Notebook link:here
I've been exploring LoRA and was seeking a straightforward implementation example. Many resources I've found focus on training large models and often utilize PEFT and the loralib package, as well as some basic implementations using CNNs or ANNs as outlined in sources like [[2]].
I came across some examples using LoRA with BERT, DistillBert, and others involving a Linear() layer. However, I'm specifically interested in applying it to GPT2, which uses a Conv1D() layer instead of Linear().
These days, the deep learning models have significantly more layers. One major challenge with fine-tuning large models like GPT is their size; they often don't fit into the limited VRAM available. To address this, researchers at Microsoft developed the Low Rank Adaptation (LoRA) technique. This method leverages the principle of low-rank matrix decomposition. It has shown that common pre-trained models can be effectively fine-tuned or adapted using just a small subset of their original parameters, instead of modifying every parameter. This approach not only reduces the VRAM requirements but can be just as effective for fine-tuning purposes as using the full set of parameters.
LoRA approximates a layer's weight changes during training, ΔW, in a low-rank format.
For instance, whereas in regular finetuning, we compute the weight updates of a weight matrix W as ΔW, in LoRA, we approximate ΔW through the matrix multiplication of two smaller matrices AB, as illustrated in the figure below. (If you are familiar with PCA or SVD, consider this as decomposing ΔW into A and B.)
With LoRA, the transformation in a particular layer originally involved just , where is the weight matrix and is the input. This operation now includes an additional term, resulting in .
Original Operation:The operation involves , a large matrix typically with dimensions like as seen in models like BERT or GPT-2. The computational complexity of this operation is , where is the dimension of (assuming square matrices for simplicity).
LoRA Operation:In the LoRA approach, and are smaller matrices with dimensions and respectively, where is much smaller than (indicating low rank). The product , therefore, has the same dimension as but is composed of two smaller matrices. This configuration reduces the computational load significantly:
- First, the product is computed, which involves a complexity of .
- Then, this product multiplies the input , resulting in , with a computational complexity similar to the original operation , but the initial reduction in complexity due to the lower rank matrices helps to manage overall computational demands effectively.
For instance, consider a weight matrix W in a specific layer, sized at 2,000x10,000, totaling 20 million parameters. If we opt for a rank r=3, we would set up two new matrices: a 2,000x3 matrix B and an 3x10,000 matrix A. Together, matrices A and B contain just 6000 + 30,000 = 36,000 parameters, making them over 555 times smaller than the 20 million parameters typically involved in standard fine-tuning with ΔW.
We'll use the News Articles dataset from Kaggle to explore experiments with GPT2. Below are some code snippets that show data loading and preprocessing steps.
!pipinstallpytorch-lightninglightningacceleratetransformers[torch]
importpandasaspd
importnumpyasnp
importre
importmath
fromtransformersimportTextDataset,DataCollatorForLanguageModeling
fromtransformersimportGPT2Tokenizer,GPT2LMHeadModel
fromtransformersimportTrainer,TrainingArguments
importtorch
importtorch.nnasnn
importtorch.nn.functionalasF
fromtorch.nnimportinit
Data Preprocess
defcleaning(s):
s=str(s)
s=re.sub('\s\W','',s)
s=re.sub('\W,\s','',s)
s=re.sub("\d+","",s)
s=re.sub('\s+','',s)
s=re.sub('[!@#$_]','',s)
s=s.replace("co","")
s=s.replace("https","")
s=s.replace("[\w*","")
returns
# dataset link https://www.kaggle.com/datasets/asad1m9a9h6mood/news-articles
df=pd.read_csv("./Articles.csv",encoding="ISO-8859-1")
df=df.dropna()
text_data=open('Articles.txt','w')
foridx,itemindf.iterrows():
article=cleaning(item["Article"])
text_data.write(article)
text_data.close()
defload_dataset(file_path,tokenizer,block_size=128):
dataset=TextDataset(
tokenizer=tokenizer,
file_path=file_path,
block_size=block_size,
)
returndataset
defload_data_collator(tokenizer,mlm=False):
data_collator=DataCollatorForLanguageModeling(
tokenizer=tokenizer,
mlm=mlm,
)
returndata_collator
Download pretrained GPT2 model
model=GPT2LMHeadModel.from_pretrained(model_name)
print(model)
GPT2LMHeadModel(
(transformer): GPT2Model(
(wte): Embedding(50257, 768)
(wpe): Embedding(1024, 768)
(drop): Dropout(p=0.1, inplace=False)
(h): ModuleList(
(0-11): 12 x GPT2Block(
(ln_1): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
(attn): GPT2Attention(
(c_attn): Conv1D()
(c_proj): Conv1D()
(attn_dropout): Dropout(p=0.1, inplace=False)
(resid_dropout): Dropout(p=0.1, inplace=False)
)
(ln_2): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
(mlp): GPT2MLP(
(c_fc): Conv1D()
(c_proj): Conv1D()
(act): NewGELUActivation()
(dropout): Dropout(p=0.1, inplace=False)
)
)
)
(ln_f): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
)
(lm_head): Linear(in_features=768, out_features=50257, bias=False)
)
Contrary to the examples referenced, this model doesn't use a Linear() layer but instead features a Conv1D() layer, which is mathematically equivalent. The concept remains the same, though the implementation differs. Let's proceed by creating a LoRA wrapper specifically tailored for it.
Note that we have frozen the base models parameters so only lora weights get trained.
Let's now create a LoRa wrapper for Conv1D.
Conv1D Lora Wrapper
importtorch
importtorch.nnasnn
importtorch.nn.functionalasF
importmath
classLoRAConv1DWrapper(nn.Module):
"""
A wrapper module that applies LORA to the weights of a convolutional layer.
"""
def__init__(self,module:nn.Module,rank:int):
"""
Initializes the LoRAConv1DWrapper instance.
Parameters:
module (nn.Module): The base module whose weights are to be adapted.
rank (int): The rank for the low-rank matrices A and B. If set to 0, LoRA is effectively disabled.
"""
super().__init__()
ifrank<0:
raiseValueError("Rank must be a non-negative integer")
self.base_module=module
out_features,in_features=self.base_module.weight.shape
self.lora_rank=rank
ifself.lora_rank>0:
self.W_A=nn.Parameter(
torch.zeros((self.lora_rank,in_features)),
requires_grad=True)
self.W_B=nn.Parameter(
torch.zeros((out_features,self.lora_rank)),
requires_grad=True)
# self.print_trainable_parameters()
# freeze the base module's parameters, only focus on updating lora weights
self.base_module.weight.requires_grad=False
ifself.base_module.biasisnotNone:
self.base_module.bias.requires_grad=False
else:
print(f"Creating LoRAConv1DWrapper with no rank adaptation: rank{self.lora_rank}")
self.reset_parameters()
defreset_parameters(self):
"""
Initializes or resets the parameters of the LoRA matrices A and B to their default values.
This method typically mirrors the initialization logic of the base module.
"""
ifself.lora_rank>0:
# initialize A matrix
nn.init.kaiming_uniform_(self.W_A,a=math.sqrt(5))
# initialize B matrix to 0
nn.init.zeros_(self.W_B)
defprint_trainable_parameters(self):
"""
Prints the number of trainable parameters in the base module and the additional parameters added by LoRA.
"""
base_params=sum(p.numel()forpinself.base_module.parameters())
lora_params=sum(p.numel()forpin[self.W_A,self.W_B])
print(f"Trainable parameters in base module:{base_params}")
print(f"Trainable parameters in LoRA (base module frozen):{lora_params}")
defforward(self,x:torch.Tensor)->torch.Tensor:
"""
Performs a forward pass through the LoRAConv1DWrapper, applying low-rank adaptations to the base module's weights.
Parameters:
x (torch.Tensor): The input tensor to the module.
Returns:
torch.Tensor: The output of the module after applying the low-rank adapted forward pass.
"""
ifself.lora_rank>0:
# Compute the base module's forward pass with adapted weights
# print(self.W_A.shape)
# print(self.W_B.shape)
adapted_weight=self.base_module.weight+self.W_B@self.W_A
returnF.linear(x,adapted_weight.T,self.base_module.bias)
else:
# Perform a standard forward pass using the base module's original weights and bias
returnF.linear(x,self.base_module.weight,self.base_module.bias)
defupdate_model_layers(model):
# Set LoRA hyperparameters
lora_r=8
lora_alpha=16
lora_dropout=0.05
# flag to apply LoRA to Transformer layers
lora_attn=True
# flag to apply LoRA to MLP layers
lora_mlp=True
# Apply LoRA modifications to the GPT2 layers
forblockinmodel.transformer.h:
iflora_attn:
block.attn.c_attn=LoRAConv1DWrapper(block.attn.c_attn,rank=2)
block.attn.c_proj=LoRAConv1DWrapper(block.attn.c_proj,rank=2)
iflora_mlp:
block.mlp.c_fc=LoRAConv1DWrapper(block.mlp.c_fc,rank=2)
block.mlp.c_proj=LoRAConv1DWrapper(block.mlp.c_proj,rank=2)
returnmodel
print(update_model_layers(model))
GPT2LMHeadModel(
(transformer): GPT2Model(
(wte): Embedding(50257, 768)
(wpe): Embedding(1024, 768)
(drop): Dropout(p=0.1, inplace=False)
(h): ModuleList(
(0-11): 12 x GPT2Block(
(ln_1): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
(attn): GPT2Attention(
(c_attn): LoRAConv1DWrapper(
(base_module): Conv1D()
)
(c_proj): LoRAConv1DWrapper(
(base_module): Conv1D()
)
(attn_dropout): Dropout(p=0.1, inplace=False)
(resid_dropout): Dropout(p=0.1, inplace=False)
)
(ln_2): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
(mlp): GPT2MLP(
(c_fc): LoRAConv1DWrapper(
(base_module): Conv1D()
)
(c_proj): LoRAConv1DWrapper(
(base_module): Conv1D()
)
(act): NewGELUActivation()
(dropout): Dropout(p=0.1, inplace=False)
)
)
)
(ln_f): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
)
(lm_head): Linear(in_features=768, out_features=50257, bias=False)
)
deftrain(train_file_path,model_name,
output_dir,
overwrite_output_dir,
per_device_train_batch_size,
num_train_epochs,
save_steps):
"""
Trains a GPT-2 model using the Hugging Face Transformers library.
This function initializes a model, tokenizer, and data collator. It sets up training arguments and
creates a Trainer instance to manage the training process.
Parameters:
- train_file_path (str): The file path to the training dataset.
- model_name (str): The name of the pre-trained GPT-2 model to use. This can be a model identifier
from Hugging Face's model hub (e.g.,'gpt2','gpt2-medium') or the path to a local directory containing model files.
- output_dir (str): The directory where the model checkpoints will be saved during training.
- overwrite_output_dir (bool): Set to True to overwrite the output directory, or False to continue training from the last checkpoint.
- per_device_train_batch_size (int): Batch size per device during training.
- num_train_epochs (int): Total number of training epochs.
- save_steps (int): The number of training steps to perform before saving a checkpoint.
Returns:
None
Saves the tokenizer and model to the specified output directory. Trains the model using the
given dataset, saving the final model configuration to the output directory after training.
"""
tokenizer=GPT2Tokenizer.from_pretrained(model_name)
train_dataset=load_dataset(train_file_path,tokenizer)
data_collator=load_data_collator(tokenizer)
tokenizer.save_pretrained(output_dir)
model=GPT2LMHeadModel.from_pretrained(model_name)
# # comment this to skip LoRA
model=update_model_layers(model)
model.save_pretrained(output_dir)
training_args=TrainingArguments(
output_dir=output_dir,
overwrite_output_dir=overwrite_output_dir,
per_device_train_batch_size=per_device_train_batch_size,
num_train_epochs=num_train_epochs,
)
trainer=Trainer(
model=model,
args=training_args,
data_collator=data_collator,
train_dataset=train_dataset,
)
trainer.train()
trainer.save_model()
As we can see Conv1D has successfully been replaced by the LoRAConv1DWrapper layer.
# some constants
train_file_path="Articles.txt"
model_name='gpt2'
output_dir='result'
overwrite_output_dir=False
per_device_train_batch_size=8
num_train_epochs=12
save_steps=500
train(
train_file_path=train_file_path,
model_name=model_name,
output_dir=output_dir,
overwrite_output_dir=overwrite_output_dir,
per_device_train_batch_size=per_device_train_batch_size,
num_train_epochs=num_train_epochs,
save_steps=save_steps
)
Training without Lora 5 Epochs
The initial loss seems to be lower than lora because all the weights are getting updated
Training with Lora 5 epochs
Let's attempt to lengthen the epochs using Lora; this might help reduce the loss further.
Training with Lora 12 Epochs
Training without Lora starts with a lower loss compared to using Lora, probably because all the weights are updated. It's suitable for the GPU, but it might need more epochs.
References
[2]https://lightning.ai/lightning-ai/studios/code-lora-from-scratch
[3]https://towardsdatascience.com/implementing-lora-from-scratch-20f838b046f1
[4] LoRA explained (and a bit about precision and quantization)
https://youtu.be/t509sv5MT0w