Frequenzgang

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen

DerFrequenzgangist der Zusammenhang zwischen Ein- und Ausgangssignal eineslinearen zeitinvarianten Systems(LZI-System) bei einer sinusförmigen Anregung bezüglich der Amplitude und der Phase. Er ist daher einekomplexe FunktionderFrequenz.

Das Ausgangssignal hat wegen des linearen Verhaltens des Systems dieselbe Frequenz wie das Eingangssignal. Die beiden Signale unterscheiden sich jedoch in derAmplitudeund in derPhase.Das Verhältnis der Amplituden von Eingangssignal und Ausgangssignal in Abhängigkeit von der Frequenz ist derAmplitudengang,bisweilen auchBetragsfrequenzganggenannt. Der Unterschied der Phase zwischen Eingangssignal und Ausgangssignal in Abhängigkeit von der Frequenz ist derPhasengang.

Der Frequenzgang kann auch aus derFourier-TransformiertenderImpulsantwortdes Systems bestimmt werden.[1]

Der Frequenzgang beschreibt den Zusammenhang zwischensinusförmigenSchwingungen am Ein- und Ausgang eines Systems (Übertragungsgliedes) als Funktion der Frequenzfoder derKreisfrequenzω.

Das System hat dabei folgende Eigenschaften:

Frequenzantwort einesPT1-Gliedes:
Die Ausgangsamplitude ist bei höherer Frequenz kleiner.
Bode-Diagramm:
Amplituden- und Phasen-Frequenzgang eines passivenTiefpassesoderPT1-Gliedes
Ortskurveeines passivenTiefpassesoderPT1-Glieds

Ein solches System hat bei harmonischem Eingangssignal

ein harmonisches Ausgangssignal:

.

Auf Grund der Linearität wird die Kreisfrequenznicht beeinflusst. LediglichAmplitudeundPhasewerden verändert.

Der Amplituden-Frequenzgang ist das Verhältnis

.

Der Phasen-Frequenzgang ist die Phasendifferenz

.

Graphische Darstellung

[Bearbeiten|Quelltext bearbeiten]

Zur anschaulichen Darstellung des Frequenzgangs dient dasBode-Diagramm(siehe Abbildung). In je einem Graph ist der Amplituden-Frequenzgang und der Phasen-Frequenzgang dargestellt. Die Achsen sind mehrheitlich logarithmisch geteilt (außer der für die Phasenverschiebung), was denGebrauch des Diagrammserleichtert. So ist zum Beispiel die Multiplikation zweier Frequenzgänge eine einfache Streckenaddition, und die Inversion eines Frequenzgangs ergibt sich durch Spiegelung an derf- oderω-Achse im Diagramm.[2]

Eine alternative anschauliche Darstellung des Frequenzgangs ist seineOrtskurve.DiesesZeigerbildenthält im Gegensatz zum Bode-Diagramm beide Informationen: Die Zeigerlänge entspricht dem Amplitudenverhältnis, seinArgumentφist die Phasenverschiebung.

Diese Ortskurve wird auchNyquist-Diagrammgenannt. Mit der Vorstellung, dass in der (komplexen) Ebene lediglich die Spitzen eingefrorener Zeiger zur Ortskurve verbunden sind, kann der Frequenzgang ohne Kenntnis der komplexen Mathematik und der mathematischen Transformationen aus dem Zeit- in den Frequenzbereich anschaulich gemacht werden.

Fourier-Transformation

[Bearbeiten|Quelltext bearbeiten]

LZI-Systeme mit endlich vielen inneren Freiheitsgraden werden durch die lineareDifferentialgleichungn-ter Ordnung im Zeitbereich (Zeit als Variable) beschrieben:

.

Die Anwendung derFourier-Transformationauf die Differentialgleichung führt zum Frequenzgang als Bild-Funktion in der komplexen Zahlenebene.

Frequenzgangist der Quotient aus den Fouriertransformiertendes Ausgangs-Signals unddes Eingangs-Signals:

.

Fourier-Rücktransformierte des Frequenzganges ist dieGewichtsfunktionoder Impulsantwort:

.

Schreibweisen des Frequenzgangs:

  • mit Real- und Imaginärteil
.
  • mit Betrag und Phase
.
Betrag
Phase

Zusammenhang mit der Übertragungsfunktion

[Bearbeiten|Quelltext bearbeiten]

sieheHauptartikel:Übertragungsfunktion

Mitingeht die Laplace-Übertragungsfunktionin den Frequenzgangüber.

Der Frequenzgang beschreibt daher keine Übergangsvorgänge (Einschwingvorgänge durch Zeitkonstanten). Und er ist auch nicht geeignet zur Beschreibung von instabilen aufklingenden Systemen.

Die Laplace-Übertragungsfunktion ist in diesen Aspekten durch den zusätzlichen Parameterallgemeiner.

Experimentelle Bestimmung

[Bearbeiten|Quelltext bearbeiten]

Die Bedeutung des Frequenzgangs für LZI-Systeme beruht auf der Einfachheit seiner experimentellen Gewinnung. Dazu wird das System mit einemSignalgeneratormit verschiedenen Frequenzen angeregt und die Systemantwort gemessen.

Bei Systemen mit einem schnellen Einschwingverhalten nach einer (kleinen) Frequenzänderung kann die Messung mittels einesWobbelgeneratorserfolgen, wie zum Beispiel in derNachrichtentechnik.Der Wobbelgenerator ist ein spezieller Signalgenerator, der seine Ausgangs-Frequenz kontinuierlich ändert.

Frequenzgang-Bestimmung mit Signalgenerator und zeitsynchroner Messung

Falls jedoch nach jeder Frequenzanregung zunächst eine gewisse Zeit abgewartet werden muss, bis sich die Amplitude der Systemantwort nicht mehr ändert, dann ist der Prozess mit Hilfe eines Signalgenerators zeitaufwendiger.[3]

In diesem Fall ist es einfacher das System mit allen interessierenden Frequenzen gleichzeitig anzuregen und den Frequenzgang beispielsweise über die Messung derImpulsantwortzu bestimmen.

In jedem Fall benötigt die experimentelle Frequenzgang-Bestimmung eine zeitsynchrone Messung des Eingangssignalsund des Ausgangssignaldes Systems.

Wortbedeutung im weiteren Sinn

[Bearbeiten|Quelltext bearbeiten]

In einem allgemeineren Sinn kann mit „Frequenzgang “auch eine andere frequenzabhängige Eigenschaft eines physikalischen Systems gemeint sein, wie zum Beispiel die Leistungsaufnahme, die Temperatur oder die Strahlungsleistung als Funktion der Frequenz.[4][5]Gebräuchlicher als z. B. „Frequenzgang einer Leistung “ist allerdings die Ausdrucksweise „Frequenzabhängigkeit einer Leistung “. Einer Quelle zufolge bezeichnet „Frequenzgang “im Sprachgebrauch der Regelungstechniker auch das bekannteFrequenzspektrumvon speziellen nichtperiodischen Anregungssignalen.[6]

  1. Bernd Girod, Rudolf Rabenstein, Alexander Stenger:Einführung in die Systemtheorie.4. Auflage. Teubner, Wiesbaden 2007,ISBN 978-3-8351-0176-0.
  2. Winfried Oppelt:Kleines Handbuch technischer Regelvorgänge.Verlag Chemie, 1972,ISBN 3-527-25347-5,S. 60.
  3. Günther Schmidt:Grundlagen der Regelungstechnik.Springer Verlag, 1987,ISBN 3-540-17112-6
  4. Die Brockhaus Enzyklopädie-Online.Bibliographisches Institut & F. A. Brockhaus; abgerufen am 22. Juni 2010. Der einleitende Text definiert den Begriff Frequenzgang folgendermaßen: „Physik, Technik: allgemein der Verlauf einer physikalischen Größe als Funktion der Frequenz (der Kreisfrequenz ω), auch Bezeichnung für diese Funktion selbst; im engeren Sinn Bezeichnung für eine komplexe Funktion, die das Zeitverhalten zeitinvarianter linearer Übertragungsglieder der Nachrichten- oder Regelungstechnik kennzeichnet “
  5. Kurt Magnus, Karl Popp:Schwingungen – Eine Einführung in die physikalischen Grundlagen und die theoretische Behandlung von Schwingungsproblemen.Teubner,ISBN 3-519-52301-9,S. 30 (eingeschränkte Vorschauin der Google-Buchsuche).
  6. Kurt Reinschke:Lineare Regelungs- und Steuerungstheorie.Springer-Verlag, S. 44 (eingeschränkte Vorschauin der Google-Buchsuche)