Modus tollens

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen

Modus tollens(lateinischfür „Modus des Aufhebens “, wörtlich: „aufhebender Modus “), eigentlichModus tollendo tollens(in Abgrenzung zumModus ponendo tollens), ist eine Schlussfigur, die in etlichenKalkülender klassischenLogikalsSchlussregelverwendet wird. Er besagt, dass aus den Voraussetzungen „Wenn,dann.“und „Nicht.“auf „Nicht.“geschlossen werden kann.

Der lateinische NameModus tollendo tollens,„durch Aufheben aufhebende Schlussweise “, erklärt sich daraus, dass es sich um eine Schlussfigur (modus) handelt, die bei gegebener erster Prämisse,,durch das „Aufheben “(tollendo) des Satzes B, also durch das Setzen seiner Verneinung,,einen anderen Satz, nämlich,ebenfalls „aufhebt “(tollens), also zu seiner Verneinung,,führt. DerModus tollendo tollensist damit ein Gegenstück zumModus ponendo ponens.

Formen und Beispiel

[Bearbeiten|Quelltext bearbeiten]
Schema Beispiel
modus tollens
Wenn es geregnet hat, ist die Straße nass.
Die Straße ist nicht nass.
modus tollens Es hat nicht geregnet.

Obwohl derModus tollendo tollenseine Schlussregel, also einmetasprachlichesKonzept ist, wird die BezeichnungModus tollensgelegentlich auch fürobjektsprachlicheAusdrücke der folgenden Gestalt verwendet:

Aussagen dieser Form sind in den meisten aussagenlogischen Kalkülen Tautologien, d. h. immer wahr. Da aber Schlussregeln und Aussagen unterschiedliche Konzepte sind, ist es wissenschaftlich betrachtet nicht glücklich, die beiden Begriffe mit derselben Bezeichnung zu benennen. Generell ist die Vermischung von Objekt- und Metasprache problematisch.

Dielogische Äquivalenzder Aussagenundfolgt aus den Definitionen derSubjunktionund derNegation.

A B ¬B ¬A
f w f w w w w
f w w w f w w
w f f w w f f
w w w w f w f

Bedeutung desModus tollensfür eine Falsifikation

[Bearbeiten|Quelltext bearbeiten]

Nach demKritischen Rationalismusentspricht demModus (tollendo) tollenseine grundlegende Schlussweise derwissenschaftlichenForschung, nämlich dieFalsifikationeiner Annahme unter bestimmten Bedingungen. Dabei sei A eine hypothetisch angenommeneTheorie,und B einBeobachtungssatz,der zwingend aus der Theorie zu folgern wäre. Wissenschaftliche Experimente haben Bedeutung für die Aufgabe, durch Beobachtungen festzustellen, ob die Voraussage eines Beobachtungssatzes erfüllt wird beziehungsweise ob dessen Aussage wahr oder falsch ist. Ist B falsch, dann auch die zugrundeliegende Theorie, die damit als falsifiziert gilt.

In der Forschungspraxis sind die für ein derart naives Verständnis vorausgesetzten Bedingungen allerdings selten so gegeben, dass eine Theorie anhand einzelner Beobachtungsdaten verifiziert oder falsifiziert werden kann (sieheDuhem-Quine-These). Insbesondere ist oft unklar, wie ein Nichteintreten vorausgesagter Beobachtungsdaten zu interpretieren ist, da hierfür Verschiedenes in Frage kommen kann.

  • War die Hypothese falsch? War die abgeleitete Folgerung nicht zwingend? War der Beobachtungssatz nicht eindeutig formuliert? War die Beobachtungssituation ungeeignet?
  • War der Versuchsaufbau falsch gewählt? War eine Hilfsannahme unzutreffend? War das für die statistische Auswertung benutzte Modell unangemessen? Oder liegt es an Fehlern bei Erhebung und Dokumentation von Messdaten?

Duhemfasst die Problematik zu Beginn des 20. Jahrhunderts in der zugespitzten Formulierung zusammen: „The only thing the experiment teaches us is that among the propositions used to predict the phenomenon and to establish whether it would be produced, there is at least one error; but where the error lies is just what it does not tell us. “[1]

Denn wissenschaftliche Forschung geht schrittweise und arbeitsteilig vor sich. Daher sind viele empirische Prüfungen mit verschiedenen Annahmen A und statistischen Modellen S nötig, um Hypothesen H mit hoher Wahrscheinlichkeit zu falsifizieren. Hierfür können A, S und H beispielsweise unterschiedlichea-priori-Wahrscheinlichkeitenzugewiesen und nach empirischen Versuchen entsprechend angepasst werden (sieheBayessche Statistik).[2]

  1. Duhem, Pierre:The aim and structure of physical theory.Princeton University Press, New Jersey 1954,S.185.google book online
  2. Deborah Mayo:Statistical Inference as Severe Testing: How to Get Beyond the Statistics Wars.Cambridge University Press, Cambridge 2018,ISBN 978-1-107-05413-4,S.84f.,doi:10.1017/9781107286184(cambridge.org[abgerufen am 18. Dezember 2021]).