Mit demgeometrischenBegriffSymmetrie(altgriechischσυμμετρίαsymmetria„Ebenmaß, Gleichmaß “, ausσύνsyn„zusammen “undμέτρονmetron„Maß “) bezeichnet man die Eigenschaft, dass ein geometrisches Objekt durchBewegungenauf sich selbstabgebildetwerden kann, also nach der Abbildung unverändert erscheint. Eine Umwandlung, die ein Objekt auf sich selbst abbildet, heißtSymmetrieabbildungoderSymmetrieoperation.

Symmetrie und Asymmetrie
Symmetrie in derArchitektur
Symmetrie in derBiologie
Leonardo da Vincisvitruvianischer Mensch
Narziss,ein schöner Jüngling, verliebte sich in sein eigenes Spiegelbild
(Caravaggio,1598/99,Galleria Nazionale d’Arte Antica,Rom)

Manchmal werden auch zwei (oder mehr) verschiedene geometrische Objekte alszueinander symmetrischbezeichnet, wenn sie, zusammen betrachtet, eine symmetrische Figur bilden.

Abhängig von der Zahl der betrachteten Dimensionen gibt es folgende unterschiedliche Symmetrien:

Symmetrien im Eindimensionalen

Bearbeiten

Im Eindimensionalen, also auf einer Geraden, gibt es die Symmetrie zu einem einzelnen Punkt (Spiegelung) sowie die Symmetrie derTranslation(Verschiebung). Der Symmetrieaspekt ist in diesem eingeschränkten Bereich allerdings relativ uninteressant. Aber schon eine Dimension höher, also in der Ebene, tritt Symmetrie in deutlich vielfältigerer Weise in Erscheinung.

Symmetrien im Zweidimensionalen

Bearbeiten

Im Zweidimensionalen muss zwischenPunkt-undAchsensymmetrieunterschieden werden. Daneben treten auch hier Translationssymmetrien auf, aber auch andere Symmetrieformen, die es im Eindimensionalen nicht geben kann.

Rotationssymmetrie / Drehsymmetrie

Bearbeiten
Vier reguläre Polygone und zwei weitere geometrische Figuren mit den Kennzahlen ihrer Rotationssymmetrie, auch Drehsymmetrie genannt (n=1 bedeutet: ohne Drehsymmetrie)

Eine zweidimensionalegeometrische Figurbesitzt dann die Eigenschaft,rotationssymmetrischzu sein, wenn die Figur einen zentralen Punkt besitzt, und die Figur auf sich selbst abgebildet wird, wenn man sie um diesen Punkt dreht. EinKreisoder einKreisringsind rotationssymmetrisch im engeren Sinne. Eine Drehung um jeden beliebigen Winkel bildet sie auf sich selbst ab.

Rotationssymmetrisch (oder auch drehsymmetrisch[1]) wird eine Figur auch dann genannt, wenn sie auf sich abgebildet werden kann, indem sie um einen festen Winkelmit 0°<< 360° um den zentralen Punkt gedreht wird.[2]Der Drehwinkel kann nur durch Division desvollen Winkelsdurch eine natürliche Zahl>1 entstehen, also.Diese Zahlist eine Kennzahl der Rotationssymmetrie und wird auch „Zähligkeit “genannt.[3]Entsprechend heißt diese Symmetrie auch-zählige oder-fache Rotationssymmetrie (analog zum Englischen „-fold rotational symmetry “) oder auch „-zählige Drehsymmetrie “.

Reguläre Polygonesind typische drehsymmetrische Figuren. Die rechts stehende Grafik zeigt die ersten vier, wobei die jeweils größtmögliche Kennzahlder Rotationssymmetrie mit eingezeichnet worden ist. Außerdem sind zwei weitere Figuren dargestellt, und zwar eine ohne und eine mit 2-facher Rotationssymmetrie. Im Trivialfallliegt keine Rotationssymmetrie/Drehsymmetrie vor und die Kennzahl 1 wird im mathematischen Kontext nicht verwendet, es sei denn, man möchte die trivialezyklische Gruppekennzeichnen, die nur aus deridentischen Abbildungbesteht. (Siehe dazu den später folgenden Abschnitt überSymmetriegruppen.)

Weitere Beispiele für 2-fache Rotationssymmetrie sind die weiter unten abgebildetenpunktsymmetrischenFiguren. Dass punktsymmetrische Objekte stets auch rotationssymmetrisch sind, gilt jedoch nur im Zweidimensionalen.

Symmetriegruppen

Bearbeiten

Um alle Operationen, die ein beliebiges geometrisches Objekt auf sich selbst abbilden, zu einem mathematischen Konstrukt zusammenzufassen, spricht man von sogen.Symmetriegruppen.Die einzelnen Operationen, also die Elemente dieser Gruppen, zu denen immer auch die identische Abbildung gehört, heißenSymmetrieelemente.DieSchoenflies-Symboliklegt für die Symmetriegruppen der-fachen Rotationssymmetrie das Symbolfest.

Spiegelsymmetrie / Achsensymmetrie

Bearbeiten
Spiegelsymmetrische Objekte in der Ebene
Alle Symmetrieelemente der obigen Polygone, einschließlich ihrer Spiegelsymmetriegeraden

DieSpiegelsymmetrieist eine Form der Symmetrie, die bei Objekten auftritt, die senkrecht zu einerSymmetrieachsegespiegeltsind (siehe Zeichnung rechts).[4]Im Zweidimensionalen ist sie gleichbedeutend mitaxialer SymmetrieoderAchsensymmetrie.Man spricht hier auch von einerSpiegelsymmetriegeraden.FürjedeSpiegelsymmetrie gilt:

  1. Figur und Bildfigur sind deckungsgleich zueinander.
  2. Strecke und Bildstrecke sind gleich lang.
  3. Winkel und Bildwinkel sind gleich groß.
  4. Figur und Bildfigur haben verschiedenen Umlaufsinn, sofern in der Figur ein Umlaufssinn definiert ist.

Beispiele

Bearbeiten
  • Dreieckekönnen eine oder drei Spiegelsymmetrieachsen haben: Eingleichschenkliges Dreieckist achsensymmetrisch zur Mittelsenkrechten der Basis.Homogenegleichseitige Dreieckehaben drei Spiegelsymmetrieachsen, wie die nebenstehende Grafik zeigt. Die Tatsache, dass bei diesen farbig dargestellten Polygonen die Zahl der Symmetrieachsen mit der oben genannten Zähligkeit für die Drehsymmetrie jeweils übereinstimmt, gilt nicht allgemein, denn es gibt viele drehsymmetrische Objekte, die keine Spiegelsymmetrie aufweisen, beispielsweise die weiter unten abgebildeten punktsymmetrischen Formen.
  • Viereckekönnen eine, zwei oder sogar vier Spiegelsymmetrieachsen besitzen:
    • Mindestens eine Spiegelsymmetrieachse habengleichschenklige Trapeze(durch die Mittelpunkte der parallelen Seiten) undDrachenvierecke(entlang einer Diagonale).
    • Mindestens zwei Spiegelsymmetrieachsen liegen vor beimRechteck(die Mittelsenkrechten von gegenüber liegenden Seiten) und bei derRaute(beide Diagonalen).
    • Das homogeneQuadratschließlich ist Rechteck und Raute zugleich und weist vier Spiegelsymmetrieachsen auf. Ist es „gefüllt “, kann sich die Anzahl reduzieren, wie die nebenstehende Grafik ebenfalls zeigt.
  • KreiseundKreisringeweisen sogar unendlich viele Symmetrieachsen auf, da sie zu jeder Achse durch den Mittelpunkt symmetrisch sind.
  • Eine weitere Figur mit unendlich vielen Symmetrieachsen ist dieGerade.Da sie unendlich lang ist, ist sie symmetrisch zu jeder zu ihr senkrechten Achse sowie der auf ihr selbst liegenden Achse.

Achsensymmetrie von Funktionsgraphen

Bearbeiten
Achsensymmetrischer Funktionsgraph

Eine vor allem in der Schulmathematik beliebte Aufgabenstellung besteht darin, für denGrapheneinerFunktiondie Achsensymmetrie nachzuweisen. Dieser Nachweis ist besonders einfach im Falle der Symmetrie dery-Achse des (kartesischen)Koordinatensystems. Eine Funktion ist achsensymmetrisch zury-Achse, wenn gilt:

Ist sie für alle x gültig, liegt Achsensymmetrie vor, das heißt f ist einegerade Funktion.

Diese Bedingung läuft darauf hinaus, dass die Funktionswerte für die entgegengesetzt gleichen Argumenteundübereinstimmen müssen.

Allgemeiner gilt: Der Graph einer Funktionfist genau dann achsensymmetrisch zur Geraden mit der Gleichung,wenn die folgende Bedingung für beliebige Werte vonxrichtig ist:

Durch Substitution vonmiterhält man die äquivalente Bedingung:

Symmetrien lateinischer Großbuchstaben

Bearbeiten
Symmetrien lateinischer Großbuchstaben

In der AbbildungSymmetrien lateinischer Großbuchstabensind die 26 Buchstaben nach ihren geometrischen Symmetrieeigenschaften in fünf Gruppen unterteilt. Die Buchstaben FGJLPQR besitzen keine Symmetrie. NSZ sind zweizählig drehsymmetrisch. AMTUVWY sind zu einer vertikalen und BCDEK zu einer horizontalen Spiegelgeraden symmetrisch. Die höchste Symmetrie mit vier Symmetrieelementen weisen die Buchstaben HIOX auf, die sowohl zweizählig drehsymmetrisch sind, als auch jeweils eine horizontale und eine vertikale Spiegelgerade besitzen.

Die Symmetrieeigenschaften von Buchstaben ist hierbei so zu verstehen, dass sie nicht zwangsläufig für jeden Schrifttyp auftreten. So ist beispielsweise das B in vielen Schriftarten nicht spiegelsymmetrisch (etwa als), in der hier gewählten Abbildung aber sehr wohl. Generell kann man festhalten, dass bei Kursivschrift sämtliche Spiegelsymmetrien der Buchstaben verloren gehen, die Punktsymmetrien jedoch erhalten bleiben. (Beim O könnte man sich einen speziellen Schrifttyp vorstellen, der den Buchstaben als exakten Kreisring darstellt. In diesem Sonderfall wäre das O sogar rotationssymmetrisch im engeren Sinne und besäße unendlich viele Spiegelgeraden.)

Geometrische Symmetrie gibt es auch bei einigen Wörtern. DieInterjektionOHO zum Beispiel hat vier Symmetrieelemente, OTTO oder der MarkennameMAOAMhaben eine senkrechte und BOB eine waagerechte Spiegelgerade. Diese Wörter sind außerdemWortpalindrome.BOXHIEBE und HOCHBOCKE sind weitere Beispiele für horizontal spiegelsymmetrische Wörter in den dafür passenden Schrifttypen.

Punktsymmetrie

Bearbeiten
Punktsymmetrische Objekte in der Ebene

Ein geometrisches Objekt (z. B. ein Viereck) heißt (in sich)punktsymmetrischoderzentralsymmetrisch,[4]wenn es einePunktspiegelunggibt, die dieses Objekt auf sichabbildet.Der Punkt, an dem die Spiegelung erfolgt, heißtSymmetriezentrum.Im Zweidimensionalen ist die Punktsymmetrie dasselbe wie eine 2-zählige Drehsymmetrie.

Beispiele

Bearbeiten
  • Bei einemViereckliegt Punktsymmetrie (in sich) genau dann vor, wenn es sich um einParallelogrammhandelt. Das Symmetriezentrum ist in diesem Fall der Schnittpunkt seiner Diagonalen. Als Sonderfälle des Parallelogramms sind auchRechteck,RauteundQuadratpunktsymmetrisch.
  • JederKreisist (in sich) punktsymmetrisch zu seinem Mittelpunkt.
  • Zwei Kreise mit gleichem Radius sind zueinander punktsymmetrisch. Das Symmetriezentrum ist der Mittelpunkt der Verbindungsstrecke zwischen den beiden Kreismittelpunkten. Bei der Punktsymmetrie sind zueinander symmetrische Strecken immer gleich lang.

Punktsymmetrie von Funktionsgraphen

Bearbeiten
Punktsymmetrischer Funktionsgraph

Eine vor allem in der Schulmathematik häufige Aufgabenstellung besteht darin nachzuweisen, dass derGrapheiner gegebenenFunktionpunktsymmetrisch ist. Dieser Nachweis kann mit der folgenden Formel geführt werden:

.

Ist diese Gleichung für allexerfüllt, liegt Punktsymmetrie zum Punkt (a,b) vor. Im Spezialfall von Punktsymmetrie um dem Ursprung (0,0) vereinfacht sich diese Gleichung zu:

.

Ist sie für allexgültig, dann liegt Punktsymmetrie in Bezug auf den Koordinatenursprung vor.

Translationssymmetrie

Bearbeiten
Translationssymmetrisches Gitter

Figuren, die durch eine Verschiebung oder Translation (die nicht die Identität ist) in sich selbst überführt werden, haben eineTranslationssymmetrie.Sie werden auch alsperiodischbezeichnet.

  • Figuren, die translationssymmetrisch sind, müssen zwangsläufig unbeschränkt sein. In Anwendungen außerhalb der Mathematik ist dies praktisch nie gegeben, daher bezeichnet man dort auch beschränkte Teilmengen von periodischen Mengen (Gitter,Kristallstrukturu. Ä.) als periodisch.
  • Eine Funktionist translationsinvariant, wenn es einen Vektorgibt mitfür alle.
  • Die Schaubilder periodischer reeller Funktionen wie derSinus-Funktion weisen eine Translationssymmetrie in einer Richtung auf.

In einem Gitter mit den Basisvektorenkann durch den Translationsvektorjeder Punkt durch ganzzahlige Werte vonerreicht werden. Der Winkel zwischenist dabei beliebig. Die Basisvektoren sind ebenso Transaltionsvektoren und spannen zusammen die sogenannteEinheitszelleauf.[5]

Skalensymmetrie

Bearbeiten

In manchen mathematischen und physikalischen Zusammenhängen wird die Unveränderbarkeit eines Objekts unter Vergrößerung oder Verkleinerung als Skalensymmetrie oderSkaleninvarianzbezeichnet. Sehr deutlich wird dieses Phänomen bei den sogenanntenFraktalen.

Farbtauschsymmetrie

Bearbeiten
Beispiele farbtauschsymmetrischer Paare
Beispiele klassisch-symmetrischer und autofarbtauschsymmetrischer Figuren

Eine weitere geometrische Symmetrie ist die Farbtauschsymmetrie. Man kann Drehungen und Spiegelungen mit einem Farbtausch kombinieren. Wie zuvor ausgeführt können zwei unterschiedliche Figuren zueinander symmetrisch sein. Symmetrie ist in diesem Fall eine Relation von zwei Objekten. Das gilt auch für die Farbtauschsymmetrie. Besitzt dagegen eine einzelne Figur Farbtauschsymmetrien, so ist sie autofarbtauschsymmetrisch. Autofarbtauschsymmetrisch ist eine Figur, die nach Drehungen und/oder Spiegelungen und einem anschließenden Farbtausch (oder umgekehrt) wieder genau so ausschaut wie vorher.[6]

Die Grafik „Beispiele farbtauschsymmetrischer Paare “zeigt jeweils zwei farbtauschsymmetrische Figuren. Die „klassischen “Symmetrien, Zähligkeit und Spiegelsymmetriegeraden, sind, so vorhanden, in die Figuren eingezeichnet. Die Art und Anzahl der Symmetrien sind bei einem Paar farbtauschsymmetrischer Figuren gleich. Nur das in der Grafik unterste Paar besitzt keine solche Symmetrien. Autofarbtauschsymmetrisch ist keine dieser Figuren. Als „Positive “und „Negative “sollte man die beiden Figuren eines Paars nicht bezeichnen, da diese Termini durch dieFotografieanderweitig belegt sind. Auch mitKomplementärfarbenhat der Farbtausch nichts zu tun.

Im einfachen Fall einer zweifarbigen Figur, und auf diese wollen wir uns hier beschränken, gibt es zwei Voraussetzungen, dass sie überhaupt autofarbtauschsymmetrisch sein kann. Entfernt man die Farben muss die Figur der Umrisse zum einen symmetrisch sein. Zum anderen müssen die Teilbereiche, die die unterschiedlichen Farben einnehmen,kongruentund damit flächengleich sein.

Die Grafik „Beispiele klassisch-symmetrischer und autofarbtauschsymmetrischer Figuren “zeigt drei Säulen von 7 Figuren, die entstehen, wenn vier Quadrate des kleinen Quadrats oben zu einem größeren Quadrat zusammengefügt und dabei speziell gedreht werden. Das trifft auch auf die Figuren der ersten Grafik zu. Für jede Figur sind ihre Symmetrieelemente, die Zähligkeit bei Rotationssymmetrie und die Spiegelsymmetriegeraden, eingezeichnet.

Die erste und zweite Säule zeigen die Umrisse der Farbflächen bzw. die Farbflächen und deren „klassische “Symmetrien. Die Zähligkeit ist mit einer schwarzen 4 bzw. 2 markiert, die Spiegelsymmetriegeraden haben die Farbe blau. Die beiden unteren Figuren und die sechste Figur (von unten gezählt) der mittleren Säule besitzen keine „klassischen “Symmetrien, aber Farbtauschsymmetrien.

In die Figuren der dritten Säule sind die Farbtauschsymmetrien eingezeichnet. Jede Symmetrieoperation entsteht aus zwei Operationen, der Drehung bzw. Spiegelung und gleichzeitig aus einem Austausch der Farben. Die Zähligkeit ist mit einer weißen 4 bzw. 2 markiert, die Farbtauschspiegelsymmetriegeraden haben die Farbe grün. Wie man sieht, verteilen sich die Symmetrien der Umrissfiguren auf „klassische “und Farbtauschsymmetrien.

Symmetrien im Dreidimensionalen

Bearbeiten
Nur die mediane Sagittalebene (Medianebene) des Körpers der Bilateria ist eine Spiegelebene

In der Natur

Bearbeiten
Symmetrie derStachelhäuter(Pentamerie) am Beispiel desSeesterns:fünfzählige Drehachse und vertikale Spiegelebenen (PunktgruppeC5vnachSchoenflies)

DerKörperbauder weitaus meistenTierartensowie der Aufbau vielerPflanzenorganeist äußerlich annähernd spiegelsymmetrisch – in der Biologie alsbilateralsymmetrischbezeichnet – mit einer linken und einer rechten Hälfte. Die einzige Symmetrieebene (Monosymmetrie) ist die anatomischeMedianebene,d. h. die mediane (mittig gelegene) Sagittalebene; das ist jede Ebene durch den Körper, die sich von vorne nach hinten und von oben nach unten erstreckt. 95 Prozent aller Tierarten, darunter der Mensch, sindBilateria(„Zweiseitentiere “) mit der namensgebendenKörpersymmetrie(bei den übrigen, sehr ursprünglichen Tieren (z. B.Quallen) findet sich oft Rotationssymmetrie bzgl. einer Längsachse, ihre Körper ist somit ein angenäherterRotationskörper). Aufgrund der Monosymmetrie der Bilateria lassen sich eindeutigeEbenen und Richtungendes Körpers definieren, was eine anatomische Beschreibung vereinfacht. Doch die Symmetrie des Körpers ist nicht vollkommen, so sind viele einfach vorkommende (unpaare)innere Organe(z. B. Herz) von der Spiegelsymmetrie ausgenommen. Auch alle symmetrisch ausgebildeten Körperteile, beispielsweise beim MenschenAugen,Ohren,Arme,Beine,Brüsteusw., weisen zueinander jeweils geringfügige Abweichungen in Lage, Form und Größe auf.

In der Zoologie wird die innerhalb derBilateriaeinzigartige fünfstrahligeRadiärsymmetrieder Stachelhäuter alsPentameriebezeichnet (d. h. beimSeesternverlaufen fünf Symmetrieebenen durch die zentrale Drehachse). In der Mathematik kann man die Symmetrieeigenschaften des Seesterns durch eineDrehgruppebeschreiben. (DieLarvendes Seesterns sind noch zweiseitig symmetrisch, wie die meisten anderen Tiere der Gruppe auch. Erst während derMetamorphoseentwickelt sich die Pentamerie.)

Ohne eine Symmetrie, d. h.asymmetrisch,sind dieGewebelosen(SchwämmeundPlacozoa).

Entsprechungen zu zweidimensionalen Symmetrieelementen

Bearbeiten

DerAchsensymmetrieim Zweidimensionalen entspricht dieSpiegelsymmetriebzgl. einer Ebene im Dreidimensionalen. DerPunktsymmetrieim Zweidimensionalen entspricht dieAchsensymmetrie(Drehsymmetrie um 180°). Daneben gibt es noch diePunkt-/ Zentralsymmetrieim Raum und wie in der EbeneTranslationssymmetrien.

Rotationssymmetrie/ Drehsymmetrie/ Zylindersymmetrie

Bearbeiten
Reguläre Prismen mit Rotationsachsen und deren Zähligkeiten (n=1 bedeutet: ohne Drehsymmetrie)

Dreidimensionale Objekte sind rotationssymmetrisch, wenn es eine Achse gibt, für die Drehungen um beliebige Winkel das Objekt auf sich selbst abbilden. Die so definierte Rotationssymmetrie wird alsZylindersymmetriebezeichnet. Die Achse ist eine Symmetrieachse des Objekts bezüglich Rotation. Dreidimensionale geometrische Objekte mit dieser Eigenschaft nennt manRotationskörper.

Analog zum Zweidimensionalen wird der Begriff der Rotations- oder Drehsymmetrie auch angewendet, wenn der Körper durch Drehung um gewisse Winkel um eine Achse auf sich selbst abgebildet werden kann. Als Beispiele für rotationssymmetrische 3D-Objekte sind in der nebenstehenden GrafikPrismenperspektivisch dargestellt, die entstehen, wenn die 2D-Polygone der obigen GrafikVier reguläre Polygone und zwei weitere geometrische Figuren mit den Kennzahlen ihrer Rotationssymmetrielängs einer senkrecht zur Figur liegenden Geraden im Raum verschoben werden. Bei dieser Vorgehensweise spricht man auch von einerExtrusiondes Polygons. Es entstehen gerade Prismen, speziellesPolyeder,die in diesem Fall, wenn die gegebenen Polygone reguläre Polygone sind, reguläre Prismen genannt werden.

Das Symmetriezentrum eines 2D-Objekts wird durch die Extrusion zur Rotationsachse mit einer Pfeilspitze, durch die festgelegt werden kann, ob der Drehwinkel positiv oder negativ zu zählen ist (vgl.Korkenzieherregel). Die dargestellten Symmetrien gehören zu denzyklischen Gruppenbisund sindUntergruppender jeweils vollen Symmetriegruppen der Prismen. Es ist zu beachten, dass diese 3D-Objekte weitere Rotations- und Spiegelsymmetrien besitzen. Stellvertretend für die sechs abgebildeten regulären Prismen werden im folgenden AbschnittalleRotationssymmetrien eines homogenen Würfels betrachtet.

Drehsymmetrien eines Würfels

Ein homogener Würfel besitzt insgesamt 13 Drehachsen (Achsen der Rotationssymmetrie), wie in der nebenstehenden Grafik dargestellt:

  • 3 die durch die Mittelpunkte gegenüberliegender Flächen,
  • 4 die durch gegenüberliegende Ecken und
  • 6 die durch die Mittelpunkte gegenüberliegender Kanten verlaufen.

Zählt man die Symmetrieelemente der Rotationssymmetrie des Würfels, so sind es: Dasneutrale Element,je 3 für 4-zählige, je 2 für 3-zählige und je eines für 2-zählige Rotationsachsen. Das sind insgesamtSymmetrieelemente.

Diese 24 Elemente bilden zusammen dieWürfel-Drehgruppe.Würfel und reguläresOktaedersinddualePlatonische Körperund besitzen die gleichen Symmetrien. Deshalb werden die Würfel-Drehgruppe und die Oktaeder-Drehgruppe im ArtikelOktaedergruppegemeinsam abgehandelt. Kombiniert man die Würfel-Drehgruppe mit derPunktspiegelungam Mittelpunkt des Würfels, so ergeben sichElemente dervollen Symmetriegruppedes Würfels (s. u.).

Spiegelsymmetrie

Bearbeiten
Piazza del Popolo mit den beiden (näherungsweise) spiegelsymmetrischen KirchenSanta Maria di Monte SantoundSanta Maria dei Miracoli(und demObelisco Flaminio)
Vier Spiegelebenen von neun insgesamt und eine von 13 Rotationsachsen eines homogenen Würfels

Spiegelsymmetriewird in zwei Bedeutungen verwendet:

  • EinKörper besitzt Spiegelsymmetrie, wenn es eine Ebene gibt und die Spiegelung an dieser Ebene eine Symmetrieoperation des betrachteten Körpers ist. Das betrachtete Objekt ist nach der Spiegelung also deckungsgleich mit sich selber. DieSpiegelsymmetrieebenewird auch einfach alsSpiegelebene[7]bezeichnet. In dieser Bedeutung ist die Spiegelsymmetrie einAutomorphismus.In der Mathematik wird alsAutomorphismuseine Abbildung einesmathematischen Objektsauf sich selbst bezeichnet, bei der Objekt und abgebildetes Objekt nicht unterscheidbar sind.[8]
  • ZweiKörper nennt manzueinander spiegelsymmetrisch,wenn sie sich nur durchSpiegelungan einer Ebene unterscheiden. Umgangssprachlich spricht man von einerspiegelverkehrtenKopie (oder einemspiegelverkehrtenBild). Auf die Lage der beiden Körper im Raum kommt es dabei nicht an. Es kann also sein, dass zunächst eineVerschiebungund eineDrehungerforderlich sind, bevor eine gemeinsame Spiegelebene gefunden werden kann. Die beiden KirchenSanta Maria di Monte SantoundSanta Maria dei Miracolian derPiazza del PopoloinRomsind (näherungsweise) spiegelsymmetrisch und stehen einander gegenüber, so dass eine Spiegelung möglicherweise ohne Verschiebung möglich wäre. Die Kirchen wären dann auchspiegelsymmetrischin der oben beschriebenen, ersten Bedeutung des Begriffs. Ein weiteres klassisches Beispiel zweier spiegelsymmetrischer Gebäude sind die alsKing Charles CourtundQueen Anne Courtbezeichneten Gebäude der vonChristopher Wrenerbauten MarineakademieRoyal Naval CollegeinGreenwich.

Hochsymmetrische Objekte (wie einige der Prismen in der nebenstehenden Grafik) können sehr viele Spiegelebenen besitzen, die sich alle in einem Punkt schneiden. Eine Kugel hat unendlich viele Spiegelebenen. In der Grafik rechts unten sind vier von neun Spiegelebenen und eine der 13 Rotationsachsen eines homogenen Würfels dargestellt. Die Spiegelebenen schneiden sich in der 4-zähligen Rotationsachse. Die dargestellte Symmetrie ist vom Typ einerDiedergruppeund ist eineUntergruppederWürfelgruppe.Die 48 Symmetrieelemente der Würfelgruppe insgesamt unterteilen den Würfel in 48 (äquivalente)Fundamentalbereiche.

Drehspiegelsymmetrie

Bearbeiten

Drehspiegelsymmetrieist die Symmetrie eines Körpers, die sich aus zwei Teiloperationen zusammensetzt. Die erste Teiloperation ist eine Drehung um eine Achse, die Drehspiegelachse, die zweite eine Spiegelung an einer Ebene rechtwinklig zur Drehachse, die Drehspiegelebene.[9]Diese Ebene geht durch das Symmetriezentrum, durch den Mittelpunkt des Körpers. Ist die Drehspiegelebene keine Spiegelsymmetrieebene des Körpers, so sind beide Teiloperationen für sich genommen keine Symmetrieoperationen, sondern nur ihre Kombination. Auf die Reihenfolge der Teiloperationen kommt es dabei nicht an. Wir können auch zuerst die Spiegelung und dann die Drehung ausführen.

Drehspiegelsymmetrien eines Würfels

Bearbeiten

DieDrehspiegelungvon Körpern auf sich selbst gehört zu den weniger bekannten, aber vielleicht interessantesten Symmetrieoperationen, die man leicht anhand von geeigneten Grafiken nachvollziehen kann. Die drei Grafiken zeigen einen Würfel und jeweils eine der Drehspiegelachsen und ihre zugehörigen Drehspiegelebenen. Um die Drehspiegelebenen von Spiegelsymmetrieebenen zu unterscheiden, werden sie als graue Kreisscheiben dargestellt, die projektiv als Ellipsen erscheinen. Für die Würfel der Grafiken wurde der Zeichenmodushalbtransparentgewählt. Da die Drehspiegelachsen auch Drehachsen sind, werden sie in der Reihenfolge der obigen Grafik beiDrehsymmetrien eines Würfelsangeordnet.

Die erste der drei Grafiken zeigt eine der drei 4-zähligen Drehspiegelachsen und die zugehörige Drehspiegelebene. Die Wirkung der Drehspiegelung lässt sich nachvollziehen, wenn man die Bahn der mit einem weißen Punkt markierten Ecke verfolgt. Die Drehspiegelebene ist durch die Drehspiegelachse orientiert. Wir können deshalb sagen, der weiße Punkt liegtoberhalbder Drehspiegelebene. Nach der Drehung um 90° (rechte Handregel: Daumen in Richtung der Achse, Drehung in Richtung der anderen Finger) wird der Punkt zunächst auf die rechte obere Ecke und durch die Spiegelung auf die rechte untere Ecke abgebildet, die durch einen schwarzen Punkt markiert ist. Punkt und Bildpunkt sind durch einen Pfeil verbunden. Die erneute Drehspiegelung um 90° führt zum rechten oberen schwarzen Punkt usw. Nach vierfacher Drehspiegelung ist der Ausgangspunkt wieder erreicht.

Die Bahn eines Punkts des Würfels in allgemeiner Lage ist ein räumlicher, geschlossener Zickzack-Pfad um die Drehspiegelebene. Liegt der Punkt, den wir verfolgen, auf der Drehspiegelebene, ist seine Bahn ein Quadrat. Liegt er auf der Drehspiegelachse, springt er auf der Drehspiegelachse, von der Drehspiegelebene gespiegelt, viermal hin und her. Das Symmetriezentrum, der Schwerpunkt des Würfels, wird stets auf sich selbst abgebildet. Man beachte, dass die Drehspiegelebene in diesem Fall auch eine Spiegelsymmetrieebene des Würfels ist.

Interessant ist der in der zweiten Grafik dargestellte Fall einer von vier 6-zähligen Drehspiegelachsen. Interessant einerseits deshalb, weil die Drehspiegelebene offensichtlich keine Spiegelsymmetrieebene des Würfels ist. Andererseits, weil die 3-zählige Drehachse zur 6-zähligen Drehspiegelachse wird. Dass sie 6-zählig ist, erkennt man wiederum, wenn man die Bahn verfolgt, die ein Punkt des Würfels, zum Beispiel in der Grafik die Bahn der mit einem weißen Punkt markierten Ecke verfolgt. Durch die erste Teiloperation, eine Drehung um 60° um die Drehspiegelachse, wird der weiße Punkt auf einen Punkt abgebildet, der kein Eckpunkt ist. Die zweite Teiloperation, die Spiegelung an der Drehspiegelebene, führt zum ersten Bildpunkt, der als schwarzer Punkt markiert ist und der oberhalb der Drehspiegelebene liegt (schwarzer Punkt rechts oben). Wieder sind Punkt und Bildpunkt mit einem Pfeil verbunden. Wendet man nun die Drehspiegelung um 60° erneut auf den ersten Bildpunkt an, führt das zum zweiten schwarzen Bildpunkt rechts unten usw. Nach 6 Drehspiegelungen um jeweils 60° ist der weiße Ausgangspunkt wieder erreicht. Liegt der Punkt, den wir verfolgen, auf der Drehspiegelebene, ist seine Bahn einreguläres Sechseck.

Vermutlich unerwartet ist die Wirkung der 2-zähligen Drehspiegelung, der die dritte Grafik gewidmet ist. Dargestellt ist eine der 2-zähligen Drehspiegelachsen, von denen wir, im Analogieschluss von den Drehachsen ausgehend, sechs erwarten. Führen wir die 2-zählige Drehspiegelung nach dem oben skizzierten Vorgehen aus, stellen wir fest, dass jeder Punkt des Würfels auf seinen „Antipoden“abgebildet wird, auf den Punkt also, der auf der gegenüberliegenden Seite des Würfels liegt. Punkt und Bildpunkt liegen gemeinsam mit dem Symmetriezentrum auf einer Geraden und haben den gleichen Abstand vom Symmetriezentrum. In der Grafik sind in diesem Fall vier weiße Punkte markiert und ihre Bildpunkte als vier schwarze. Alle vier Verbindungsvektoren zwischen Punkt und Bildpunkt schneiden sich im Symmetriezentrum.

Interessant ist auch der Fakt, dass die Drehspiegelungen um alle sechs möglichen 2-zähligen Drehspiegelachsen zum gleichen Symmetrietyp führen. Dieser Symmetrietyp, die Punktspiegelung am Symmetriezentrum, wird in derGruppentheorieund derKristallographieInversiongenannt.[10]Man kann daher in Symmetriebetrachtungen alle 2-zähligen Drehspiegelachsen weglassen und sie durch eine einzige Operation, die Inversion, ersetzen.[11]

Eine Drehspiegelung lässt keinen Punkt des Würfels, also keine Ecke, aber auch keine Fläche oder Kante an ihrem ursprünglichen Platz. Einziger Fixpunkt einer Drehspiegelung ist das Symmetriezentrum, der Mittelpunkt des Würfels, worauf bereits hingewiesen wurde.

Eine von drei 4-zähligen Drehspiegelachsen mit Drehspiegelebene eines homogenen, regulären Tetraeders

Ein homogenes, reguläresTetraederbesitzt ebenfalls die 4-zählige Drehspiegelsymmetrie eines homogenen Würfels, wie die Grafik am Beispiel einer Achse zeigt. Wie man aus der Grafik erkennt, ist, im Unterschied zum Würfel, die Drehspiegelebene keine Spiegelsymmetrieebene des Tetraeders. In die Grafik ist auch ein Drahtgittermodell eines umhüllenden Würfels eingezeichnet.

Unterschiede zwischen Drehspiegelung und Drehung

Bearbeiten

Die Eigenschaften der Drehspiegelungen unterscheiden sich von denen der Drehungen:

  • Drehachsen eines Körpers können auch Drehspiegelachsen des Körpers sein, aber nicht jede Drehachse ist zwangsläufig eine Drehspiegelachse. Beim Tetraeder zum Beispiel sind dessen 3-zählige Drehachsen keine Drehspiegelachsen.
  • Das Produkt der Symmetrieoperation einer Drehung mit sich selbst ist stets ein neues Symmetrieelement der Gruppe. Bei einer n-zähligen Drehachse geht die Potenz bis zu (n-1). Das Produkt der Symmetrieoperation einer Drehspiegelachse mit sich selbst istkeinneues Symmetrieelement der Gruppe, sondern eine (einfache) Drehung infolge der zweifachen Spiegelung.
  • Die Zähligkeiten einer Drehachse und einer gleichgerichteten Drehspiegelachse können gleich sein (beide sind 4-zählig in der ersten Grafik zum Würfel) oder sie können sich unterscheiden (3-zählig bei Drehsymmetrie und 6-zählig bei Drehspiegelsymmetrie in der zweiten Grafik).
  • Zu jeder Drehspiegelachse eines Würfels gehören zwei Symmetrieelemente pro Drehspiegelachse, unabhängig von ihrer Zähligkeit. Da der Würfel drei 4-zählige und vier 3-zählige Drehspiegelachsen besitzt, gibt esDrehspiegelelemente der Würfelgruppe im engeren Sinne. Hinzu kommteinePunktspiegelung aller 2-zähligen Drehspiegelachsen, die Inversion, so dass sich 15 Drehspiegelelemente insgesamt ergeben.

Wie eingangs erwähnt ist die Punktspiegelung im Zweidimensionalen gleichbedeutend mit einer Drehung um 180° um den Fixpunkt und somit kein eigenes Symmetrieelement.

Punktsymmetrie / Inversionssymmetrie

Bearbeiten
Wirkung der Punktspiegelung / Inversion für vier ausgewählte Ecken eines Würfels

Wie im vorangegangenen Abschnitt beschrieben, ist diePunktsymmetrieoderInversionssymmetriedie Symmetrie eines Körpers bezüglich eines Punkts, des Symmetriezentrums. Jeder Punkt tauscht mit dem Punkt, der auf der Geraden, die von diesem Punkt durch das Zentrum geht und auf der anderen Seite des Zentrums im gleichen Abstand liegt, seine Position. Es handelt sich um einePunktspiegelungdes Körpers auf sich selbst. Die Punktspiegelung lässt keinen Punkt des Körpers an seinem ursprünglichen Platz, mit Ausnahme des Symmetriezentrums, des Mittelpunkts des Körpers.

Die Grafik zeigt die Abbildung von vier ausgewählten Ecken (weiße Punkte) eines Würfels durch Inversion (schwarze Punkte). Umgekehrt werden alle schwarzen Punkte auf die weißen abgebildet. Die Grafik ist eine Wiederholung der dritten obigen Grafik (Ausgewählte Drehspiegelachsen...) ohne 2-zählige Drehspiegelachse und Drehspiegelebene.

Die homogenen Platonischen KörperWürfel,Oktaeder,DodekaederundIkosaedersind punktsymmetrisch. Der einfachste Platonische Körper dagegen, dasreguläre Tetraeder,ist es nicht.

Im Fall des Würfels hatten sich (einschließlich der Inversion) 15 Drehspiegelsymmetrien ergeben. Zusammen mit den 9 Spiegelebenen ergibt das 24 Symmetrieelemente, also genau so viele, wie es Elemente der Würfel-Drehgruppe gibt. Das ist kein Zufall, denn jedes Spiegel- oder Drehspiegelelement lässt sich als eine Kombination aus einer Drehung und einer Inversion interpretieren. In diesem Sinne besitzt die Inversion eines inversionssymmetrischen Körpers eine ähnlich herausgehobene Stellung wie das neutrale Element innerhalb einer Symmetriegruppe.

Kugelsymmetrie

Bearbeiten

Rotationssymmetrie um jede beliebige Achse durch denselben Punkt ist ein Spezialfall der Rotationssymmetrie und wird als Kugelsymmetrie bzw. Radialsymmetrie bezeichnet.Sternesind z. B. annähernd kugelsymmetrisch, da deren Eigenschaften (wie z. B. die Dichte) zwar nicht überall gleich sind, aber nur vom Abstand zum Mittelpunkt abhängen. Auch deren Schwerefelder sowie z. B. das elektrische Feld einer rotationssymmetrisch geladenen Kugel sind kugelsymmetrisch.

Kombinationen

Bearbeiten

Aus der Möglichkeit, Symmetrieoperationen zu kombinieren, lassen sich die symmetrischen Grundoperationen herleiten:

  1. Identität (Null-Operation, keine Veränderung)
  2. Rotation (Drehung)
  3. Rotation –Inversion(Drehspiegelung)
  4. Translation(Verschiebung)
  5. Gleitspiegelung
  6. Schraubung

Siehe auch

Bearbeiten

Literatur

Bearbeiten
Bearbeiten
Commons:Symmetrie– Sammlung von Bildern, Videos und Audiodateien
Wiktionary: Symmetrie– Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen

Einzelnachweise

Bearbeiten
  1. Drehsymmetrie.Abgerufen am 26. April 2023.
  2. Die Terminologie ist nicht immer einheitlich. Man nennt die Rotationssymmetrie um einen festen Winkel auchDrehsymmetrie,um sie von der Rotationssymmetrie zum Beispiel der eines Kreises zu unterscheiden.
  3. Kleber 2010, S. 52
  4. abMeyers großes Taschenlexikon in 24 Bänden.BI-Taschenbuchverlag 1992, Band 21, S. 258.
  5. Einführung in die Materialwissenschaft I.Abgerufen am 26. September 2020.
  6. Herbert Glaser:Ein Stufenmodell für das Lehren von Abbildungen und des Symmetriebegriffs.In:Der Mathematikunterricht.Band52,Nr.3,2006,S.15–24.
  7. Spiegelebene.In: Richard Lenk (Hrsg.):Physik.2. Auflage.Band2:Ma–Z.Brockhaus, Leipzig 1989,ISBN 3-325-00192-0,S.909(Seiten 601–1146, 48 Tafeln).
  8. Der nahe liegende BegriffAutospiegelsymmetrie,der diese Spiegelsymmetrie von der Spiegelsymmetrie in der ersten Bedeutung unterscheiden würde, ist nicht üblich (kein Treffer bei Google).
  9. Kleber 2010, S. 60 ff.
  10. Man beachte, dass der NameInversionauch für dieSpiegelung an einem Kreisbenutzt wird.
  11. Schoenfliesweist auf Seite 90 seiner Monographie darauf hin, dass man die zweizähligen Spiegelsymmetrieachsen, die erzweizählige Symmetrieaxen zweiter Artnennt, weglassen und nur von Inversion sprechen sollte: „Diejenige Operation, welche für die zweizählige Symmetrieaxe zweiter Art characteristisch ist, ist die Inversion, die Axe stellt daher dieselbe Symmetrieeigenschaft dar, wie ein Centrum der Symmetrie. Für ein Symmetriecentrum giebt es aber keinerlei ausgezeichnete Richtung mehr,jedezweizählige Axe zweiter Art ist ihm äquivalent. Aus diesem Grunde ist es angezeigt, die Axen zweiter Art ganz aus dem Spiele zu lassen; es könnte sich sonst leicht die irrthümliche Auffassung bilden, dass auch für sie die durch die Axe repräsentirte Richtung eine besondere Bedeutung für die bezügliche Symmetrieeigenschaft hat. “