Mathematik
DieMathematik(bundesdeutsches Hochdeutsch:[ ], [ ];österreichisches Hochdeutsch:[ ];[1]vonaltgriechischμαθηματικὴ τέχνηmathēmatikē téchnē‚die Kunst desLernens‘) ist eineFormalwissenschaft,die aus der Untersuchung vongeometrischen Figurenund demRechnenmitZahlenentstand. FürMathematikgibt es keine allgemein anerkannteDefinition;heute wird sie üblicherweise als eine Wissenschaft beschrieben, die durchlogischeDefinitionen selbstgeschaffeneabstrakteStrukturenmittels derLogikauf ihre Eigenschaften undMusteruntersucht.
Geschichte
Die Mathematik ist eine der ältesten Wissenschaften. Ihre erste Blüte erlebte sie noch vor derAntikeinMesopotamien,IndienundChina,später in der Antike in Griechenland und imHellenismus.Von dort datiert die Orientierung an der Aufgabenstellung des „rein logischen Beweisens “und die ersteAxiomatisierung,nämlich dieeuklidische Geometrie.ImMittelalterüberlebte sie unabhängig voneinander im frühen Humanismus der Universitäten und in der arabischen Welt.
In der frühenNeuzeitführteFrançois VièteVariablen ein,René Descarteseröffnete durch die Verwendung vonKoordinateneinen rechnerischen Zugang zur Geometrie. Die Betrachtung von Änderungsraten (Fluxionen) sowie die Beschreibung von Tangenten und die Bestimmung von Flächeninhalten („Quadratur “) führten zurInfinitesimalrechnungvonGottfried Wilhelm LeibnizundIsaac Newton.Newtons Mechanikund seinGravitationsgesetzwaren auch in den folgenden Jahrhunderten eine Quelle richtungweisendermathematischerProbleme wie desDreikörperproblems.
Ein anderes Leitproblem der frühen Neuzeit war das Lösen zunehmend komplizierter werdender algebraischer Gleichungen. Zu dessen Behandlung entwickeltenNiels Henrik AbelundÉvariste Galoisden Begriff derGruppe,der Beziehungen zwischen Symmetrien eines Objektes beschreibt. Als weitere Vertiefung dieser Untersuchungen können die neuereAlgebraund insbesondere diealgebraische Geometrieangesehen werden.
Eine damals neue Idee im Briefwechsel zwischenBlaise PascalundPierre de Fermatim Jahr 1654 führte zur Lösung eines alten Problems, für das es schon andere, allerdings umstrittene Lösungsvorschläge gab. Der Briefwechsel wird als Geburt der klassischen Wahrscheinlichkeitsrechnung angesehen. Die neuen Ideen und Verfahren eroberten viele Bereiche. Aber über Jahrhunderte hinweg kam es zur Aufspaltung der klassischen Wahrscheinlichkeitstheorie in separate Schulen. Versuche, den Begriff „Wahrscheinlichkeit “explizit zu definieren, gelangen nur für Spezialfälle. Erst das Erscheinen vonAndrei KolmogorowsLehrbuchGrundbegriffe der Wahrscheinlichkeitsrechnungim Jahr 1933 schloss die Entwicklung der Fundamente moderner Wahrscheinlichkeitstheorie ab, siehe dazu auchGeschichte der Wahrscheinlichkeitsrechnung.
Im Laufe des 19. Jahrhunderts fand die Infinitesimalrechnung durch die Arbeiten vonAugustin-Louis CauchyundKarl Weierstraßihre heutigestrenge Form.Die vonGeorg Cantorgegen Ende des 19. Jahrhunderts entwickelteMengenlehreist aus der heutigen Mathematik ebenfalls nicht mehr wegzudenken, auch wenn sie durch die Paradoxien des naiven Mengenbegriffs zunächst deutlich machte, auf welch unsicherem Fundament die Mathematik vorher stand.
Die Entwicklung der ersten Hälfte des 20. Jahrhunderts stand unter dem Einfluss vonDavid HilbertsListe von 23 mathematischen Problemen.Eines der Probleme war der Versuch einer vollständigenAxiomatisierungder Mathematik; gleichzeitig gab es starke Bemühungen zur Abstraktion, also des Versuches, Objekte auf ihre wesentlichen Eigenschaften zu reduzieren. So entwickelteEmmy Noetherdie Grundlagen der modernen Algebra,Felix Hausdorffdie allgemeineTopologieals die Untersuchungtopologischer RäumeundStefan Banachden wohl wichtigsten Begriff derFunktionalanalysis,den nach ihm benanntenBanachraum.Eine noch höhere Abstraktionsebene, einen gemeinsamen Rahmen für die Betrachtung ähnlicher Konstruktionen aus verschiedenen Bereichen der Mathematik, schuf schließlich die Einführung derKategorientheoriedurchSamuel EilenbergundSaunders Mac Lane.
Inhalte und Methodik
Inhalte und Teilgebiete
Die folgende Aufzählung gibt einen ersten chronologischen Überblick über die Breite mathematischer Themen:
- das Rechnen mitZahlen(Arithmetik–Altertum),
- die Untersuchung von Figuren (Geometrie–Altertum,Euklid),
- das Auflösen vonGleichungen(Algebra–Altertum,MittelalterundRenaissance,Tartaglia),
- die Untersuchung der korrekten Schlussfolgerungen (Logik–Aristoteles) (teilweise nur zur Philosophie, oft aber auch zur Mathematik gezählt),
- Untersuchungen zurTeilbarkeit(Zahlentheorie– Euklid,Diophant,Fermat,Euler,Gauß,Riemann),
- das rechnerische Erfassen räumlicher Beziehungen (Analytische Geometrie–Descartes,17. Jahrhundert),
- das Rechnen mit Wahrscheinlichkeiten (Wahrscheinlichkeitstheorie–Pascal,Jakob Bernoulli,Laplace,17.–19. Jahrhundert),
- die Untersuchung von Funktionen, insbesondere deren Wachstum, Krümmung, des Verhaltens im Unendlichen und der Flächeninhalte unter den Kurven (Analysis–Newton,Leibniz,Ende des 17. Jahrhunderts),
- dieOptimierunggeometrischer Formen und Funktionen (Mathematische Optimierung–Johann Bernoulli,Leonhard EulerundJoseph-Louis Lagrange,Ende des 17. und18. Jahrhundert)
- die Beschreibungphysikalischer Felder(Differentialgleichungen,partielle Differentialgleichungen,Vektoranalysis–Euler,dieBernoullis,Laplace,Gauß,Poisson,Fourier,Green,Stokes,Hilbert,18.–19. Jahrhundert),
- die Perfektionierung der Analysis durch die Einbeziehungkomplexer Zahlen(Funktionentheorie– Gauß,Cauchy,Weierstraß,19. Jahrhundert),
- die Geometrie gekrümmter Flächen und Räume (Differentialgeometrie– Gauß, Riemann,Levi-Civita,19. Jahrhundert),
- das systematische Studium von Symmetrien (Gruppentheorie–Galois,Abel,Klein,Lie,19. Jahrhundert),
- die Aufklärung von Paradoxien des Unendlichen (Mengenlehreundmathematische Logik–Cantor,Frege,Russell,Zermelo,Fraenkel,Anfang des20. Jahrhunderts),
- die stetige Verformung geometrischer Körper (Topologie– Cantor,Poincaré,Fréchet,Hausdorff,Kuratowski,Anfang des 20. Jahrhunderts),
- die Untersuchung von Strukturen und Theorien (Universelle Algebra,Kategorientheorie),
- die Erhebung und Auswertung von Daten (Mathematische Statistik),
- diskrete endliche oder abzählbar unendliche Strukturen (Diskrete Mathematik,Kombinatorik,Graphentheorie– Euler,Cayley,Kőnig,Tutte,Carl Adam Petri) mit engen Beziehungen zurInformatik.
Etwas abseits steht in dieser Aufzählung dieNumerische Mathematik,die für konkrete kontinuierliche Probleme aus vielen der oben genannten BereicheAlgorithmenzur Lösung bereitstellt und diese untersucht.
Unterschieden werden ferner diereine Mathematik,auch alstheoretische Mathematikbezeichnet, die sich nicht mit außermathematischen Anwendungen befasst, und dieangewandte Mathematik,wie zum Beispiel dieVersicherungsmathematikundKryptologie.Die Übergänge der vorstehenden Gebiete sind fließend.
Fortschreiten durch Problemlösen
Kennzeichnend für die Mathematik ist weiterhin die Weise, wie sie durch das Bearbeiten von „eigentlich zu schweren “Problemen voranschreitet.
Sobald einGrundschülerdasAddierennatürlicher Zahlen gelernt hat, ist er in der Lage, folgende Frage zu verstehen und durch Probieren zu beantworten:„Welche Zahl muss man zu 3 addieren, um 5 zu erhalten? “Die systematische Lösung solcher Aufgaben aber erfordert die Einführung eines neuen Konzepts: der Subtraktion. Die Frage lässt sich dann umformulieren zu:„Was ist 5 minus 3? “Sobald aber dieSubtraktiondefiniert ist, kann man auch die Frage stellen:„Was ist 3 minus 5? “,die auf eine negative Zahl und damit bereits über die Grundschulmathematik hinaus führt.
Ebenso wie in diesem elementaren Beispiel beim individuellen Erlernen ist die Mathematik auch in ihrer Geschichte fortgeschritten: Auf jedem erreichten Stand ist es möglich, wohldefinierte Aufgaben zu stellen, zu deren Lösung weitaus anspruchsvollere Mittel nötig sind. Oft sind zwischen der Formulierung eines Problems und seiner Lösung viele Jahrhunderte vergangen und ist mit der Problemlösung schließlich ein völlig neues Teilgebiet begründet worden: So konnten mit derInfinitesimalrechnungim 17. Jahrhundert Probleme gelöst werden, die seit der Antike offen waren.
Auch einenegativeAntwort, der Beweis der Unlösbarkeit eines Problems, kann die Mathematik voranbringen: So ist etwa aus gescheiterten Versuchen zur Auflösung algebraischer Gleichungen die Gruppentheorie entstanden.
Axiomatische Formulierung und Sprache
Seit dem Ende des 19. Jahrhunderts, vereinzelt schon seit derAntike,wird die Mathematik in Form vonTheorienpräsentiert, die mit Aussagen beginnen, die als wahr angesehen werden; daraus werden dann weitere wahre Aussagen hergeleitet. Diese Herleitung geschieht dabei nach genau festgelegtenSchlussregeln.Die Aussagen, mit denen die Theorie beginnt, nennt manAxiome,die aus ihnen hergeleiteten nennt manSätze.Die Herleitung selbst ist einBeweisdes Satzes. In der Praxis spielen nochDefinitioneneine Rolle, durch sie werden mathematische Begriffe durch Rückführung auf grundlegendere eingeführt und präzisiert. Aufgrund dieses Aufbaus der mathematischen Theorien bezeichnet man sie alsaxiomatische Theorien.
Üblicherweise verlangt man dabei von Axiomen einer Theorie, dass diese widerspruchsfrei sind, dass also nicht gleichzeitig ein Satz und seine Negation wahr sind. Diese Widerspruchsfreiheit selbst lässt sich aber im Allgemeinen nicht innerhalb einer mathematischen Theorie beweisen (dies ist abhängig von den verwendeten Axiomen). Das hat zur Folge, dass etwa die Widerspruchsfreiheit derZermelo-Fraenkel-Mengenlehre,die fundamental für die moderne Mathematik ist, nicht ohne Zuhilfenahme weiterer Annahmen beweisbar ist.
Die von diesen Theorien behandelten Gegenstände sind abstrakte mathematische Strukturen, die ebenfalls durch Axiome definiert werden. Während in den anderenWissenschaftendie behandelten Gegenstände vorgegeben sind und danach die Methoden zur Untersuchung dieser Gegenstände geschaffen werden, ist bei der Mathematik umgekehrt die Methode vorgegeben und die damit untersuchbaren Gegenstände werden erst danach erschaffen. In dieser Weise nimmt und nahm die Mathematik immer eine Sonderstellung unter den Wissenschaften ein.
Die Weiterentwicklung der Mathematik geschah und geschieht dagegen oft durch Sammlungen von Sätzen, Beweisen und Definitionen, die nicht axiomatisch strukturiert sind, sondern vor allem durch die Intuition und Erfahrung der beteiligten Mathematiker geprägt sind. Die Umwandlung in eine axiomatische Theorie erfolgt erst später, wenn weitere Mathematiker sich mit den dann nicht mehr ganz so neuen Ideen beschäftigen.
Kurt Gödelzeigte um 1930 den nach ihm benanntenUnvollständigkeitssatz,der besagt, dass es in jedemAxiomensystemklassischer Logik, das erlaubt, gewisse Aussagen über natürliche Zahlen zu beweisen, entweder Aussagen gibt, die ebenso wenig wie ihre Negation beweisbar sind, oder aber das System selbst widersprüchlich ist.
Mathematik benutzt zur Beschreibung von Sachverhalten eine sehr kompakte Sprache, die auf Fachbegriffen und vor allemFormelnberuht. Eine Darstellung der in den Formeln benutzten Zeichen findet sich in derListe mathematischer Symbole.Eine Besonderheit dermathematischen Fachsprachebesteht in der Bildung von aus Mathematikernamen abgeleitetenAdjektivenwiepythagoreisch,euklidisch,eulersch,abelsch,noetherschundartinsch.
Anwendungsgebiete
Die Mathematik ist in allen Wissenschaften anwendbar, die ausreichendformalisiertsind. Daraus ergibt sich ein enges Wechselspiel mit Anwendungen inempirischenWissenschaften. Über viele Jahrhunderte hinweg hat die Mathematik Anregungen aus derAstronomie,derGeodäsie,derPhysikund derÖkonomieaufgenommen und umgekehrt die Grundlagen für den Fortschritt dieser Fächer bereitgestellt. Beispielsweise hat Newton dieInfinitesimalrechnungentwickelt, um das physikalische Konzept „Kraft gleich Impulsänderung “mathematisch zu fassen. Solow entwickelte einökonomisches Modelldes Wachstums einerVolkswirtschaft,das bis heute die Grundlage der neoklassischen Wachstumstheorie bildet. Fourier hat beim Studium derWellengleichungdie Grundlage für den modernenFunktionsbegriffgelegt und Gauß hat im Rahmen seiner Beschäftigung mit Astronomie und Landvermessung dieMethode der kleinsten Quadrateentwickelt und das Lösen von linearen Gleichungssystemen systematisiert. Aus der anfänglichen Untersuchung von Glücksspielen ist die heute allgegenwärtige Statistik hervorgegangen.
Umgekehrt haben Mathematiker zuweilen Theorien entwickelt, die erst später überraschende praktische Anwendungen gefunden haben. So ist zum Beispiel die schon im 16. Jahrhundert entstandene Theorie derkomplexen Zahlenzur mathematischen Darstellung desElektromagnetismusinzwischen unerlässlich geworden. Ein weiteres Beispiel ist dertensorielleKalkülderDifferentialformen,denEinsteinfür die mathematische Formulierung derallgemeinen Relativitätstheorieverwendet hatte. Des Weiteren galt die Beschäftigung mit derZahlentheorielange Zeit als intellektuelle Spielerei ohne praktischen Nutzen, ohne sie wären heute allerdings die moderneKryptographieund ihre vielfältigen Anwendungen im Internet nicht denkbar.
Verhältnis zu anderen Wissenschaften
Kategorisierung der Mathematik
Über die Frage, zu welcher Kategorie der Wissenschaften die Mathematik gehört, wird seit langer Zeit kontrovers diskutiert.
Viele mathematische Fragestellungen und Begriffe sind durch die Natur betreffende Fragen motiviert, beispielsweise aus derPhysikoder denIngenieurwissenschaften,und die Mathematik wird als Hilfswissenschaft in nahezu allen Naturwissenschaften herangezogen. Jedoch ist sie selbst keineNaturwissenschaftim eigentlichen Sinne, da ihre Aussagen nicht von Experimenten oder Beobachtungen abhängen. Dennoch wird in der neuerenPhilosophie der Mathematikdavon ausgegangen, dass auch die Methodik der Mathematik immer mehr derjenigen der Naturwissenschaft entspricht. Im Anschluss anImre Lakatoswird eine „Renaissance desEmpirismus“vermutet, wonach auch MathematikerHypothesenaufstellen und für diese Bestätigungen suchen.
Die Mathematik hat methodische und inhaltliche Gemeinsamkeiten mit derPhilosophie;beispielsweise ist dieLogikein Überschneidungsbereich der beiden Wissenschaften. Damit könnte man die Mathematik zu denGeisteswissenschaftenrechnen,[2]aber auch die Einordnung in die Philosophie ist umstritten.
Auch aus diesen Gründen kategorisieren einige die Mathematik – neben anderen Disziplinen wie derInformatik– alsStrukturwissenschaftbzw.Formalwissenschaft.
An deutschenUniversitätengehört die Mathematik meistens zur selbenFakultätwie die Naturwissenschaften, und so wird Mathematikern nach derPromotionin der Regel derakademische Gradeines Dr. rer. nat. (Doktor der Naturwissenschaft) verliehen. Im Gegensatz dazu erreicht im englischen Sprachraum der Hochschulabsolvent die Titel „Bachelor of Arts “bzw. „Master of Arts “, die eigentlich an Geisteswissenschaftler vergeben werden.
Sonderrolle unter den Wissenschaften
Eine Sonderrolle unter den Wissenschaften nimmt die Mathematik bezüglich der Gültigkeit ihrer Erkenntnisse und derStrengeihrer Methoden ein. Während beispielsweise alle naturwissenschaftlichen Erkenntnisse durch neue Experimentefalsifiziertwerden können und daher prinzipiell vorläufig sind, werden mathematische Aussagen durch reine Gedankenoperationen auseinander hervorgebracht oder aufeinander zurückgeführt und brauchen nichtempirischüberprüfbar zu sein. Dafür muss aber für mathematische Erkenntnisse ein streng logischerBeweisgefunden werden, bevor sie alsmathematischer Satzanerkannt werden. In diesem Sinn sind mathematische Sätze prinzipiell endgültige und allgemeingültige Wahrheiten, sodass die Mathematik alsdieexakte Wissenschaft betrachtet werden kann. Gerade diese Exaktheit ist für viele Menschen das Faszinierende an der Mathematik. So sagteDavid Hilbertauf demInternationalen Mathematiker-Kongress1900 in Paris:
„Wir erörtern noch kurz, welche berechtigten allgemeinen Forderungen an die Lösung eines mathematischen Problems zu stellen sind: ich meine vor allem die, daß es gelingt, die Richtigkeit der Antwort durch eine endliche Anzahl von Schlüssen darzutun, und zwar auf Grund einer endlichen Anzahl von Voraussetzungen, welche in der Problemstellung liegen und die jedesmal genau zu formulieren sind. Diese Forderung der logischen Deduktion mittels einer endlichen Anzahl von Schlüssen ist nichts anderes als die Forderung der Strenge in der Beweisführung. In der Tat, die Forderung der Strenge, die in der Mathematik bekanntlich von sprichwörtlicher Bedeutung geworden ist, entspricht einem allgemeinen philosophischen Bedürfnis unseres Verstandes, und andererseits kommt durch ihre Erfüllung allein erst der gedankliche Inhalt und die Fruchtbarkeit des Problems zur vollen Geltung. Ein neues Problem, zumal, wenn es aus der äußeren Erscheinungswelt stammt, ist wie ein junges Reis, welches nur gedeiht und Früchte trägt, wenn es auf den alten Stamm, den sicheren Besitzstand unseres mathematischen Wissens, sorgfältig und nach den strengen Kunstregeln des Gärtners aufgepfropft wird. “[3]
Joseph WeizenbaumvomMassachusetts Institute of Technologybezeichnete die Mathematik als die Mutter aller Wissenschaften.
„Ich behaupte aber, daß in jeder besonderen Naturlehre nur so viel eigentliche Wissenschaft angetroffen werden könne, als darin Mathematik anzutreffen ist. “
Die Mathematik ist daher auch eine kumulative Wissenschaft. Man kennt heute über 2000 mathematische Fachzeitschriften. Dies birgt jedoch auch eine Gefahr: Durch neuere mathematische Gebiete geraten ältere Gebiete in den Hintergrund. Neben sehr allgemeinen Aussagen gibt es auch sehr spezielle Aussagen, für die keine echte Verallgemeinerung bekannt ist.Donald E. Knuthschreibt dazu im Vorwort seines BuchesConcrete Mathematics:
“The course title ‘Concrete Mathematics’ was originally intended as an antidote to ‘Abstract Mathematics’, since concrete classical results were rapidly being swept out of the modern mathematical curriculum by a new wave of abstract ideas popularly called the ‘New Math’. Abstract mathematics is a wonderful subject, and there’s nothing wrong with it: It’s beautiful, general and useful. But its adherents had become deluded that the rest of mathematics was inferior and no longer worthy of attention. The goal of generalization had become so fashionable that a generation of mathematicians had become unable to relish beauty in the particular, to enjoy the challenge of solving quantitative problems, or to appreciate the value of technique. Abstract mathematics was becoming inbred and losing touch with reality; mathematical education needed a concrete counterweight in order to restore a healthy balance.”
„Der Veranstaltungstitel ‚Konkrete Mathematik‘ war ursprünglich als Gegenpol zur ‚Abstrakten Mathematik‘ gedacht, denn konkrete, klassische Errungenschaften wurden von einer neuen Welle abstrakter Vorstellungen – gemeinhin ‚New Math‘ (‚neue Mathematik‘) genannt – in rasantem Tempo aus den Lehrplänen gespült. Abstrakte Mathematik ist eine wunderbare Sache, an der nichts auszusetzen ist: Sie ist schön, allgemeingültig und nützlich. Aber ihre Anhänger gelangten zu der irrigen Ansicht, dass die übrige Mathematik minderwertig und nicht mehr beachtenswert sei. Das Ziel der Verallgemeinerung kam dermaßen in Mode, dass eine ganze Generation von Mathematikern nicht mehr im Stande war, Schönheit im Speziellen zu erkennen, die Lösung von quantitativen Problemen als Herausforderung zu begreifen oder den Wert mathematischer Techniken zu schätzen. Die abstrakte Mathematik drehte sich nur noch um sich selbst und verlor den Kontakt zur Realität; in der mathematischen Ausbildung war ein konkretes Gegengewicht notwendig, um wieder ein stabiles Gleichgewicht herzustellen. “
Es kommt somit der älteren mathematischen Literatur eine besondere Bedeutung zu.
Der MathematikerClaus Peter Ortliebkritisiert die – seiner Ansicht nach – zu wenig reflektierte Anwendung der modernen Mathematik:
„Man muss sich bewusst machen, dass die Erfassung der Welt durch Mathematik Grenzen hat. Die Annahme, sie funktioniere allein nach mathematischen Gesetzen, führt dazu, dass man nur noch nach diesen Gesetzen Ausschau hält. Natürlich werde ich sie in den Naturwissenschaften auch finden, doch ich muss mir im Klaren darüber sein, dass ich die Welt durch eine Brille hindurch betrachte, die von vornherein große Teile ausblendet. […] Die mathematische Methode ist längst von Wissenschaftlern fast aller Disziplinen übernommen worden und wird in allen möglichen Bereichen angewandt, wo sie eigentlich nichts zu suchen hat. […] Bedenklich sind Zahlen immer dann, wenn sie zu Normierungen führen, obwohl niemand mehr nachvollziehen kann, wie die Zahlen zustande gekommen sind. “[4]
Mathematik in der Gesellschaft
Mathematik im „Wissenschaftsjahr 2008 “
Das vomBundesministerium für Bildung und Forschung(BMBF) seit dem Jahr 2000 jährlich ausgerichteteWissenschaftsjahrwar 2008 dasJahr der Mathematik.
Mathematik in der Schule
Mathematik spielt in der Schule eine wichtige Rolle alsPflichtfach.Mathematikdidaktikist die Wissenschaft, die sich mit dem Lehren und Lernen von Mathematik beschäftigt. In den Klassen 5–10 geht es vor allem um das Erlernen von Rechenfertigkeiten. In deutschen Gymnasien werden dann in der Oberstufe, also ab Klasse 11, Differential- und Integralrechnung sowie Analytische Geometrie / Lineare Algebra eingeführt und dazu Stochastik weitergeführt.
Große Verbreitung an Schulen hat der WettbewerbKänguru der Mathematikgefunden: Von 200 Teilnehmern im Jahr 1995 stieg die Anzahl auf 968.000 im Jahr 2019. Es ist ein Multiple-Choice-Wettbewerb mit Aufgaben zum Knobeln, zum Rechnen und zum Schätzen, der vor allem Freude an der Beschäftigung mit Mathematik wecken soll. Die Aufgaben erfordern keine schriftliche Begründung.[5]
Mathematik als Studienfach und Beruf
Menschen, die sich beruflich mit der Entwicklung und der Anwendung der Mathematik beschäftigen, nennt manMathematiker.
Neben dem Mathematikstudium, in dem man seine Schwerpunkte auf reine und/oder angewandte Mathematik setzen kann, sind in neuerer Zeit vermehrt interdisziplinäre Studiengänge wieTechnomathematik,Wirtschaftsmathematik,ComputermathematikoderBiomathematikeingerichtet worden. Ferner ist dasLehramtan weiterführendenSchulenundHochschulenein wichtiger mathematischer Berufszweig. An deutschen Universitäten wurde im Rahmen desBologna-Prozessesdas Diplom aufBachelor/Master-Studiengänge umgestellt. Eine gewisse Anzahl anSemesterwochenstundenin Mathematik müssen auch angehendeInformatiker,Chemiker,Biologen,Physiker,GeologenundIngenieurebelegen.
Die häufigsten Arbeitgeber für Mathematiker sindVersicherungen,BankenundUnternehmensberatungen,insbesondere im Bereich mathematischer Finanzmodelle und Consulting, aber auch im IT-Bereich. Darüber hinaus werden in fast allen Branchen Mathematiker eingesetzt.
Mathematische Museen und Sammlungen
Mathematik ist eine der ältesten Wissenschaften und auch eine experimentelle Wissenschaft. Diese beiden Aspekte lassen sich durchMuseenund historische Sammlungen sehr gut verdeutlichen.
Die älteste Einrichtung dieser Art in Deutschland ist der 1728 gegründeteMathematisch-Physikalische Salonin Dresden. DasArithmeumin Bonn am dortigen Institut für diskrete Mathematik geht in die 1970er Jahre zurück und beruht auf der Sammlung von Rechengeräten des MathematikersBernhard Korte.DasHeinz Nixdorf MuseumsForum(Abkürzung „HNF “) in Paderborn ist das größte deutsche Museum zur Entwicklung der Rechentechnik (insbesondere des Computers). DasMathematikumin Gießen wurde 2002 vonAlbrecht Beutelspachergegründet und wird von ihm laufend weiterentwickelt. ImMuseumsquartierin Wien befindet sich das vonRudolf TaschnergeleiteteMath.space,das die Mathematik im Kontext zu Kultur und Zivilisation zeigt.
Darüber hinaus sind zahlreiche Spezialsammlungen an Universitäten untergebracht, aber auch in umfassenderen Sammlungen wie zum Beispiel imDeutschen Museumin München oder imMuseum für Technikgeschichte in Berlin(Rechner vonKonrad Zuseentwickelt und gebaut).
Aphorismen über Mathematik und Mathematiker (Auswahl)
FolgendeAphorismenbekannter Persönlichkeiten sind zu finden:[6]
- Albert Einstein:Die Mathematik handelt ausschließlich von den Beziehungen der Begriffe zueinander ohne Rücksicht auf deren Bezug zur Erfahrung.
- Galileo Galilei:Mathematik ist das Alphabet, mit dessen Hilfe Gott das Universum beschrieben hat.
- Johann Wolfgang von Goethe:Die Mathematiker sind eine Art Franzosen: Redet man zu ihnen, so übersetzen sie es in ihre Sprache, und dann ist es alsobald ganz etwas anderes.
- Godfrey Harold Hardy:Der Mathematiker ist ein Hersteller von Schemata.
- David Hilbert:Aus dem Paradies, das Cantor uns geschaffen, soll uns niemand vertreiben können.
- Novalis:Die ganze Mathematik ist eigentlich eine Gleichung im Großen für die anderen Wissenschaften.
- Friedrich Nietzsche:Wir wollen die Feinheit und Strenge der Mathematik in alle Wissenschaften hineintreiben, so weit diess nur irgend möglich ist, nicht im Glauben, dass wir auf diesem Wege die Dinge erkennen werden, sondern um damit unsere menschliche Relation zu den Dingenfestzustellen.Die Mathematik ist nur das Mittel der allgemeinen und letzten Menschenkenntniss.[7]
- Bertrand Russell:Mathematik ist die Wissenschaft, bei der man nicht weiß, wovon man spricht, noch ob das, was man sagt, wahr ist.
- Friedrich Schlegel:Die Mathematik ist gleichsam eine sinnliche Logik, sie verhält sich zur Philosophie wie die materiellen Künste, Musik und Plastik, zur Poesie.
- James Joseph Sylvester:Mathematik ist die Musik der Vernunft.
- Ludwig Wittgenstein:Die Mathematik ist eine Methode der Logik.
Siehe auch
Literatur
- John D. Barrow:Ein Himmel voller Zahlen – Auf den Spuren mathematischer Wahrheit,aus dem Englischen von Anita Ehlers, Rowohlt Taschenbuch Verlag GmbH, Reinbek bei Hamburg 1999,ISBN 3-499-19742-1.
- Jürgen Brater:Kuriose Welt der Zahlen,Eichborn Verlag, Frankfurt/Main 2005,ISBN 3-8218-4888-X.
- Richard Courant,Herbert Robbins:Was ist Mathematik?Springer-Verlag, Berlin/Heidelberg 2000,ISBN 3-540-63777-X.
- Georg Glaeser:Der Mathematische Werkzeugkasten. Anwendungen in Natur und Technik.5. Auflage.Springer Spektrum,Berlin 2021,ISBN 978-3-662-63260-4,doi:10.1007/978-3-662-63261-1.
- Timothy Gowers:Mathematik.Deutsche Erstausgabe, aus dem Englischen übersetzt von Jürgen Schröder, Reclam-Verlag, Stuttgart 2011,ISBN 978-3-15-018706-7.
- Timothy Gowers (Hrsg.),June Barrow-Green(Hrsg.),Imre Leader(Hrsg.):The Princeton Companion to Mathematics.Princeton University Press 2008,ISBN 978-0-691-11880-2(enzyklopädisch auf einführendem Niveau).
- David Hilbert,Paul Isaak Bernays:Grundlagen der Mathematik 1.2. Auflage.Springer Verlag,Berlin 1968.
- David Hilbert, Paul Isaak Bernays:Grundlagen der Mathematik 2.2. Auflage. Springer Verlag, Berlin 1970.
- Hans Kaiser,Wilfried Nöbauer:Geschichte der Mathematik.2. Auflage. Oldenbourg, München 1999,ISBN 3-486-11595-2.
- Mario Livio:Ist Gott ein Mathematiker? Warum das Buch der Natur in der Sprache der Mathematik geschrieben ist.C. H. Beck Verlag, München 2010,ISBN 978-3-406-60595-6.
- Herbert Meschkowski:Denkweisen großer Mathematiker. Ein Weg zur Geschichte der Mathematik.Vieweg Verlag, Braunschweig 1990,ISBN 3-528-28179-0.
- Ian Stewart:Die letzten Rätsel der Mathematik.2. Auflage.Rowohlt Taschenbuch Verlag,Reinbek bei Hamburg 2015,ISBN 978-3-499-61694-5.
- Hans Rademacher,Otto Toeplitz:Von Zahlen und Figuren. Proben mathematischen Denkens für Liebhaber der Mathematik(=Heidelberger Taschenbücher.Band50). Springer Verlag, Berlin (u. a.) 1968.
- Dirk J. Struik:Abriß der Geschichte der Mathematik.7., ergänzte Auflage.VEB Deutscher Verlag der Wissenschaften,Berlin 1980.
Weblinks
- Portale und Wissensdatenbanken
- Linkkatalog zum Thema Mathematikbeicurlie.org(ehemalsDMOZ)
- EintragMathematikim Lexikon der Mathematik (2017)
- MadiPedia (Gesellschaft für Didaktik der Mathematik)
- Mathe-Online.at– mathematische Hintergründe und Lexikon
- Matroids MatheplanetbeiMatheplanet.de
- Mathepedia.de
- Mathematik.de– Portal der DMV zur Mathematik mit vielfältigen Inhalten
- Wolfram Alpha,Formeln und Aufgaben online lösen
- Mathworld.Wolfram– umfangreiche Mathematikquelle, engl.
- Zentralblatt für Mathematik: MATH-Datenbank
- Fachinformationsdienst Mathematik
- Schulmathematik
- Sammlung professioneller Lernvideos für den Einsatz im Mathematikunterricht am Gymnasium unter Einsatz Neuer Medien und Technologien(z. B.GeoGebra)
- Mathe1.de– Schulwissen der Klassen 1–11
- thema-mathematik.at– Mathematikwissen der AHS-Oberstufe (Klassen 9–12)
- Software
- Geschichtliches
- „Frauen in der Geschichte der Mathematik “(Vorlesungsfolien Prof. Blunck, Universität Hamburg)
- Images of Some Famous Mathematical Works(Bilder berühmter mathematischer Werke)
- Zeugnisse über Mathematiker
Einzelnachweise
- ↑Österreichische Aussprachedatenbank.In:Aussprache.at.Abgerufen am 10. Juni 2024.
- ↑Helmut Hasse:Mathematik als Geisteswissenschaft und Denkmittel der exakten Naturwissenschaften.In:Studium generale.Band6,1953,S.392–398(online(vom 25. April 2013 imInternet Archive) [abgerufen am 10. Juni 2024]).
- ↑David Hilbert:Mathematische Probleme. Vortrag, gehalten auf dem internationalen Mathematiker-Kongreß zu Paris 1900.(vom 19. Januar 2012 imInternet Archive). In:mathematik.uni-bielefeld.de.Abgerufen am 10. Juni 2024.
- ↑Oliver Link:Die Welt lässt sich nicht berechnen.Interview mit Claus Peter Ortlieb (hinter einerBezahlschranke),brand eins11/2011, abgerufen am 1. Januar 2012.
- ↑Känguru der Mathematik.In:mathe-kaenguru.de.Abgerufen am 10. Juni 2024.
- ↑Lothar Schmidt:Aphorismen von A–Z. Das große Handbuch geflügelter Definitionen.Drei Lilien Verlag, Wiesbaden 1980,S.288–289.
- ↑Die fröhliche Wissenschaft,Aphorismus Nr. 246.