Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Microbial reduction of uranium

Abstract

REDUCTION of the soluble, oxidized form of uranium, U(VI), to insoluble U(IV) is an important mechanism for the immobilization of uranium in aquatic sediments and for the formation of some uranium ores1–10.U(VI) reduction has generally been regarded as an abiological reaction in which sulphide, molecular hydrogen or organic compounds function as the reductant1,2,5,11.Microbial involvement in U(VI) reduction has been considered to be limited to indirect effects, such as microbial metabolism providing the reduced compounds for abiological U(VI) reduction and microbial cell walls providing a surface to stimulate abiological U(VI) reduction1,12,13.We report here, however, that dissimilatory Fe(III)-reducing microorganisms can obtain energy for growth by electron transport to U(VI). This novel form of microbial metabolism can be much faster than commonly cited abiological mechanisms for U(VI) reduction. Not only do these findings expand the known potential terminal electron acceptors for microbial energy transduction, they offer a likely explanation for the deposition of uranium in aquatic sediments and aquifers, and suggest a method for biological remediation of environments contaminated with uranium.

This is a preview of subscription content,access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Jensen, M. L.Econ. Geol.53,598–616 (1958).

    Article CAS Google Scholar

  2. Hostetler, P. B. & Garrels, R. M.Econ. Geol.57,137–167 (1962).

    Article CAS Google Scholar

  3. Turekian, K. K. & Bertine, K. K.Nature229,250–251 (1971).

    Article ADS CAS Google Scholar

  4. Bonatti, E., Fisher. D. E., Joensuu, O. & Rydell, H. S.Geochim. cosmochim. Acta35,189–201 (1971).

    Article ADS CAS Google Scholar

  5. Langmuir, D.Geochim. cosmochim. Acta42,547–569 (1978).

    Article ADS CAS Google Scholar

  6. Kadko, D.Earth planet. Sci. Lett.51,115–131 (1980).

    Article ADS CAS Google Scholar

  7. Colley, S. & Thomson, J.Geochim. cosmochim. Acta49,2339–2348 (1985).

    Article ADS CAS Google Scholar

  8. Cochran, J. K., Carey, A. E., Sholkovitz, E. R. & Surprenant, L. D.Geochim. cosmochim. Acta50,663–680 (1986).

    Article ADS CAS Google Scholar

  9. Anderson, R. F., LeHuray, A. P., Fleisher, M. Q. & Murray, J. W.Geochim. cosmochim. Acta53,2205–2213 (1989).

    Article ADS CAS Google Scholar

  10. Wallace, H. E.et al.Geochim. cosmochim. Acta52,1557–1569 (1988).

    Article ADS CAS Google Scholar

  11. Maynard, J. B.Geochemistry of Sedimentary Ore Deposits(Springer, New York, 1983).

    Book Google Scholar

  12. Taylor, G. H. inBiogeochemical Cycling of Mineral-Forming Elements(eds Trudinger, P. A. & Swaine, D. J.) 485–514 (Elsevier, New York, 1979).

    Book Google Scholar

  13. Mohagheghi, A., Updegraff, D. M. & Goldhaber, M. B.Geomicrobiol. J.4,153–173 (1985).

    Article CAS Google Scholar

  14. Ehrlich, H. L.Geomicrobiology(Marcel Dekker, New York, 1990).

    Google Scholar

  15. Ghiorse, W. C. inBiology of Anaerobic Microorganisms(ed. Zehnder, A. J. B.) 305–331 (Wiley, New York, 1988).

    Google Scholar

  16. Lovley, D. R., Stolz, J. F., Nord, G. L. & Phillips, E. J. P.Nature330,252–254 (1987).

    Article ADS CAS Google Scholar

  17. Lovley, D. R. & Phillips, E. J. P.Appl. environ. Microbiol.54,1471–1480 (1988).

    Google Scholar

  18. Lovley, D. R., Phillips, E. J. P. & Lonergan, D. J.Appl. environ. Microbiol.55,700–706 (1989).

    CAS PubMed PubMed Central Google Scholar

  19. Myers, C. R. & Nealson, K. H.Science240,1319–1321 (1988).

    Article ADS CAS Google Scholar

  20. Woolfolk, C. A. & Whiteley, H. R.J. Bacteriol.84,647–658 (1962).

    CAS PubMed PubMed Central Google Scholar

  21. Lovley, D. R. & Phillips, E. J. P.Appl. environ. Microbiol.53,2636–2641 (1987).

    CAS PubMed PubMed Central Google Scholar

  22. Anderson, R. F., Fleisher, M. Q. & LeHuray, A. P.Geochim. cosmochim. Acta53,2215–2224 (1989).

    Article ADS CAS Google Scholar

  23. Anderson, R. F.Uranium3,145–164 (1987).

    CAS Google Scholar

  24. Breger, I. A. inFormation of Uranium Ore Deposits99–124 (International Atomic Energy Agency, Vienna, 1974).

    Google Scholar

  25. Nakashima, S., Disnar, J. R., Perruchot, A. & Trichet, J.Geochim. cosmochim. Acta48,2321–2329 (1984).

    Article ADS CAS Google Scholar

  26. Hoffman, B. A.Chem. Geol.81,55–81 (1990).

    Article ADS Google Scholar

  27. Harrison, R. K.G.B. geol. Surv. Bull.52,1–26 (1975).

    CAS Google Scholar

  28. Lovley, D. R., Chapelle, F. H. & Phillips, E. J. P.Geology18,954–957 (1990).

    Article ADS CAS Google Scholar

  29. Lovley, D. R.et al.Nature339,297–299 (1989).

    Article ADS CAS Google Scholar

  30. Lovley, D. R. & Lonergan, D. J.Appl. environ. Microbiol.56,1858–1864 (1990).

    CAS PubMed PubMed Central Google Scholar

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lovley, D., Phillips, E., Gorby, Y.et al.Microbial reduction of uranium. Nature350,413–416 (1991). https://doi.org/10.1038/350413a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:https://doi.org/10.1038/350413a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for theNature Briefingnewsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing