanických vlastností svaru.
  • V metalurgii se ochranná atmosféra argonu nasazuje při tavení slitinhliníku,titanu,mědi,platinových kovů a dalších.
  • Růst krystalů superčistéhokřemíkuagermaniapro výrobu polovodičových součástek pro výpočetní techniku se uskutečňuje v atmosféře velmi čistého argonu.
  • Argon se ve směsi s dusíkem používá jako ochranná atmosféra žárovek a jako prostředí pro uchovávání potravin. V této směsi se také používá k plnění sáčků (například brambůrků), které jsou takto ochráněny před zvlhnutím a před rozmačkáním.
  • Čistého argonu se používá ve výbojkách, elektrických obloucích a doutnavých trubicích, kde podle koncentrace dokáže vytvořit červenou, fialovou, modrou a bílou barvu.
  • Výrazný přínos proanalytickou chemiiznamenal objev a technické zvládnutí práce s dlouhodobě udržitelnýmplazmatem,indukčně vázaným plazmatem,označovaným obvykle zkratkouICP.Jako nejvhodnější médium pro přípravu tohoto plazmatu se ukázal právě čistý argon. Proudící plyn o průtoku 10 – 20 l/min je přitom ve speciálním hořáku buzen vysokofrekvenčním proudem o frekvenci řádově desítek MHz a příkonu 0,5 – 2 kWh. Tímto způsobem je možno udržet argonové plazma o teplotě 6 – 8000 K po téměř neomezenou dobu. V současné době se toto médium uplatňuje ve dvou analytických technikách:
  • ICP-OESnebolioptická emisní spektrometries indukčně vázaným plazmatem, která vychází ze skutečnosti, že při teplotě nad 6 000 K je vybuzena velká většina emisních čar ve spektrech prvků. Analyzovaný roztok je dávkován do plazmatu, kde se okamžitě odpaří a dojde kdisociacivšechchemických vazeb.Kvalitním monochromátorem jsou pak monitorovány úseky emisního spektra, ve kterých se nacházejí emisní linie analyzovaných prvků. Změřená intenzita emitovaného záření o vlnové délce emisní line je úměrná koncentraci měřeného prvku v roztoku.
  • ICP-MSnebolihmotnostní spektrometries indukčně vázaným plazmatem, kde se využívá faktu, že většina atomů, které se k plazmatu dostanou, je vysokou energií toho prostředí ionizována za vzniku iontů M+.Vzniklé ionty jsou poměrně komplikovaným systémem přechodových komor převedeny do prostředí o tlaku řádově 10−5Torr a dále do klasického kvadrupolového analyzátoru. Analyzátor provede několik set až několik tisíc skenů počtu iontů na zvolených hodnotách hmotností atomů a vyhodnotí obsahy prvků v měřeném roztoku na základě získané intenzity signálu.
  1. abArgon.pubchem.ncbi.nlm.nih.gov[online]. PubChem [cit. 2021-05-24].Dostupné online.(anglicky)
  2. RÄSÄNEN, Markku; KHRIACHTCHEV, Leonid; PETTERSSON, Mika.http:// nature /doifinder/10.1038/35022551.Nature.Roč. 406, čís. 6798, s. 874–876.Dostupné online.DOI10.1038/35022551.
  • Cotton F.A., Wilkinson J.:Anorganická chemie, souborné zpracování pro pokročilé, ACADEMIA, Praha 1973
  • Holzbecher Z.:Analytická chemie, SNTL, Praha 1974
  • Dr. Heinrich Remy,Anorganická chemie1. díl, 1. vydání 1961
  • N. N. Greenwood – A. Earnshaw,Chemie prvků1. díl, 1. vydání 1993ISBN80-85427-38-9

Externí odkazy

[editovat|editovat zdroj]