Skip to main content
Log in

Crossing Numbers and Combinatorial Characterization of Monotone Drawings of \(K_n\)

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

In 1958, Hill conjectured that the minimum number of crossings in a drawing of \(K_n\) is exactly \(Z(n) = \frac{1}{4} \big \lfloor \frac{n}{2}\big \rfloor \big \lfloor \frac{n-1}{2}\big \rfloor \big \lfloor \frac{n-2}{2}\big \rfloor \big \lfloor \frac{n-3}{2}\big \rfloor \). Generalizing the result by Ábrego et al. for 2-page book drawings, we prove this conjecture for plane drawings in which edges are represented by \(x\)-monotone curves. In fact, our proof shows that the conjecture remains true for \(x\)-monotone drawings of \(K_n\) in which adjacent edges may cross an even number of times, and instead of the crossing number we count the pairs of edges which cross an odd number of times. We further discuss a generalization of this result to shellable drawings, a notion introduced by Ábrego et al. We also give a combinatorial characterization of several classes of \(x\)-monotone drawings of complete graphs using a small set of forbidden configurations. For a similar local characterization of shellable drawings, we generalize Carathéodory’s theorem to simple drawings of complete graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Singapore)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Ábrego, B.M., Aichholzer, O., Fernández-Merchant, S., Ramos, P., Salazar, G.: The 2-page crossing number of \(K_n\). Discrete Comput. Geom. 49(4), 747–777 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ábrego, B.M., Aichholzer, O., Fernández-Merchant, S., Ramos, P., Salazar, G.: More on the crossing number of \(K_n\): monotone drawings. In: Proceedings of the VII Latin-American Algorithms, Graphs and Optimization Symposium (LAGOS), Playa del Carmen, Mexico, 2013, Electronic Notes in Discrete Mathematics, vol. 44, pp. 411–414 (2013)

  3. Ábrego, B.M., Aichholzer, O., Fernández-Merchant, S., Ramos, P., Salazar, G.: Shellable drawings and the cylindrical crossing number of \(K_n\). http://arxiv.org/abs/1309.3665v2 (2013)

  4. Ábrego, B.M., Balogh, J., Fernández-Merchant, S., Leaños, J., Salazar, G.: An extended lower bound on the number of (\({\le }k\))-edges to generalized configurations of points and the pseudolinear crossing number of \(K_n\). J. Combin. Theory Ser. A 115(7), 1257–1264 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  5. Ábrego, B.M., Cetina, M., Fernández-Merchant, S., Leaños, J., Salazar, G.: On \({\le }k\)-edges, crossings, and halving lines of geometric drawings of \(K_n\). Discrete Comput. Geom. 48, 192–215 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  6. Ábrego, B.M., Fernández-Merchant, S.: A lower bound for the rectilinear crossing number. Graphs Combin. 21, 293–300 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  7. Ábrego, B.M., Fernández-Merchant, S., Leaños, J., Salazar, G.: A central approach to bound the number of crossings in a generalized configuration. In: The IV Latin-American Algorithms. Graphs, and Optimization Symposium. Electronic Notes in Discrete Mathematics, vol. 30, pp. 273–278. Elsevier Sci. B. V, Amsterdam (2008)

  8. Aichholzer, O., García, J., Orden, D., Ramos, P.: New lower bounds for the number of (\({\le }k\))-edges and the rectilinear crossing number of \(K_n\). Discrete Comput. Geom. 38(1), 1–14 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  9. Aichholzer, O., Krasser, H.: Abstract order type extension and new results on the rectilinear crossing number. Comput. Geom. 36(1), 2–15 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  10. Balko, M., Kynčl, J., Fulek, R.: Crossing numbers and combinatorial characterization of monotone drawings of complete graphs. http://arxiv.org/abs/1312.3679v3 (2014)

  11. Balogh, J., Salazar, G.: \(k\)-sets, convex quadrilaterals, and the rectilinear crossing number of \(K_n\). Discrete Comput. Geom. 35(4), 671–690 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  12. Blažek, J., Koman, M.: A minimal problem concerning complete plane graphs. In: Theory of Graphs and its Applications, Proceedings of the Symposium held in Smolenice in June 1963, pp. 113–117. Publ. House Czechoslovak Acad. Sci., Prague (1964)

  13. Bokowski, J., Sturmfels, B.: An infinite family of minor-minimal nonrealizable 3-chirotopes. Math. Z. 200(4), 583–589 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  14. Canny, J.: Some algebraic and geometric computations in PSPACE. In: STOC ’88: Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, pp. 460–469. ACM, New York (1988)

  15. de Klerk, E., Pasechnik, D., Schrijver, A.: Reduction of symmetric semidefinite programs using the regular \(\ast \)-representation. Math. Program. 109(2–3, Ser. B), 613–624 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  16. Felsner, S.: Geometric graphs and arrangements. In: Some Chapters from Combinatorial Geometry. Advanced Lectures in Mathematics. Friedr. Vieweg & Sohn, Wiesbaden (2004). ISBN:3-528-06972-4

  17. Felsner, S., Weil, H.: Sweeps, arrangements and signotopes. Discrete Appl. Math. 109(1–2), 67–94 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  18. Fulek, R., Pelsmajer, M.J., Schaefer, M., Štefankovič, D.: Adjacent crossings do matter. J. Graph Algorithms Appl. 16(3), 759–782 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  19. Fulek, R., Pelsmajer, M.J., Schaefer, M., Štefankovič, D.: Hanani–Tutte, monotone drawings, and level-planarity. In: Pach, J. (ed.) Thirty Essays on Geometric Graph Theory, pp. 263–287. Springer, New York (2013). ISBN:978-1-4614-0109-4

  20. Goodman, J.E.: Proof of a conjecture of Burr, Grünbaum, and Sloane. Discrete Math. 32, 27–35 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  21. Goodman, J.E., Pollack, R.: Multidimensional sorting. SIAM J. Comput. 12(3), 484–507 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  22. Goodman, J.E., Pollack, R.: Semispaces of configurations, cell complexes of arrangements. J. Combin. Theory Ser. A 37, 257–293 (1984)

    Article  MathSciNet  Google Scholar 

  23. Guy, R.K.: A combinatorial problem. Nabla (Bull. Malayan Math. Soc) 7, 68–72 (1960)

    Google Scholar 

  24. Guy, R.K.: Crossing numbers of graphs. In: Graph Theory and Applications. Lecture Notes in Mathematic, vol. 303, pp. 111–124. Springer, Berlin (1972)

  25. Harary, F., Hill, A.: On the number of crossings in a complete graph. Proc. Edinburgh Math. Soc. (2) 13, 333–338 (1963)

    Article  MathSciNet  Google Scholar 

  26. Harborth, H.: Special numbers of crossings for complete graphs. Discrete Math. 244, 95–102 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  27. Knuth, D.E.: Axioms and Hulls. Lecture Notes in Computer Science, vol. 606. Springer, Berlin (1992)

    MATH  Google Scholar 

  28. Kynčl, J.: Simple realizability of complete abstract topological graphs in P. Discrete Comput. Geom. 45(3), 383–399 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  29. Lovász, L., Vesztergombi, K., Wagner, U., Welzl, E.: Convex quadrilaterals and \(k\)-sets. In: Towards a Theory of Geometric Graphs. Contemporary Mathematics, vol. 7034, pp. 139–148. American Mathematical Society, Providence, RI (2004)

  30. Mnëv, N.E.: The universality theorems on the classification problem of configuration varieties and convex polytopes varieties. In: Topology and Geometry–Rohlin Seminar. Lecture Notes in Mathematics, vol. 1346, pp. 527–543. Springer, Berlin (1988)

  31. Pach, J., Tóth, G.: Monotone crossing number. In: Graph drawing. Lecture Notes in Computer Science, vol. 7034, pp. 278–289. Springer, Berlin (2012)

  32. Pan, S., Richter, B.R.: The crossing number of \(K_{11}\) is 100. J. Graph Theory 56, 128–134 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  33. Pelsmajer, M.J., Schaefer, M., Štefankovič, D.: Odd crossing number and crossing number are not the same. Discrete Comput. Geom. 39(1–3), 442–454 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  34. Pelsmajer, M.J., Schaefer, M., Štefankovič, D.: Removing even crossings on surfaces. Eur. J. Combin. 30(7), 1704–1717 (2009)

    Article  MATH  Google Scholar 

  35. Ramos, P.: Recent developments on the crossing number of the complete graph. Invited Talk at the XV Spanish Meeting on Computational Geometry, Seville (2013)

  36. Richter, R.B., Thomassen, C.: Relations between crossing numbers of complete and complete bipartite graphs. Amer. Math. Monthly 104(2), 131–137 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  37. Schaefer, M.: Complexity of some geometric and topological problems. In: Graph Drawing 2009. Lecture Notes in Computer Science, vol. 5849, pp. 334–344. Springer, Berlin (2010)

  38. Schaefer, M.: The graph crossing number and its variants: a survey. Electron. J. Combin. Dyn. Surv. 21 (2014)

  39. Schaefer, M.: Hanani-Tutte and related results. To appear in Bolyai Memorial Volume

  40. Streinu, I.: Clusters of stars. In: Proceedings of 13th Annual ACM Symposium on Computational Geometry, pp. 439–441. ACM, New York (1997)

  41. Szekeres, G., Peters, L.: Computer solution to the 17-point Erdős-Szekeres problem. ANZIAM J. 48, 151–164 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  42. Tóth, G.: Note on the pair-crossing number and the odd-crossing number. Discrete Comput. Geom. 39(4), 791–799 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  43. Valtr, P.: On the pair-crossing number. In: Combinatorial and Computational Geometry. Mathematical Sciences Research Institute Publications, vol. 52, pp. 569–575. Cambridge University Press, Cambridge (2005)

Download references

Acknowledgments

The authors were supported by the grant GAČR GIG/11/E023 GraDR in the framework of ESF EUROGIGA program. The first and the third author were also supported by the Grant Agency of the Charles University, GAUK 1262213, and by the grant SVV-2013-267313 (Discrete Models and Algorithms). The third author was also partially supported by ERC Advanced Research Grant no 267165 (DISCONV). The second author gratefully acknowledges support from the Swiss National Science Foundation Grant PBELP2_146705. We would like to thank Pavel Valtr for initializing the research which led to this problem and Marek Eliáš for developing visualization tools that were helpful during the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Kynčl.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balko, M., Fulek, R. & Kynčl, J. Crossing Numbers and Combinatorial Characterization of Monotone Drawings of \(K_n\) . Discrete Comput Geom 53, 107–143 (2015). https://doi.org/10.1007/s00454-014-9644-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-014-9644-z

Keywords

Mathematics Subject Classification

Navigation