Skip to main content

B Chromosomes

  • Chapter
  • First Online:
Chromosome Structure and Aberrations

Abstract

Supernumerary B chromosomes (Bs) have been observed in over 2000 plant, animal, and fungal species. Bs are nonessential and may be deleterious to the host genome at high copy numbers. In order to maintain their presence in a population, they frequently display non-Mendelian inheritance via mitotic or meiotic drive mechanisms. Advances in sequencing technology have recently enabled researchers to confirm earlier assumptions that Bs often arise as amalgamations of normal chromosomes. Because Bs are nonessential, they tend to accumulate transposons, repetitive DNA, and organellar DNA. Some Bs have also been shown to harbor transcribed genes and noncoding loci. Not surprisingly, the presence and/or transcription of Bs may affect transcription of the host genome, and much effort has been expended investigating this possibility. The dispensable nature of Bs makes them excellent tools for studying centromere biology, as well as making them amenable to serving as platforms for genetic engineering. Here, we review the origin, composition, inheritance mechanisms, transcription, and potential uses of Bs from multiple kingdoms.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Singapore)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Singapore)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 149.99
Price excludes VAT (Singapore)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info
Hardcover Book
EUR 149.99
Price excludes VAT (Singapore)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adnađević T, Jovanović V, Blagojević J et al (2014) Possible influence of B chromosomes on genes included in immune response and parasite burden inApodemus flavicollis.PLoS One 9:e112260. doi:10.1371/journal.pone.0112260

    Article PubMed PubMed Central CAS Google Scholar

  • Alfenito MR, Birchler JA (1993) Molecular characterization of a maize B chromosome centric sequence. Genetics 135:589–597

    CAS PubMed PubMed Central Google Scholar

  • Ananiev E, Phillips R, Rines H (1998) Chromosome – specific molecular organization of maize (Zea maysL.) centromeric regions. Proc Natl Acad Sci U S A 95:13073–13078

    Article CAS PubMed PubMed Central Google Scholar

  • Banaei–Moghaddam A, Schubert V, Kumke K et al (2012) Nondisjunction in favor of a chromosome: the mechanism of rye B chromosome drive during pollen mitosis. Plant Cell 24:4124–4134

    Article PubMed PubMed Central CAS Google Scholar

  • Banaei–Moghaddam A, Meier K, Karimi–Ashtiyani R, Houben A (2013) Formation and expression of pseudogenes on the B chromosome of rye. Plant Cell 25:2536–2544

    Article PubMed PubMed Central CAS Google Scholar

  • Bauerly E, Hughes S, Vietti D et al (2014) Discovery of supernumerary B chromosomes inDrosophila melanogaster.Genetics 196:1007–1016

    Article CAS PubMed PubMed Central Google Scholar

  • Beckett JB (1978) B-A translocations in maize. J Hered 69:27–36

    Google Scholar

  • Beckett JB (1994) Locating recessive genes to chromosome arm with B-A translocations. In: Freeling M, Walbot V (eds) The maize handbook. Springer–Verlag, New York, pp 315–327

    Chapter Google Scholar

  • Belyanin A, Boyeskorov G, Lyapunova E (1994) B–chromosomes inApodemus flavicollisfrom Eastern Europe. Pol Ecol Stud 20:523–526

    Google Scholar

  • Beukeboom L (1994) Bewildering Bs: an impression of the 1st B–chromosome conference. Heredity 73:328–336

    Article Google Scholar

  • Beukeboom LW, Werren JH (1993) Deletion analysis of the selfish B chromosome, paternal Sex ratio (PSR), in the parasitic waspNasonia vitripennis.Genetics 133:637–648

    CAS PubMed PubMed Central Google Scholar

  • Birchler JA (1994) Dosage analysis using B-A translocations. In: Freeling M, Walbot V (eds) The maize handbook. Springer–Verlag, New York, pp 328–329

    Chapter Google Scholar

  • Birchler JA (2015) Engineered minichromosomes in plants. Chromosome Res 23:77. doi:10.1007/s10577-014-9454-4

    Article CAS PubMed Google Scholar

  • Blunden R, Wilkes TJ, Forster JW, Jimenez MM (1993) Identification of the E3900 family, a second family of rye B chromosome specific repeated sequences. Genome 36:706–711

    Article CAS PubMed Google Scholar

  • Bougourd SM, Parker JS (1979) The B–chromosome system ofAllium schoenoprasum.Chromosoma 75:369–383

    Article Google Scholar

  • Burt A, Trivers R (1998) Selfish DNA and breeding system in flowering plants. Proc Biol Sci 265:141–146

    Article PubMed Central Google Scholar

  • Camacho J, Shaw M, López-León M et al (1997) Population dynamics of a selfish B chromosome neutralized by the standard genome in the grasshopperEyprepocnemis plorans.Am Nat 149:1030–1050

    Article CAS PubMed Google Scholar

  • Camacho JPM, Sharbel TF, Beukeboom LW (2000) B–chromosome evolution. Phil Trans R Soc Lond B 355:163–178

    Article CAS Google Scholar

  • Camacho J, Schmid M, Cabrero J (2011) B chromosomes and sex in animals. Sex Dev 5:155–166

    Article CAS PubMed Google Scholar

  • Carchilan M, Delgado M, Ribeiro T et al (2007) Transcriptionally active heterochromatin in rye B chromosomes. Plant Cell 19:1738–1749

    Article CAS PubMed PubMed Central Google Scholar

  • Carchilan M, Kumke K, Mikolajewski S, Houben A (2009) Rye B chromosomes are weakly transcribed and might alter the transcriptional activity of A chromosome sequences. Chromosoma 118:607–616

    Article CAS PubMed Google Scholar

  • Carlson WR (1969) Factors affecting preferential fertilization in maize. Genetics 62:543–554

    CAS PubMed PubMed Central Google Scholar

  • Carlson WR (1974) B chromosomes induce nondisjunction in 9 B9pollen. Maize Gen Coop Newsl 48:81

    Google Scholar

  • Carlson WR, Chou T–S (1981) B chromosome nondisjunction in corn: control by factors near the centromere. Genetics 97:379–389

    CAS PubMed PubMed Central Google Scholar

  • Carlson WR, Roseman R (1992) A new property of the maizeBchromosome. Genetics 131:211–223

    CAS PubMed PubMed Central Google Scholar

  • Carter CR (1978) The cytology ofBrachyscome.II. The subgenus Metabrachycome: a general survey. Aust J Bot 26:699–706

    Article Google Scholar

  • Cheng YM, Lin BY (2003) Cloning and characterization of maize B chromosome sequences derived from microdissection. Genetics 164:299–310

    CAS PubMed PubMed Central Google Scholar

  • Cheng YMM, Lin BYY (2004) Molecular organization of large fragments in the maize B chromosome: indication of a novel repeat. Genetics 166:1947–1961

    Article CAS PubMed PubMed Central Google Scholar

  • Chien YL, Lin CY, Lo KL, Cheng YM (2015) Development and mapping of CL – repeat display markers on the maize B chromosome. Cytogenet Genome Res 144:227. doi:10.1159/000370173

    Article CAS Google Scholar

  • Clayton A, Hazzalin C, Mahadevan L (2006) Enhanced histone acetylation and transcription: a dynamic perspective. Mol Cell 23:289–296

    Article CAS PubMed Google Scholar

  • Dhar M, Friebe B, Koul A, Gill B (2002) Origin of an apparent B chromosome by mutation, chromosome fragmentation and specific DNA sequence amplification. Chromosoma 111:332–340

    Article CAS PubMed Google Scholar

  • Dherawattana A, Sadanaga K (1973) Cytogenetics of a crown rust – resistant hexaploid Oat with 42 + 2 fragment chromosomes. Crop Sci 13:591–594

    Article Google Scholar

  • Donald T, Leach C, Clough A, Timmis J (1995) Ribosomal RNA genes and the B chromosome ofBrachyscome dichromosomatica.Heredity 74:556–561

    Article CAS PubMed Google Scholar

  • Donald TM, Houben A, Leach CR, Timmis JN (1997) Ribosomal RNA genes specific to the B chromosomes inBrachyscome dichromosomaticaare not transcribed in leaf tissue. Genome 40:674–681

    Article CAS PubMed Google Scholar

  • Endo T, Nasuda S, Jones N et al (2008) Dissection of rye B chromosomes, and nondisjunction properties of the dissected segments in a common wheat background. Genes Genet Syst 83:23–30

    Article PubMed Google Scholar

  • Evans GM, Rees H, Snell CL, Sun S (1972) The relationship between nuclear DNA amount and the duration of the mitotic cycle. Chromosome Today 3:24–31

    CAS Google Scholar

  • Feldberg E, Porto JIR, Alves–Brinn MN et al (2004) B chromosomes in Amazonian cichlid species. Cytogenet Genome Res 106:195–198

    Article CAS PubMed Google Scholar

  • Giagia E, Soldatovic B, Savic I (1985) Karyotype study of the genusApodemus(Kaup, 1829) populations from the Balkan Peninsula. Acta Vet Beograd 25:289–298

    Google Scholar

  • Gileva E, Chebotar N (1979) Fertile XO males and females in the varying lemming,Dicrostonyx torquatus pall. (1779).Heredity 42:62–77

    Article Google Scholar

  • González–Sánchez M, González–González E, Molina F et al (2003) One gene determines maize B chromosome accumulation by preferential fertilisation; another gene(s) determines their meiotic loss. Heredity 90:122–129

    Article PubMed CAS Google Scholar

  • Gotoh K (1924) Uber die chromosomenzahl vonSecale cerealeL. Bot Mag Tokyo 38:135–152

    Article Google Scholar

  • Graphodatsky A, Kukekova A, Yudkin D et al (2005) The proto – oncogene C – KIT maps to canid B–chromosomes. Chromosome Res 13:113–122

    Article CAS PubMed Google Scholar

  • Green DM (1988) Cytogenetics of the endemic New Zealand frog,Leiopelma hochstetteri:extraordinary supernumerary chromosome variation and a unique sex–chromosome system. Chromosoma 97:55–70

    Article Google Scholar

  • Hackstein J, Hochstenbach R, Hauschteck–Jungen E, Beukeboom L (1996) Is the Y chromosome of Drosophila an evolved supernumerary chromosome? Bioessays 18:317–323

    Article CAS PubMed Google Scholar

  • Håkansson A (1948) Behaviour of accessory rye chromosomes in the embryo–sac. Hereditas 34:35–59

    Article Google Scholar

  • Han Y, Liu X, Benny U et al (2001) Genes determining pathogenicity to pea are clustered on a supernumerary chromosome in the fungal plant pathogenNectria haematococca.Plant J 25:305–314

    Article CAS PubMed Google Scholar

  • Han F, Gao Z, Yu W, Birchler JA (2007a) Minichromosome analysis of chromosome pairing, disjunction, and sister chromatid cohesion in maize. Plant Cell 19:3853–3863

    Article CAS PubMed PubMed Central Google Scholar

  • Han F, Lamb J, Yu W et al (2007b) Centromere function and nondisjunction Are independent components of the maize B chromosome accumulation mechanism. Plant Cell 19:524–533

    Article CAS PubMed PubMed Central Google Scholar

  • Han F, Gao Z, Birchler JA (2009) Reactivation of an inactive centromere reveals epigenetic and structural components for centromere specification in maize. Plant Cell 21:1929–1939

    Article CAS PubMed PubMed Central Google Scholar

  • Hasegawa N (1934) A cytological study on 8–chromosome rye. Cytologia 6:68–77

    Article Google Scholar

  • Henikoff S, Ahmad K, Malik H (2001) The centromere paradox: stable inheritance with rapidly evolving DNA. Science 293:1098–1102

    Article CAS PubMed Google Scholar

  • Herrera J, López-León M, Cabrero J et al (1996) Evidence for B chromosome drive suppression in the grasshopperEyprepocnemis plorans.Heredity 76:633–639

    Article Google Scholar

  • Hewitt GM (1976) Meiotic drive for B–chromosomes in the primary oocytes ofMyrmekotettix maculatus(Orthoptera: Acrididae). Chromosoma 56:381–391

    Article CAS PubMed Google Scholar

  • Holmes D, Bougourd S (1989) B–chromosome selection inAllium schoenoprasum.I. Natural populations. Heredity 63:83–87

    Article Google Scholar

  • Holmes D, Bougourd S (1991) B–chromosome selection inAllium schoenoprasumII. Experimental populations. Heredity 67:117–122

    Article Google Scholar

  • Houben A, Belyaev ND, Leach CR, Timmis JN (1997a) Differences of histone H4 acetylation and replication timing between A and B chromosomes ofBrachyscome dichrosomatica.Chromosome Res 5:233–237

    Article CAS PubMed Google Scholar

  • Houben A, Leach C, Verlin D et al (1997b) A repetitive DNA sequence common to the different B chromosomes of the genusBrachyscome.Chromosoma 106:513–519. doi:10.1007/PL00007689

    CAS PubMed Google Scholar

  • Houben A, Wanner G, Hanson L et al (2000) Cloning and characterisation of polymorphic heterochromatic segments ofBrachyscome dichromosomatica.Chromosoma 109:206–213

    Article CAS PubMed Google Scholar

  • Houben A, Verlin D, Leach C, Timmis J (2001) The genomic complexity of micro B chromosomes ofBrachyscome dichromosomatica.Chromosoma 110:451–459

    Article CAS PubMed Google Scholar

  • Jin W, Lamb J, Vega J et al (2005) Molecular and functional dissection of the maize B chromosome centromere. Plant Cell 17:1412–1423

    Article CAS PubMed PubMed Central Google Scholar

  • Jin W, Lamb J, Zhang W et al (2008) Histone modifications associated with both A and B chromosomes of maize. Chromosome Res 16:1203–1214

    Article CAS PubMed Google Scholar

  • John UP, Leach CR, Timmis JN (1991) A sequence specific to B chromosomes ofBrachyscome dichromosomatica.Genome 34:739–744

    Article CAS PubMed Google Scholar

  • Jones RN (1991) B–chromosome drive. Am Nat 137:430–442

    Article Google Scholar

  • Jones RN (1995) B chromosomes in plants. New Phytol 131:411–434

    Article Google Scholar

  • Jones RN, Rees H (1982) B chromosomes. Academic, London

    Google Scholar

  • Jones RN, Viegas W, Houben A (2008) A century of B chromosomes in plants: so what? Ann Bot 101:767–775

    Article PubMed Google Scholar

  • Kaszás E, Birchler JA (1996) Misdivision analysis of centromere structure in maize. EMBO J 15:5246–5255

    PubMed PubMed Central Google Scholar

  • Kaszás É, Kato A, Birchler J (2002) Cytological and molecular analysis of centromere misdivision in maize. Genome 45:759–768

    Article PubMed Google Scholar

  • Kato TA (1970) Influence of B–chromosomes on 4 characters. Maize Gen Coop Newsl 44:18–21

    Google Scholar

  • Kawamura N (2001) Fertilization and the first cleavage mitosis in insects. Dev Growth Differ 43:343–349

    Article CAS PubMed Google Scholar

  • Kayano H (1957) Cytogenetic studies in Lilium callosum. III. Preferential segregation of a supernumerary chromosome in EMCs. Proc Jpn Acad 33:553–558

    Google Scholar

  • Kayano H (1971) Accumulation of B chromosomes in the germ line ofLocusta migratoria.Heredity 27:119–123

    Article Google Scholar

  • Kimura M, Kayano H (1961) The maintenance of supernumerary chromosomes in wild populations ofLilium callosumby preferential segregation. Genetics 46:1699–1712

    CAS PubMed PubMed Central Google Scholar

  • Kirk D, Jones RN (1970) Nuclear genetic activity in B chromosome rye, in terms of quantitative interrelationships between nuclear protein, nuclear RNA and histone. Chromosoma 31:241–254

    Article Google Scholar

  • Kishikawa H, Suzuki A (1982) Cytological study on hypo – pentaploidTriticalewith four B chromosomes of rye. Jpn J Genet 57:17–24

    Article Google Scholar

  • Klemme S, Banaei–Moghaddam A, Macas J et al (2013) High – copy sequences reveal distinct evolution of the rye B chromosome. New Phytol 199:550–558

    Article CAS PubMed Google Scholar

  • Kolomiets OL, Borbiev TE, Safronova LD et al (1988) Synaptonemal complex analysis of B–chromosome behavior in meiotic prophase I in the East–Asiatic mouseApodemus peninsulae(Muridae, Rodentia). Cytogenet Genome Res 48:183–187

    Article CAS Google Scholar

  • Koo D–H, Han F, Birchler JA, Jiang J (2011) Distinct DNA methylation patterns associated with active and inactive centromeres of the maize B chromosome. Genome Res 21:908–914

    Article CAS PubMed PubMed Central Google Scholar

  • Kour G, Kaul S, Dhar M (2013) Molecular characterization of repetitive DNA sequences from B chromosome inPlantago lagopusL. Cytogenet Genome Res 142:121–128

    Article PubMed CAS Google Scholar

  • Kuwada Y (1925) On the number of chromosomes in maize. Bot Mag Tokyo 39:227–234

    Article Google Scholar

  • Lamb JC, Kato A, Birchler JA (2005) Sequences associated with A chromosome centromeres are present throughout the maize B chromosome. Chromosoma 113:337–349

    Article CAS PubMed Google Scholar

  • Lamb J, Riddle N, Cheng Y–M et al (2007) Localization and transcription of a retrotransposon – derived element on the maize B chromosome. Chromosome Res 15:383–398

    Article CAS PubMed Google Scholar

  • Langdon T, Seago C, Jones RN, Ougham H (2000) De novo evolution of satellite DNA on the rye B chromosome. Genetics 154:869–884

    CAS PubMed PubMed Central Google Scholar

  • Leach CR, Donald TM, Franks TK et al (1995) Organisation and origin of a B chromosome centromeric sequence fromBrachyscome dichromosomatica.Chromosoma 103:708–714

    Article CAS PubMed Google Scholar

  • Leach CR, Houben A, Timmis JN (2004) The B chromosomes in brachyscome. Cytogenet Genome Res 106:199–209

    Article CAS PubMed Google Scholar

  • Leach C, Houben A, Field B et al (2005) Molecular evidence for transcription of genes on a B chromosome inCrepis capillaris.Genetics 171:269–278

    Article CAS PubMed PubMed Central Google Scholar

  • Levin D, Palestis B, Jones R, Trivers R (2005) Phyletic hot spots for B chromosomes in angiosperms. Evolution 59:962–969

    Article PubMed Google Scholar

  • Lima–de–Faria A (1962) Genetic interaction in rye expressed at the chromosome phenotype. Genetics 47:1455–1462

    PubMed PubMed Central Google Scholar

  • Lin B–Y (1978) Regional control of nondisjunction of the B chromosome in maize. Genetics 90:613–627

    CAS PubMed PubMed Central Google Scholar

  • Lin B–Y (1979) Two new B–10 translocations involved in the control of nondisjunction of the B chromosome in maize. Genetics 92:931–945

    CAS PubMed PubMed Central Google Scholar

  • Lin H–Z, Lin W–D, Lin C–Y et al (2014) Characterization of maize B–chromosome – related transcripts isolated via cDNA–AFLP. Chromosoma 123:597–607

    Article CAS PubMed Google Scholar

  • Lindström J (1965) Transfer to wheat of accessory chromosomes from rye. Hereditas 54:149–155

    Article Google Scholar

  • Longley AE (1927) Supernumerary chromosomes inZea mays.J Agric Res 35:769–784

    Google Scholar

  • López-León MD, Cabrero J, Camacho JM et al (1992) A widespread B chromosome polymorphism maintained without apparent drive. Evolution 46:529–539

    Article Google Scholar

  • López-León MD, Neves N, Schwarzacher T et al (1994) Possible origin of a B chromosome deduced from its DNA composition using double FISH technique. Chromosom Res 2:87–92

    Article Google Scholar

  • Makunin A, Dementyeva P, Graphodatsky A et al (2014) Genes on B chromosomes of vertebrates. Mol Cytogenet 7:99

    Article PubMed PubMed Central Google Scholar

  • Martin C, Zhang Y (2005) The diverse functions of histone lysine methylation. Nat Rev Mol Cell Biol 6:838–849

    Article CAS PubMed Google Scholar

  • Martis MM, Klemme S, Banaei–Moghaddam AM et al (2012) Selfish supernumerary chromosome reveals its origin as a mosaic of host genome and organellar sequences. Proc Natl Acad Sci U S A 109:13343–13346

    Article CAS PubMed PubMed Central Google Scholar

  • McGirr SC, Endrizzi JE (1978) The effects of B, K10, and AR chromosomes on the resistance of maize to viral infection. Genetics 90:331–338

    CAS PubMed PubMed Central Google Scholar

  • Mendelson D, Zohary D (1972) Behavior and transmission of supernumerary chromosomes inAegilops speltoides.Heredity 29:329–339

    Article Google Scholar

  • Miao VP, Matthews DE, VanEtten HD (1991) Identification and chromosomal locations of a family of cytochrome P–450 genes for pisatin detoxification in the fungusNectria haematococca.Mol Genet Genomics 226:214–223

    Article CAS Google Scholar

  • Miller JT, Dong F, Jackson SA et al (1998) Retrotransposon – related DNA sequences in the centromeres of grass chromosomes. Genetics 150:1615–1623

    CAS PubMed PubMed Central Google Scholar

  • Montiel E, Cabrero J, Ruiz–Estévez M et al (2014) Preferential occupancy of R2 retroelements on the B chromosomes of the grasshopperEyprepocnemis plorans.PLoS One 9:e91820. doi:10.1371/journal.pone.0091820

    Article PubMed PubMed Central CAS Google Scholar

  • Moss JP (1966) The adaptive significance of B chromosomes in rye. Chromosomes Today 1:15–23

    Google Scholar

  • Muñoz–Pajares A, Martínez–Rodríguez L, Teruel M et al (2011) A single, recent origin of the accessory B chromosome of the grasshopperEyprepocnemis plorans.Genetics 187:853–863

    Article PubMed PubMed Central CAS Google Scholar

  • Müntzing A (1943) Genetical effects of duplicated fragment chromosomes in rye. Hereditas 29:91–112

    Article Google Scholar

  • Müntzing A (1948) Cytological studies of extra fragment chromosomes in rye. Hereditas 34:435–442

    Article Google Scholar

  • Müntzing A (1970) Chromosomal variation in the Lindström strain of wheat carrying accessory chromosomes of rye. Hereditas 66:279–285

    Article Google Scholar

  • Müntzing A, Akdik S (1948) The effect on cell size of accessory chromosomes in rye. Hereditas 74:41–56

    Article Google Scholar

  • Niwa K, Horiuchi G, Hirai Y (1997) Production and characterization of common wheat with B chromosomes of rye from Korea. Hereditas 126:139–146

    Article Google Scholar

  • Nokkala S, Grozeva S, Kuznetsova V, Maryanska–Nadachowska A (2003) The origin of the achiasmatic XY sex chromosome system inCacopsylla peregrina(Frst.) (Psylloidea, Homoptera). Genetica 119:327–332

    Article PubMed Google Scholar

  • Nur U (1963) A mitotically unstable supernumerary chromosome with an accumulation mechanism in a grasshopper. Chromosoma 14:407–422

    Article CAS PubMed Google Scholar

  • Nur U (1969) Mitotic instability leading to an accumulation of B chromosomes in grasshoppers. Chromosoma 27:1–19

    Article CAS PubMed Google Scholar

  • Nur U, Werren JH, Eickbush DG, Burke WD (1988) A “selfish” B chromosome that enhances its transmission by eliminating the paternal genome. Science 240:512–514

    Article CAS PubMed Google Scholar

  • Ohta S (1996) Mechanisms of B–chromosome accumulation inAegilops muticaBoiss. Genes Genet Syst 71:23–29

    Article Google Scholar

  • Oliveira C, Foresti F, Hilsdorf A (2008) Genetics of neotropical fish: from chromosomes to populations. Fish Physiol Biochem 35:81–100

    Article PubMed CAS Google Scholar

  • Oliver JL, Posse F, Martinez–Zapater JM et al (1982) B–chromosomes and E–1 isozyme activity in mosaic bulbs ofScilla autumnalis(Liliaceae). Chromosoma 85:399–403

    Article CAS Google Scholar

  • Östergren G (1945) Parasitic nature of extra fragment chromosomes. Bot Notiser 2:157–163

    Google Scholar

  • Page BT, Wanous MK, Birchler JA (2001) Characterization of a maize chromosome 4 centromeric sequence: evidence for an evolutionary relationship with the B chromosome centromere. Genetics 159:291–302

    CAS PubMed PubMed Central Google Scholar

  • Palestis B, Burt A, Jones R, Trivers R (2004a) B chromosomes are more frequent in mammals with acrocentric karyotypes: support for the theory of centromeric drive. Proc Biol Sci 271:S22–S24

    Article PubMed PubMed Central Google Scholar

  • Palestis BG, Trivers R, Burt A, Jones RN (2004b) The distribution of B chromosomes across species. Cytogenet Genome Res 106:151–158

    Article CAS PubMed Google Scholar

  • Pardo MC, López-León M, Viseras E et al (1995a) Mitotic instability of B chromosomes during embryo development inLocusta migratoria.Heredity 74:164–169

    Article Google Scholar

  • Pardo MC, López-León MD, Cabrero J, Camacho JP (1995b) Transmission analysis of mitotically unstable B chromosomes inLocusta migratoria.Genome 37:1027–1034

    Article Google Scholar

  • Pardo-Manuel de Villena F, Sapienza C (2001) Female meiosis drives karyotypic evolution in mammals. Genetics 159:1179–1189

    CAS PubMed PubMed Central Google Scholar

  • Patton JL (1977) B–chromosome systems in the pocket mouse,Perognathus baileyi:meiosis and C–band studies. Chromosoma 60:1–14

    Article CAS PubMed Google Scholar

  • Pauls E, Bertollo L (1983) Evidence for a system of supernumerary chromosomes inprochilodus scrofasteindachner, 1881 (pisces, prochilodontidae). Caryologia 36:307–314

    Article Google Scholar

  • Peacock W, Dennis E, Rhoades M, Pryor A (1981) Highly repeated DNA sequence limited to knob heterochromatin in maize. Proc Natl Acad Sci U S A 78:4490–4494

    Article CAS PubMed PubMed Central Google Scholar

  • Perfectti F, Werren J (2001) The interspecific origin of B chromosomes: experimental evidence. Evolution 55:1069–1073

    Article CAS PubMed Google Scholar

  • Perfectti F, Corral JM, Mesa JA et al (2004) Rapid suppression of drive for a parasitic B chromosome. Cytogenet Genome Res 106:338–343

    Article CAS PubMed Google Scholar

  • Plowman A, Bougourd S (1994) Selectively advantageous effects of B chromosomes on germination behaviour inAllium schoenoprasumL. Heredity 72:587–593

    Article Google Scholar

  • Presting G, Malysheva L, Fuchs J, Schubert I (1998) ATY3/GYPSY retrotransposon – like sequence localizes to the centromeric regions of cereal chromosomes. Plant J 16:721–728

    Article CAS PubMed Google Scholar

  • Puertas M, Romera F, Peña A (1985) Comparison of B chromosome effects onSecale cerealeandSecale vavilovii.Heredity 55:229–234

    Article Google Scholar

  • Puertas MJ, Ramirez A, Baeza F (1987) The transmission of B chromosomes inSecale cerealeandSecale vaviloviipopulations. II. Dynamics of populations. Heredity 58:81–85

    Article Google Scholar

  • Radzhabli SI, Isaenko AA, Volobuev VT (1978) Investigation of the nature and role of additional chromosomes in silver fox. Genetika 24:438–443

    Google Scholar

  • Randolph LF (1928) Types of supernumerary chromosomes in maize. Anat Rec 41:102

    Google Scholar

  • Randolph L (1941) Genetic characteristics of the B chromosomes in maize. Genetics 26:608–631

    CAS PubMed PubMed Central Google Scholar

  • Rhoades MM (1968) Studies on the cytological basis of crossing over. In: Peacock WJ, Brock RD (eds) Replication and recombination of genetic material. Australian Academy of Science, Canberra, pp 229–241

    Google Scholar

  • Rhoades MM, Dempsey E (1972) On the mechanism of chromatin loss induced by the B chromosome of maize. Genetics 71:73–96

    CAS PubMed PubMed Central Google Scholar

  • Rhoades M, Dempsey E, Ghidoni A (1967) Chromosome elimination in maize induced by supernumerary B chromosomes. Proc Natl Acad Sci U S A 57:1626–1632

    Article CAS PubMed PubMed Central Google Scholar

  • Roman H (1948) Directed fertilization in maize. Proc Natl Acad Sci U S A 34:36–42

    Article CAS PubMed PubMed Central Google Scholar

  • Roman H (1949) Factors affecting mitotic nondisjunction in maize. Rec Genet Soc Am 18:112

    Google Scholar

  • Rosato M, Chiavarino AM, Naranjo CA et al (1996) Genetic control of B chromosome transmission rate inZea maysssp.Mays(poaceae). Am J Bot 83:1107–1112

    Article Google Scholar

  • Rothfels KH (1950) Chromosome complement, polyploidy and supernumeraries inNeopodismopsis abdominalis(Acrididae). J Morphol 87:287–315

    Article CAS PubMed Google Scholar

  • Ruban A, Fuchs J, Marques A, Schubert V et al (2014) B chromosomes ofAegilops speltoidesare enriched in organelle genome-derived sequences. PLoS One 9:e90214

    Article PubMed PubMed Central CAS Google Scholar

  • Ruiz–Estévez M, López-León M, Cabrero J, Camacho J (2012) B–chromosome ribosomal DNA is functional in the grasshopperEyprepocnemis plorans.PLoS One 7:e36600. doi:10.1371/journal.pone.0036600

    Article PubMed PubMed Central CAS Google Scholar

  • Ruiz–Estévez M, Cabrero J, Camacho JP, López-León M (2014) B chromosomes in the grasshopperEyprepocnemis ploransAre present in all body parts analyzed and show extensive variation for rDNA copy number. Cytogenet Genome Res 143:268–274

    PubMed Google Scholar

  • Sandery MJ, Forster JW, Blunden R, Jones RN (1990) Identification of a family of repeated sequences on the rye B chromosome. Genome 33:908–913

    Article CAS Google Scholar

  • Sapre AB, Deshpande DS (1987) Origin of B chromosomes inCoixL. through spontaneous interspecific hybridization. J Hered 78:191–196

    Google Scholar

  • Schartl M, Nanda I, Schlupp I et al (1995) Incorporation of subgenomic amounts of DNA as compensation for mutational load in a gynogenetic fish. Nature 373:68–71

    Article Google Scholar

  • Sharma PK, Koul AK (1984) Genetic diversity among Plantagos III. Primary trisomy in Plantago lagopus L. Genetica 64:135–138

    Article Google Scholar

  • Sharma PK, Langer A, Koul AK (1985a) Genetic diversity among plantagos V. Transmission of the additional chromosome in a triplo–4 individual ofPlantago lagopusL. Genetica 67:131–135

    Article Google Scholar

  • Sharma PK, Langer A, Koul AK (1985b) Genetic diversity among Plantagos VII. Nature of aneuploids in the progeny of aneutriploid x diploid plants of Plantago lagopus L. Genetica 67:137–144

    Article Google Scholar

  • Shirasu K, Schulman AH, Lahaye T, Schulze–Lefert P (2000) A contiguous 66–kb barley DNA sequence provides evidence for reversible genome expansion. Genome Res 10:908–915

    Article CAS PubMed PubMed Central Google Scholar

  • Smith–White S (1968)Brachyscome lineariloba:a species for experimental cytogenetics. Chromosoma 23:359–364

    Article Google Scholar

  • Stark EA, Connerton I, Bennett ST et al (1996) Molecular analysis of the structure of the maize B–chromosome. Chromosome Res 4:15–23

    Article CAS PubMed Google Scholar

  • Staub RW (1987) Leaf striping correlated with the presence of B chromosomes in maize. J Hered 78:71–74

    Google Scholar

  • Stitou S, Zurita F, Guardia R et al (2004) Transmission analysis of B chromosomes in Rattus rattus from Northern Africa. Cytogenet Genome Res 106:344–346

    Article CAS PubMed Google Scholar

  • Swim M, Kaeding K, Ferree P (2012) Impact of a selfish B chromosome on chromatin dynamics and nuclear organization inNasonia.J Cell Sci 125:5241–5249

    Article CAS PubMed Google Scholar

  • Tanić N, Vujošević M, Dedović–Tanić N, Dimitrijević B (2005) Differential gene expression in yellow – necked miceApodemus flavicollis(Rodentia, Mammalia) with and without B chromosomes. Chromosoma 113:418–427

    Article PubMed CAS Google Scholar

  • Theuri J, Phelps–Durr T, Mathews S, Birchler JA (2005) A comparative study of retrotransposons in the centromeric regions of A and B chromosomes of maize. Cytogenet Genome Res 110:203–208

    Article CAS PubMed Google Scholar

  • Trifonov V, Dementyeva P, Larkin D et al (2013) Transcription of a protein – coding gene on B chromosomes of the Siberian roe deer (Capreolus pygargus). BMC Biol 11:90

    Article PubMed PubMed Central CAS Google Scholar

  • Trivers R, Burt A, Palestis BG (2004) B chromosomes and genome size in flowering plants. Genome 47:1–8

    Article CAS PubMed Google Scholar

  • Valente G, Conte M, Fantinatti B et al (2014) Origin and evolution of B chromosomes in the cichlid fishAstatotilapia latifasciatabased on integrated genomic analyses. Mol Biol Evol 31:2061–2072

    Article CAS PubMed Google Scholar

  • Viseras E, Camacho J, Cano MI, Santos JL (1990) Relationship between mitotic instability and accumulation of B chromosomes in males and females ofLocusta migratoria.Genome 33:23–29

    Article Google Scholar

  • Vosa C (1983) The ecology of B–chromosomes inListera Ovata(L.) R. Br. (Orchidaceae). Caryologia 36:113–120

    Article Google Scholar

  • Vujošević M, Blagojevic J (2000) Does environment affect polymorphism of B chromosomes in the yellow – necked mouseApodemus flavicollis?Mamm Biol 65:313–317

    Google Scholar

  • Vujošević M, Blagojević J (2004) B chromosomes in populations of mammals. Cytogenet Genome Res 106:247–256

    Article PubMed CAS Google Scholar

  • Ward EJ (1973) Nondisjunction: localization of the controlling site in the maize B chromosome. Genetics 73:387–391

    CAS PubMed PubMed Central Google Scholar

  • Werren J, Nur U, Eickbush D (1987) An extrachromosomal factor causing loss of paternal chromosomes. Nature 327:75–76

    Article CAS PubMed Google Scholar

  • White MD (1973) Animal cytology and evolution, 3rd edn. Cambridge University Press, London

    Google Scholar

  • Wilson EB (1907) The supernumerary chromosomes of hemiptera. Science 26:870–871

    Article Google Scholar

  • Wolfgruber T, Sharma A, Schneider K et al (2009) Maize centromere structure and evolution: sequence analysis of centromeres 2 and 5 reveals dynamic loci shaped primarily by retrotransposons. PLoS Genet 5:e1000743. doi:10.1371/journal.pgen.1000743

    Article PubMed PubMed Central CAS Google Scholar

  • Yoshida K, Terai Y, Mizoiri S et al (2011) B chromosomes have a functional effect on female Sex determination in lake victoria cichlid fishes. PLoS Genet 7:e1002203. doi:10.1371/journal.pgen.1002203

    Article CAS PubMed PubMed Central Google Scholar

  • Yosida TH (1980) Cytogenetics of the black rat. University Park Press, Baltimore

    Google Scholar

  • Yu W, Han F, Gao Z et al (2007) Construction and behavior of engineered minichromosomes in maize. Proc Natl Acad Sci U S A 104:8924–8929

    Article CAS PubMed PubMed Central Google Scholar

  • Yudkin DV, Trifonov VA, Kukekova AV et al (2007) Mapping of KIT adjacent sequences on canid autosomes and B chromosomes. Cytogenet Genome Res 116:100–103

    Article CAS PubMed Google Scholar

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James A. Birchler.

Editor information

Editors and Affiliations

Glossary

B chromosome

A special class of nonessential chromosome that is present in addition to the normal complement of chromosomes. They may vary in copy number among individuals in a population or among cells in an individual organism. They do not pair with normal chromosomes during meiosis, and they may possess drive mechanisms to enable their survival.

Drive mechanism

A mechanism that allows a chromosome to be recovered at rates greater than predicted by Mendelian genetics.

Nondisjunction

The failure of sister chromatids to separate properly during mitosis or meiosis. The result of nondisjunction is a pair of aneuploid daughter cells, where one cell contains two copies of a chromosome and the other cell possesses zero copies.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer India

About this chapter

Cite this chapter

Douglas, R.N., Birchler, J.A. (2017). B Chromosomes. In: Bhat, T., Wani, A. (eds) Chromosome Structure and Aberrations. Springer, New Delhi. https://doi.org/10.1007/978-81-322-3673-3_2

Download citation

Publish with us

Policies and ethics