Organische Chemie

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen
KlassischeMolekülstrukturder organischen Chemie –Benzolformelvon Kekulé, dargestellt auf einer Briefmarke aus dem Jahre 1964

Dieorganische Chemie(kurzOCoder häufig auchOrganik) ist ein Teilgebiet derChemie.Darin werden diechemischen Verbindungenbehandelt, die aufKohlenstoffbasieren, abgesehen voneinigen Ausnahmenwie manchen anorganischen Kohlenstoffverbindungen und dem elementaren (reinen) Kohlenstoff.

Die große Bindungsfähigkeit des Kohlenstoffatoms ermöglicht eine Vielzahl von unterschiedlichen Bindungen zu anderen Atomen. Während viele anorganische Stoffe durch Temperatureinfluss und katalytische Reagenzien nicht verändert werden, finden organische Reaktionen oft bei Raumtemperatur oder leicht erhöhter Temperatur mit katalytischen Mengen an Reagenzien statt. Auch die Entstehung der Vielzahl derNaturstoffe(pflanzliche, tierischeFarbstoffe,Zucker,Fette,Proteine,Nukleinsäuren) und letztlich der bekanntenLebewesenbasiert auf dieser Bindungsfähigkeit.

Organische Moleküle enthalten als Elemente neben Kohlenstoff häufigWasserstoff,Sauerstoff,Stickstoff,Schwefel,Halogene;die chemische Struktur und die funktionellen Gruppen sind die Grundlage für die Verschiedenartigkeit der Einzelmoleküle.

In der organischen Analytik erfolgt zunächst aus einem Gemisch von Stoffen eine physikalische Trennung und Charakterisierung (Schmelzpunkt,Siedepunkt,Brechungsindex) von Einzelstoffen, dann werden die elementare Zusammensetzung (Elementaranalyse),Molekülmasseund funktionellen Gruppen (mit Hilfe von chemischen Reagenzien,NMR-,IR- undUV-Spektroskopie) bestimmt.

Untersucht wird die Einwirkung vonReagenzien(Säuren,Basen,anorganischen und organischen Stoffen) auf organische Stoffe, um Gesetzmäßigkeiten von chemischen Reagenzien auf bestimmte funktionelle Gruppen und Stoffgruppen zu bestimmen.

Nicotin– einAlkaloid

Die organische Chemiesynthetisiertorganische Naturstoffe (z. B. Zucker, Peptide, Naturfarbstoffe, Alkaloide, Vitamine) ebenso wie in der Natur unbekannte organische Stoffe (Kunststoffe, Ionenaustauscher,Arzneistoffe,Pflanzenschutzmittel, Kunstfasern für Kleidungsstücke).

Die Entwicklungen der organischen Chemie hatten in den letzten 150 Jahren einen bedeutenden Einfluss auf die menschliche Gesundheit, die Ernährung, die Kleidung und die Vielfalt der verfügbaren Konsumgüter. Sie trug in großem Maße zum Wohlstand der Menschheit bei.

Abgrenzung zur anorganischen Chemie

[Bearbeiten|Quelltext bearbeiten]

Mit wenigen Ausnahmen umfasst die Organik die Chemie aller Verbindungen, die der Kohlenstoff mit sich selbst und anderen Elementen eingeht. Dazu gehören auch alle Bausteine des derzeit bekannten Lebens. Im Jahre 2012 waren etwa 40 Millionen organische Verbindungen bekannt.

Die Ausnahmen betreffen formal zunächst die elementaren Formen des Kohlenstoffs (Graphit,Diamant) sowie systematisch alle Verbindungen ohne jede atomare Kohlenstoff-Wasserstoff-Bindung, wie zuranorganischen Chemiezählenden wasserstofffreienChalkogenidedes Kohlenstoffs (Kohlenstoffmonoxid,Kohlenstoffdioxid,Schwefelkohlenstoff), dieKohlensäureundCarbonate,dieCarbidesowie die ionischenCyanide,CyanateundThiocyanate(sieheKohlenstoff-Verbindungen).

DieBlausäuregehört zum Grenzgebiet der anorganischen und organischen Chemie. Obwohl man sie traditionell zur anorganischen Chemie zählen würde, wird sie alsNitril(organische Stoffgruppe) derAmeisensäureaufgefasst. Die Cyanide werden in der Anorganik behandelt, wobei hier nur die Salze der Blausäure gemeint sind, wohingegen die unter selbigem Namen bekannten Ester als Nitrile zur Organik gehören. Auch dieCyansauerstoffsäuren,Thiocyansäurenund deren Ester gelten als Grenzfälle. Weiter ist diemetallorganische Chemie(Metallorganyle) nicht konkret der organischen oder anorganischen Chemie zuzuordnen.

Auch völlig unnatürlich wirkende Stoffe, wieKunststoffeundErdöl,zählen zu den organischen Verbindungen, da sie wieNaturstoffeaus Kohlenstoffverbindungen bestehen. Erdöl, Erdgas und Kohle, die Ausgangsstoffe für viele synthetische Produkte, sind letztlich organischen Ursprungs.

AlleLebewesenenthalten organische Stoffe wieAminosäuren,Proteine,Kohlenhydrateund dieDNA.Das Teilgebiet der organischen Chemie, das sich mit den Stoffen undStoffwechselprozessenin Lebewesen befasst, ist dieBiochemie(oder auchMolekularbiologie).

Die Sonderstellung des Kohlenstoffs beruht darauf, dass das Kohlenstoffatom vier Bindungselektronen hat, wodurch esunpolare Bindungenmit ein bis vier weiteren Kohlenstoffatomen eingehen kann. Dadurch können lineare oder verzweigte Kohlenstoffketten sowie Kohlenstoffringe entstehen, die an den nicht mit Kohlenstoff besetzten Bindungselektronen mit Wasserstoff und anderen Elementen (vorwiegend Sauerstoff, Stickstoff, Schwefel, Phosphor) verbunden sind, was zu großen und sehr großen Molekülen (z. B.Homo-undHeteropolymere) führen kann und die riesige Vielfalt an organischen Molekülen erklärt. Von dem ebenfalls vierbindigenSiliciumgibt es auch eine große Anzahl Verbindungen, aber bei Weitem keine solche Vielfalt.

Die Eigenschaften organischer Substanzen werden sehr stark von ihrer jeweiligenMolekülstrukturbestimmt. Selbst die Eigenschaften von einfachen organischen Salzen wie denAcetatenwerden deutlich von der Molekülform des organischen Teils geprägt. Es gibt auch vieleIsomere,das sind Verbindungen mit der gleichen Gesamtzusammensetzung (Summenformel), aber unterschiedlicher Struktur (Strukturformel).

Dagegen bestehen die Moleküle in der anorganischen Chemie meist nur aus einigen wenigen Atomen, bei denen die allgemeinen Eigenschaften von Festkörpern, Kristallen und/oder Ionen zum Tragen kommen. Es gibt aber auchPolymere,die keinen Kohlenstoff enthalten (oder nur in Nebengruppen), z. B. dieSilane.

Organische Synthesestrategien unterscheiden sich von Synthesen in der anorganischen Chemie, da organische Moleküle meist Stück für Stück aufgebaut werden können. Etwa 60 % der Chemiker in Deutschland und den USA haben als Schwerpunktfach die organische Chemie gewählt.

Friedrich Wöhler
Jöns Jakob Berzelius
Friedrich August Kekulé

Viele organische Naturstoffe wurden schon in der Frühzeit der menschlichen Entwicklung genutzt (die FarbstoffeIndigo,Alizarin,die ätherischen Öle,Weingeist). Eine künstliche Darstellung von organischen Stoffen durch Menschenhand ist jedoch in sehr früher Zeit nicht beschrieben worden.

Johann Rudolph Glauberbeschrieb in seinen Werken eine Vielzahl von selbst dargestellten organischen Verbindungen, da jedoch die Elementaranalyse noch nicht entwickelt war, kann nur vermutet werden, welche Stoffe er damals erhalten hatte. Weingeist und Essig reinigte Glauber über eine fraktionierte Destillation, Ethylchlorid erhielt er ausWeingeist,[1]Essigsäureaus der Holzdestillation,[2]Acetonaus der Erhitzung von Zinkazetat,[3]Acrolein entstand bei der Destillation von Rüben-, Nuss- und Hanföl,[4]Benzolaus Steinkohle,[5]Alkaloidefand er durch eine Salpetersäure-Trennung.[6]

Lemery schrieb 1675 das BuchCours de Chymie.In diesem Werk wurden die Stoffe in drei Gebiete eingeteilt: Mineralreich (Metalle, Wasser, Luft, Kochsalz, Gips), Pflanzenreich (Zucker, Stärke, Harze, Wachs, Pflanzenfarbstoffe), Tierreich (Fette, Eiweiße, Hornsubstanzen). Lemery unterschied auch die Stoffe des Pflanzen- und Tierreiches als organische Stoffe im Gegensatz zu den Stoffen der unbelebten Natur des Mineralreiches.

Bereits im 18. Jahrhundert war eine beträchtliche Zahl vonorganischen SubstanzenalsReinstoffisoliert worden. Beispiele hierfür sind derHarnstoff(1773 vonHilaire Rouelle) und vieleSäuren,wie die vonAmeisenerhalteneAmeisensäure(1749 vonAndreas Sigismund Marggraf), dieÄpfelsäureausÄpfeln,und die aus demWeinsteingewonneneWeinsäure(1769), dieCitronensäure(1784), dasGlycerin(1783), dieOxalsäure,die Harnsäure (vonCarl Wilhelm Scheele).

Antoine Laurent de Lavoisierbestimmte erstmals qualitativ die in organischen Stoffen enthaltenen chemischen Elemente: Kohlenstoff, Wasserstoff, Sauerstoff, Stickstoff.Joseph Louis Gay-Lussacund Louis Jacques Thenard führten ersteElementaranalysenzur Ermittlung der quantitativen Zusammensetzung von Elementen in organischen Stoffen aus. Die Elementaranalyse wurde 1831 vonJustus von Liebigverbessert.[7]Nun konnte die elementare Zusammensetzung von organischen Stoffen schnell bestimmt werden.

Jöns Jakob Berzeliusstellte die These auf, dass organische Stoffe nur durch eine besondereLebenskraftim pflanzlichen, tierischen oder menschlichen Organismus geschaffen werden können. Sein BüchleinUebersicht der Fortschritte und des gegenwärtigen Standes der thierischen Chemiemarkierte 1810 den Beginn der in der ersten Hälfte des 19. Jahrhunderts sich herausbildenden organischen Chemie.[8]Berzelius wendete auch das Gesetz der multiplen Proportionen – mit dem er im Bereich der anorganischen Verbindungen Atomgewichte und Zusammensetzung, d. h. deren chemische Formeln, bestimmen konnte auch auf organische Verbindungen an.[9]

Die Struktur und Zusammensetzung von organischen Verbindungen war um 1820 noch sehr ungeklärt. Gay-Lussac glaubte, dass das Ethanol eine Verbindung aus einem Teil Ethen und einem Teil Wasser sei.

Weiterhin glaubten die Chemiker damals, dass bei gleicher qualitativer und quantitativer Zusammensetzung (Summenformel) der Elemente einer Verbindung (Elementaranalyse) die Stoffe auch identisch sein müssen. Erste Zweifel traten im Jahr 1823 auf alsJustus von LiebigundFriedrich Wöhlerdas knallsaure Silber sowie das cyansaure Silber untersuchten. Sie fanden bei gleicher chemischer Zusammensetzung sehr unterschiedliche Stoffe.[10]

Beim Erhitzen der anorganischen Verbindung Ammoniumcyanat entsteht Harnstoff, eine typisch organische Verbindung. Dies ist die berühmte Harnstoffsynthese von Friedrich Wöhler, die zu einemParadigmenwechselführte.

Im Jahr 1828 erhitzteFriedrich WöhlerAmmoniumcyanatund erhielt einen ganz andersartigen Stoff, denHarnstoff.[11]Ausgangsprodukt und Endprodukt haben die gleiche chemische Summenformel (Isomerie), sie besitzen jedoch sehr unterschiedliche Eigenschaften: das Ammoniumcyanat ist eine anorganische Verbindung, der Harnstoff ist eine organische Verbindung. Damit war die Hypothese von Berzelius, dass organische Verbindungen nur durch eine besondereLebenskraftentstehen können, widerlegt.

Hermann Kolbeformulierte 1859 die These, dass alle organischen Stoffe Abkömmlinge der anorganischen Stoffe – insbesondere des Kohlenstoffdioxids – sind. So ergibt der Ersatz einer Hydroxygruppe durch Alkylreste oder Wasserstoff Carbonsäuren, der Ersatz zweier Hydroxygruppen durch Alkylgruppen oder Wasserstoff dieAldehyde,Ketone.[12]Kolbe gebrauchte auch das Wort Synthese im Zusammenhang mit der künstlichen Darstellung von organischen Naturstoffen. Chemiker konnten bald durch eigene Forschungen neue organische Moleküle synthetisieren.

In Analogie zu positiv und negativ geladenen Ionen in der anorganischen Chemie vermutete Berzelius sogenannte Radikale in der organischen Chemie; darauf basierte seine Radikaltheorie. Ein Radikalteil des organischen Moleküls sollte eine positive, der andere Teil eine negative Ladung besitzen. Einige Jahre später untersuchtenJean Baptiste Dumas,Auguste Laurent,Charles Gerhardtund Justus von Liebig dieSubstitutionbei organischen Verbindungen. Die Wasserstoffatome in organischen Verbindungen wurden durch Halogenatome ersetzt. Die alte Radikaltheorie von Berzelius, nach der sich positiv und negativ geladene Radikalteile in organischen Molekülen zusammenlagern, musste verworfen werden. In der Folge wurde vonAugust Wilhelm von Hofmann,Hermann Kolbe,Edward Frankland,Stanislao Cannizzaroweitere Grundlagen über die Zusammensetzung von organischen Stoffen gefunden. 1857 veröffentlichteFriedrich August Kekuléseine Arbeit„Über die s. g. gepaarten Verbindungen und die Theorie der mehratomigen Radikale “inLiebigs Annalen der Chemie,[13]die als Ausgangspunkt der organischen Strukturchemie gesehen wird. In dieser Arbeit wird der Kohlenstoff erstmals als vierwertig beschrieben.

Adolf von Baeyer,Emil Fischer,August Wilhelm von Hofmann erforschten Synthesen von Farbstoffen, Zuckern, Peptiden und Alkaloiden.

Ein Großteil der Arbeitszeit der früheren Chemiker lag in der Isolierung eines Reinstoffes.

Die Prüfung der Stoffidentität von organischen Stoffen erfolgte überSiedepunkt,Schmelzpunkt,Löslichkeit, Dichte, Geruch, Farbe,Brechungsindex.

Besonders wichtig wurde der Rohstoff Kohle für die organische Chemie. Ihren Aufschwung nahm die organische Chemie mit der Untersuchung der bei der Leuchtgaserzeugung entstehenden Abfallprodukte, als der deutsche ChemikerFriedlieb Ferdinand Runge(1795–1867) imSteinkohlenteerdie StoffePhenolundAnilinentdeckt hatte.William Henry Perkin– ein Schüler August Wilhelm von Hofmann – entdeckte im Jahr 1856 den ersten synthetischen Farbstoff – dasMauvein.Von Hofmann und Emanuel Verguin führten dasFuchsinin die Färberei ein.Johann Peter Grießentdeckte die Diazofarbstoffe. Die organische Chemie gewann nun zunehmende industrielle und wirtschaftliche Bedeutung.

Von 1896 bis 1961 erschien das vonArnold F. Holleman,ab 1898 auch in deutscher Sprache (ab von 1930 vonFriedrich Richter) herausgegebeneLehrbuch der organischen Chemie.

In den 1960er Jahren gelang die Herstellung vonValenzisomerendes Benzols durch aufwändige organische Synthesen. Bereits früher wurde mit dem 2-Norbornylkation ein nicht klassisches Carbokation gefunden, das fünf statt drei Bindungen zu anderen Atomen eingeht. 1973 wurde dann erstmals das pentagonal-pyramidale Hexamethylbenzol-Dikation mit sechsfach koordiniertem Kohlenstoff synthetisiert, dessen Struktur 2016 kristallographisch nachgewiesen werden konnte.[14]

Grundlagen der organischen Synthese in Schule und Studium

[Bearbeiten|Quelltext bearbeiten]

Die organische Chemie ist ein Teilbereich der Wissenschaft (Lehrbücher, Studium), deren Grundlagen im 19. Jahrhundert nur für eine kleine Schicht der Bevölkerung zugänglich war. Durch die Bildungsreformen im 20. Jahrhundert erhalten fast alle Schüler eine Wissensgrundlage in organischer Chemie. DerChemieunterrichtermöglicht dem Schüler die Teilhabe an kultureller Bildung, fördert das Verständnis für die Einordnung und Zusammenhänge bei Fragen, die chemisch relevant sind. Politiker, Juristen, Betriebswirte, Informatiker, Maschinenbauer benötigen in unserer Kultur Basiskenntnisse in organischer Chemie, um Zusammenhänge besser einordnen zu können.

Umwandlungen von organischen Stoffen im Labor

[Bearbeiten|Quelltext bearbeiten]

In früherer Zeit untersuchten die organischen Chemiker beispielsweise den Einfluss von konzentrierten Säuren (Schwefelsäure,Salpetersäure,Salzsäure) auf organische Stoffe wieEthanol,Baumwolle,Benzol.

Bei der Einwirkung von konzentrierter Schwefelsäure aufEthanolentsteht ein neuer Stoff, derDiethylether,der ganz andere Eigenschaften als das Ethanol hatte und als Narkosemittel und als neues Lösungsmittel Anwendung gefunden hat. Bei der Einwirkung von Salpetersäure und Schwefelsäure auf Baumwolle entsteht dieSchießbaumwolle,die als Explosivstoff, als Weichmacher und Lösemittel vonLacken,als Faser Verwendung fand.

Aus Benzol entsteht durch Einwirkung von konzentrierter Schwefelsäure und Salpetersäure dasNitrobenzol.Dieser Stoff ließ sich mit Reduktionsmitteln wie Eisenpulver und Salzsäure zuAnilinumwandeln. Anilin war das Ausgangsprodukt für viele neueFarbstoffe,die den Wohlstand unseres Gemeinwesens erhöhten.

Die Einwirkung von konzentrierter Schwefelsäure auf Baumwolle oder Holz ergibt Zuckermoleküle. Ähnlich wie in der anorganischen Chemie benutzten auch organische Chemiker bestimmte Nachweisreagenzien. Für organische Chemiker sind jedoch die funktionellen Gruppen im Molekül von großer Wichtigkeit. Mit Fehlingscher Lösung lassen sichAldehydgruppennachweisen.Funktionelle Gruppenkönnen dazu genutzt werden, zwei organische Moleküle mit unterschiedlichen funktionellen Gruppen zu verknüpfen, so dass ein größeres Molekül entsteht. Durch Kenntnis der organischen Reaktionsmechanismen, der Wahl der Reagenzien und dem Einsatz vonSchutzgruppenkann ein organischer Chemiker sehr komplexe organische Stoffe herstellen. Heutzutage könnenPeptideoderProteinemit mehr als 100Aminosäuren(mit einer molekularen Masse größer als 10.000) oder Kohlenhydrate sowie Pflanzeninhaltsstoffe (Terpene) synthetisiert werden. Kaum eine organische Reaktion verläuft mit 100 % Ausbeute, häufig ergeben sich auch unerwartete Nebenreaktionen, so dass komplexe Stoffe auf synthetischer Basis nur in geringer Menge (wenigen Milligramm bis mehreren Kilogramm) anfallen.

Viele organische Grundstoffe werden in der Industrie bei der Herstellung von Kunststoffen, Farbstoffen,Lösungsmittelnin sehr großen Mengen (1.000 bis 1.000.000 t) hergestellt. Spezialisierte Firmen verwenden die Industrieprodukte, um Feinchemikalien für Schule und Hochschule herzustellen. Der Organiker wünscht sich bei seinen Synthesen möglichst selektive Reagenzien, die nur eine bestimmte funktionelle Gruppe oxidieren, reduzieren oder mit einer anderen Gruppe verknüpfen.

Temperatureinfluss auf organische Reaktionen

[Bearbeiten|Quelltext bearbeiten]

Manchmal sind Stoffumsetzungen nur bei einer gesteigerten Temperatur möglich. Hohe Temperaturen werden in der organischen Chemie jedoch nur selten angewendet, da viele organische Stoffe durch eine erhöhte Temperatur zerstört werden. Die Reaktionstemperaturen in der organischen Chemie liegen daher meist zwischen Raumtemperatur und 150 °C. Die Wahl des Lösungsmittels und dessen Siedepunkt sind entscheidend für die Einstellung der Reaktionstemperatur. Eine Temperaturerhöhung um 10 °C verdoppelt in der Regel die Reaktionsgeschwindigkeit (RGT-Regel).

Beispiele für organische Reaktionen bei hoher Temperatur sind die Bildung vonAcetonausCalciumacetatund die Darstellung von 2,3-Dimethyl-butadien ausPinakol.

AusCalciumcarbonatundEssigsäurelässt sich das organische Salz Calciumacetat darstellen. Erhitzt man das Calciumacetat auf ca. 400 °C, so erhält man Aceton. Aceton und etwas Magnesium bilden den organischen Stoff Pinakol. Erhitzt man diesen Stoff bei 450 °C mit Aluminiumoxid, so bildet sich 2,3-Dimethyl-1,3-butadien. Stoffe mit Doppelbindungen lassen sich unter dem Einfluss einer Säure oder von Radikalbildnern polymerisieren, so dass ein Kunststoff mit ganz anderen Eigenschaften als das Monomer entsteht. Das polymerisierte 2,3-Dimethyl-1,3-butadien spielte eine wichtige Rolle als Ersatzstoff des früher sehr teurenKautschuks.Fritz Hofmannkonnte aus dem 2,3-Dimethyl-1,3-butadien den ersten synthetischenMethylkautschukherstellen, der im Jahr 1913 in den Handel kam, als der Preis für natürlichen Kautschuk im Handel Höchstwerte erreichte.

Aufarbeitung nach einer Umsetzung

[Bearbeiten|Quelltext bearbeiten]

Nach einer chemischen Umsetzung muss der organische Chemiker zunächst die stark reaktiven, ätzenden, brennbaren Stoffe wie konzentrierte Schwefelsäure,Natrium,Natriumhydrid,Lithiumaluminiumhydridmit geeigneten Stoffen in harmlose Verbindungen überführen. Darauf folgt eine Abtrennung der anorganischen Salze durch Ausschütteln imScheidetrichter– unter Zusatz von weiterem organischen Lösungsmittel und einer wässrigen Lösung. Die organische Phase wird über wasserfreien Salzen wieNatriumsulfatgetrocknet, dabei werden die letzten Reste von Wasser aus der organischen Phase entfernt. Das organische Lösungsmittel wird durchDestillation– häufig amRotationsverdampfer– entfernt. Der eingedampfte Rückstand enthält das Reaktionsprodukt. Sehr selten kommt es vor, dass bei einer organischen Reaktion nur ein chemisches Produkt entsteht, vielfach entstehen Stoffmischungen aus unterschiedlichen organischen Stoffen. Durch eine fraktionierte Destillation im Vakuum oder durch eineSäulenchromatographielassen sich die einzelnen Stoffe isolieren.

Chemische Strukturformel und Reaktionsmechanismus

[Bearbeiten|Quelltext bearbeiten]

Grundlage der Stoffkenntnis ist die chemischeStrukturformel.Dies ist der Bauplan eines organischen Moleküls. Die Strukturformel eines Stoffes muss immer gedanklich aus Ergebnissen der Stoffanalyse abgeleitet werden. Die Stoffanalyse umfasst mindestens den korrekten Kohlenstoff-, Wasserstoff-, Sauerstoff- und Stickstoffgehalt eines Moleküls (Elementaranalyse), die Art der funktionellen Gruppen und die Bestimmung dermolaren Masse.

Durch den kommerziellen Verkauf von Kernspinresonanzspektroskopen (NMR-Spektroskopie) undMassenspektrometernseit Anfang der sechziger Jahre an Hochschulen verkürzte sich die Zeit bis zur Strukturaufklärung von neuen komplizierten organischen Stoffen erheblich. Aus der Veränderung der Strukturformel vor und nach einer organischen Reaktion kann der Chemiker den Reaktionsmechanismus einer chemischen Reaktion ableiten. Alle organischen Moleküle, die einen ähnlichen Aufbau besitzen, können unter den gleichen Reaktionsbedingungen analoge Reaktionen eingehen. Der Chemiker kann durch die Kenntnis der Reaktionsmechanismen den Aufbau von neuen organischen Stoffen systematisch planen.

Eine sehr wichtige Reaktionsklasse bezieht sich auf den Ersatz eines Wasserstoffatoms im Molekül durch ein Halogen, eine Nitrogruppe, eine Sulfongruppe, man bezeichnet diese Reaktion als Substitution. Zu Beginn dieses Abschnittes wurden einige Beispiele aus dieser Reaktionsklasse genannt. Eine weitere wichtige Reaktionsklasse ist dieEliminierung.Die Abspaltung vonHydroxygruppenund Halogenen und der Ausbildung von Doppelbindungen im Molekül bezeichnet man als Eliminierung. Die Wasserabspaltung bei Pinakol zu 2,3-Dimethyl-1,3-butadien ist eine Eliminierung. Andere sehr wichtige Umsetzungen sind dieOxidationund dieReduktionvon organischen Molekülen. Die Reduktion von Nitrobenzol zuAnilindurch Zink oder Eisenspäne in Anwesenheit einer Säure oder die Oxidation von Ethanol zu Acetaldehyd oder Essigsäure mittels Kaliumpermanganat sind Beispiele für diese Reaktionsklassen.

Bedeutung der organischen Chemie

[Bearbeiten|Quelltext bearbeiten]
Geruchs- und Geschmacksstoffe der Erdbeere
Geruchsstoffe der Rose
Acetylsalicylsäure(Aspirin) – fast alle Arzneistoffe sind Organika

In fast allen Gütern unseres täglichen Gebrauchs sind Stoffe der organischen Chemie vorhanden. DieFarbstoffein Bildbänden, Zeitschriften, Verpackungsaufdrucken, dieKunststoffeim Großteil unserer Gebrauchsgüter in fast jedem Spielzeug, im Computergehäuse, in Rohrleitungen, Kabeln, Tragetaschen usw., die organischenKunstfasernim großen Teil unserer Kleidung, dieLackefür Hausfassaden, Autos, den Wohnbereich, dieReinigungsmittelvon einfachen Seifen bis komplexen Tensiden für Spezialanwendungen, dieArzneimittel,die Aroma- und Duftstoffe in Lebensmitteln und Blumen, die Lebensmittelkonservierungsstoffe, dieIonenaustauscherin Entsalzungsanlagen. Auch Holz und Baumwolle sind organische Stoffe, sie können durch ein reiches Vorkommen aus der Natur gewonnen werden. Die Mehrzahl der organischen Stoffe muss jedoch auf synthetischer Basis – hauptsächlich ausErdöl– von der chemischen Industrie erzeugt werden. Bei einer weltweiten Verknappung von Erdöl könnte man gegenwärtig nur bedingt andere fossile Rohstoffe wie Kohle oder Erdgas nutzen, um die organischen Stoffe des täglichen Bedarfs herzustellen. Ein hoher Preis für Erdöl führt zu Anstrengungen, Substitutionsverfahren auf Basis von Kohle und Erdgas zu entwickeln. Die Verfahren werden jedoch weniger rentabel als auf Basis von Erdöl sein. Bei sehr hohen Preisen für Erdöl könnte es zu Verknappungen im Bereich der Konsumgüter kommen.

Organisch-chemische Industrie

[Bearbeiten|Quelltext bearbeiten]

Basis für alle wichtigen synthetischen Stoffe sind die Grundchemikalien. Sie werden in großen Chemieanlagen ausErdöl,ErdgasoderKohlehergestellt.

Bis zum Zweiten Weltkrieg war die Kohle die Basis für die Grundchemikalien der organischen Chemie. Aus der Kohle konnteBenzol,Toluol,Xylol– Bausteine für organische Farbstoffe – gewonnen werden. Mit einem elektrischen Lichtbogen kann aus Kohle und Kalk dasKalziumcarbid(großtechnisch seit 1915) gewonnen werden. Kalziumcarbid lässt sich in Acetylen umwandeln und bildete damals nach Verfahren von Walter Reppe (Reppe Chemie) das Ausgangsprodukt für Acetaldehyd, Essigsäure, Aceton, Butylenglyckol, Butadien, Acrylsäure, Acrylnitril. Aus Kohle ließ sich auchMethanol(Synthese nach Pier) und Dieselöl (nach Bergius) gewinnen. Auch nach dem Zweiten Weltkrieg wurden viele Grundchemikalien noch aus Kohle hergestellt. Zwischen 1960 und 1970 wurden die Verfahren in den westlichen Industriestaaten durch modernere Verfahren auf Basis von Erdöl ersetzt.

Die Investitionskosten für derartige Anlagen sind beträchtlich, hauptsächlich sind in diesem Geschäftsbereich Firmen der Mineralölindustrie involviert. Früher wurden die chemischen Rohstoffe in die Industrieländer transportiert und dort chemisch zu Grundchemikalien umgewandelt. Noch in den achtziger Jahren waren die USA, Japan und die Bundesrepublik Deutschland die wichtigsten Chemieländer mit mehr als 50 % der Weltproduktion der organischen Grundstoffe. Im Zuge der weltweiten Verflechtungen und aus ökonomischen Gründen werden viele Anlagen in den Rohstoffländern (von Erdöl und Erdgas) errichtet.

Sehr wichtige Grundchemikalien sindEthylen(19,5 Millionen Tonnen in EU-27, 2011),Propen(14,3 Mio. t, EU-27, 2011),1,3-Butadien(2,8 Mio. t, EU-27, 2011),Methan,Benzol(7,4 Mio. t, EU-27, 2011),Toluol(1,5 Mio. t., EU-27, 2011),Xylol.[15][16]Aus diesen Grundchemikalien können weitere wichtige organische Grundstoffe hergestellt werden. Seit 2005 schwanken die Verkaufspreise in der EU für die organischen Grundstoffe erheblich, im Jahr 2010 stiegen die Verkaufspreise in der EU deutlich an.[17]

Aus Ethylen gewinnt die IndustriePolyethylen,Vinylacetat (nachfolgend Polyvinylacetat,Polyvinylalkohol,Polyvinylacetal),Acetaldehyd,Essigsäure,1,2-Dichlorethan(nachfolgendPolyvinylchlorid),Ethylenoxid,Ethanol(nachfolgendDiethylether).

Aus Propylen gewinnen Unternehmen Polypropylen,Isopropanol(nachfolgendAceton,Keten,Essigsäureanhydrid,Diketen,Essigsäureester,Acetylcellulose), Propylenoxid (nachfolgendPolyetherpolyole,Polyurethan),Allylchlorid(nachfolgendEpichlorhydrin,Glycerin,Allylalkohol),Acrylnitril(nachfolgendPolyacrylnitril,Acrylamid),Acrylsäure(nachfolgendPolyacrylate),Butanol.

Aus Methan gewinnt man Methanol (nachfolgendFormaldehydund Ethylenglycol), Acetylen, Methylchlorid, Methylenchlorid, Chloroform (nachfolgend Tetrafluorethylen, Teflon), Tetrachlorkohlenstoff.

Aus Benzol wird Ethylbenzol (nachfolgendStyrol), Dihydroxybenzol (Resorcin,HydrochinonundBrenzcatechin),Cumol(nachfolgendPhenol),Nitrobenzol(nachfolgendAnilin,Farbstoffe),Cyclohexan(nachfolgendCyclohexanon,Adipinsäure,Nylon) synthetisiert. Aus Xylol kannTerephthalsäure,Phthalsäureanhydridhergestellt werden.

Industrieprodukte, Spezialprodukte

[Bearbeiten|Quelltext bearbeiten]
Diese Schwimmhilfe besteht aus geschäumtemPolystyrol,umhüllt von gefärbtemPolyethylen,beides Kunststoffe.

Industrieprodukte sind überwiegend Mischungen von organischen Substanzen, die für eine anwendungstechnische Herstellung zubereitet worden sind.[18]Industrieprodukte werden in sehr großen Mengen (bis mehrere Mio. Tonnen) von der chemischen Industrie hergestellt, bei diesen Produkten sind die Rohstoffkosten sehr entscheidend für den Verkaufspreis.

Wichtige organische Industrieprodukte sind:Chemiefasern,Kunststoffe,Farbmittel,Kautschuk,Lösemittel,Tenside. Seit 2009 ist der Umsatz für Kunststoffe deutlich zurückgegangen.

Spezialprodukte sind organische Stoffe, die im Vergleich zu Industrieprodukten in deutlich geringerer Menge produziert werden. Der Verkaufspreis ist in geringerer Weise von Rohstoffkosten abhängig. Zu dieser Gruppe gehören beispielsweiseArzneimittel,Aromen undDuftstoffe,Enzyme,Lacke,Desinfektionsmittel,Diagnostika,Ionenaustauscherharze,Klebstoffe,Herbizide,Pflanzenschutzmittel,Waschmittel.[19]

Stoffgruppen der organischen Chemie

[Bearbeiten|Quelltext bearbeiten]

Es ergeben sich zwei Möglichkeiten für eine systematische Einteilung der einzelnen Substanzen der organischen Chemie in Stoffgruppen:

Einteilung nach funktioneller Gruppe

[Bearbeiten|Quelltext bearbeiten]

Einteilung nach Kohlenstoffgerüst

[Bearbeiten|Quelltext bearbeiten]
Cyclohexan,ein gesättigter, cyclischer Aliphat

SieheReaktionsmechanismus

Die Reaktionen in der organischen Chemie lassen sich größtenteils in die folgenden Grundtypen einordnen:

Darüber hinaus sind viele Reaktionen unter dem Namen ihres Entdeckers bekannt (sieheListe von Namensreaktionen).

Eine Einteilung nach dem entstehenden Bindungstyp bzw. Baustein findet sich in derListe von Reaktionen in der organischen Chemie.

Organisch-analytische Chemie

[Bearbeiten|Quelltext bearbeiten]

Die organische analytische Chemie beschäftigt sich mit der Untersuchung von organischen Stoffen. Dabei kann es darum gehen,

  • Substanzen zu identifizieren (Nachweis);
  • die Anwesenheit bzw. Abwesenheit von Verunreinigungen in Substanzen nachzuweisen (Bestimmung derReinheit);
  • die Mengenverhältnisse von Substanzen in Gemischen zu bestimmen (Gemisch);
  • die Molekülstruktur von Substanzen aufzuklären (Strukturaufklärung).

Wichtige Methoden zum Nachweis und zur Reinheitsbestimmung (qualitative Analyse) sind klassische nasschemische Farb- und Niederschlagsreaktionen, biochemische Immunassay-Methoden und eine Vielfalt vonchromatographischen Methoden.

Mengenverhältnisse in Gemischen (quantitative Analyse) festzustellen ist möglich durch nasschemischeTitrationenmit unterschiedlicher Endpunktsanzeige, durch biochemischeImmunassayverfahrenund durch eine Vielzahl von chromatographischen Verfahren so wie durch spektroskopische Methoden, von denen viele auch zur Strukturaufklärung herangezogen werden, wieInfrarotspektroskopie(IR),Kernspinresonanzspektroskopie(NMR),Ramanspektroskopie,UV-Spektroskopie.Zur Strukturaufklärung werden neben charakteristischen chemischen Reaktionen weiterhin dieRöntgenbeugungsanalyseund dieMassenspektrometrie(MS) verwendet.

  • Carl Schorlemmer:Ursprung und Entwicklung der organischen Chemie,Akademische Verlagsgesellschaft Geest & Portig, Leipzig, 1984.
  • H. Hart, L.E. Craine, D. J. Hart, C. M. Hadad, N. Kindler:Organische Chemie.3. Aufl. Wiley-VCH, Weinheim 2007,ISBN 978-3-527-31801-8.
  • K.P.C. Vollhardtund N.E. Schore:Organische Chemie.4. Auflage, Wiley-VCH, Weinheim 2005,ISBN 978-3-527-31380-8.
  • Heinz A. Staab:Hundert Jahre organische Strukturchemie.Angewandte Chemie 70(2), S. 37–41 (1958),doi:10.1002/ange.19580700202.
  • Joachim Buddrus:Grundlagen der Organischen Chemie,Walter de Gruyter, Berlin – New York, 3. Auflage 2003,ISBN 978-3-11-014683-7.
  • Hartmut Laatsch:Die Technik der organischen Trennungsanalyse,Georg Thieme Verlag Stuttgart/New York 1988,ISBN 3-13-722801-8.
  • dtv-atlas Chemie (Hans Breuer):Band 2: Organische Chemie und Kunststoffe,9. Auflage 2006, Deutscher Taschenbuch Verlag,ISBN 3-423-03218-9.
  • R. L. Shriner, R. C. Fuson, D. Y. Curtin, T. C. Morrill:The Systematic Identification of Organic Compounds – a laboratory manual6. Edition, John Wiley & Sons New York/Chichester/Brisbane/Toronto 1980,ISBN 0-471-78874-0.
Wikibooks: Organische Chemie für Schüler– Lern- und Lehrmaterialien
Wikibooks: Organische Chemie– Lern- und Lehrmaterialien
Wiktionary: organische Chemie– Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen
Commons:Organische Verbindung– Sammlung von Bildern, Videos und Audiodateien
  1. Furni Novi Philosophici I, Amsterdam 1648–1650, 66.
  2. Furni Novi Philosophici I, Amsterdam 1648–1650, 77.
  3. Furni Novi Philosophici I, Amsterdam 1648–1650, 99.
  4. Furni Novi Philosophici II, Amsterdam 1648–1650, 181.
  5. Furni Novi Philosophici II, Amsterdam 1648–1650, 71.
  6. Opera Chymica I, 50.
  7. Pogg. Ann. 31 (1831), 1–43.
  8. Otto Westphal,Theodor Wieland,Heinrich Huebschmann:Lebensregler. Von Hormonen, Vitaminen, Fermenten und anderen Wirkstoffen.Societäts-Verlag, Frankfurt am Main 1941 (=Frankfurter Bücher. Forschung und Leben.Band 1), S. 38.
  9. Gilberts Ann.40,247.
  10. Ann. Chim.Phys.24,264.
  11. Pogg. Ann.12,253 (1828).
  12. Hermann Kolbe, Ueber den natürlichen Zusammenhang der organischen mit den unorganischen Verbindungen, die wissenschaftliche Grundlage zu einer naturgemässen Classification der organischen chemischen Körper Ann. Chem.113,1860, 293.
  13. Friedrich August Kekulé:Ueber die gepaarten Verbindungen und die Theorie der mehratomigen Radikale.In:Liebigs Annalen der Chemie104/2, 1857, S. 129–256,doi:10.1002/jlac.18571040202
  14. Moritz Malischewski, K. Seppelt:Die Molekülstruktur des pentagonal-pyramidalen Hexamethylbenzol-Dikations im Kristall.In:Angewandte Chemie,129, 2017, S. 374,doi:10.1002/ange.201608795.
  15. Hans-Bernd Amecke:Chemiewirtschaft im Überblick,S. 74–75, VCH Verlagsgesellschaft mbH, Weinheim 1987,ISBN 3-527-26540-6.
  16. Europäische Kommission:Eurostat.
  17. VCI:Broschüren & Faltblätter.
  18. Hans-Bernd Amecke: Chemiewirtschaft im Überblick, S. 74–85, VCH Verlagsgesellschaft mbH, Weinheim 1987,ISBN 3-527-26540-6.
  19. Hans-Bernd Amecke: Chemiewirtschaft im Überblick, S. 109–129, VCH Verlagsgesellschaft mbH, Weinheim 1987,ISBN 3-527-26540-6.