Skip to main content

Thank you for visiting nature. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Archaeal dominance in the mesopelagic zone of the Pacific Ocean

Abstract

The ocean's interior is Earth's largest biome. Recently, cultivation-independent ribosomal RNA gene surveys have indicated a potential importance for archaea1in the subsurface ocean2,3,4.But quantitative data on the abundance of specific microbial groups in the deep sea are lacking5,6.Here we report a year-long study of the abundance of two specific archaeal groups (pelagic euryarchaeota and pelagic crenarchaeota)2in one of the ocean's largest habitats. Monthly sampling was conducted throughout the water column (surface to 4,750 m) at the Hawai'i Ocean Time-series station7.Below the euphotic zone (> 150 m), pelagic crenarchaeota comprised a large fraction of total marine picoplankton, equivalent in cell numbers to bacteria at depths greater than 1,000 m. The fraction of crenarchaeota increased with depth, reaching 39% of total DNA-containing picoplankton detected. The average sum of archaea plus bacteria detected by rRNA-targeted fluorescent probes ranged from 63 to 90% of total cell numbers at all depths throughout our survey. The high proportion of cells containing significant amounts of rRNA suggests that most pelagic deep-sea microorganisms are metabolically active. Furthermore, our results suggest that the global oceans harbour approximately 1.3 × 1028archaeal cells, and 3.1 × 1028bacterial cells. Our data suggest that pelagic crenarchaeota represent one of the ocean's single most abundant cell types.

This is a preview of subscription content,access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Contour plots of relative abundances with depth of bacteria and pelagic crenarchaeota during a 1-yr sampling effort at the Hawai'i Ocean Time-series station, ALOHA, in the North Pacific subtropical gyre.
Figure 2: Mean annual depth profiles of microbial domains in the North Pacific subtropical gyre.
Figure 3: Mean annual depth profiles of microbial domains in the North Pacific subtropical gyre.

Similar content being viewed by others

References

  1. Woese, C. R., Kandler, O. & Wheelis, M. L. Towards a natural system of organisms: Proposal for the domains Archaea, Bacteria, and Eucarya.Proc. Natl Acad. Sci. USA87,4576–4579 ( 1990).

    ADS CAS PubMed PubMed Central Google Scholar

  2. DeLong, E. F. Archaea in coastal marine environments.Proc. Natl Acad. Sci. USA89,5685–5689 ( 1992).

    Article ADS CAS PubMed PubMed Central Google Scholar

  3. Fuhrman, J. A., McCallum, K. & Davis, A. A. Novel major archaebacterial group from marine plankton.Nature356,148–149 (1992).

    Article ADS CAS PubMed Google Scholar

  4. Fuhrman, J. A. & Davis, A. A. Widespread Archaea and novel Bacteria from the deep sea as shown by 16S rRNA gene sequences.Mar. Ecol. Prog. Ser.150,275–285 (1997).

    Article ADS Google Scholar

  5. Fuhrman, J. A. & Ouverney, C. C. Marine microbial diversity studies via 16S rRNA sequences: cloning results from coastal waters and counting of native archaea with fluorescent single probes.Aquat. Ecol.32,3–15 (1998).

    Article CAS Google Scholar

  6. DeLong, E. F., Taylor, L. T., Marsh, T. L. & Preston, C. M. Visualization and enumeration of marine planktonicArchaeaandBacteriaby using polyribonucleotide probes and fluorescentin situhybridization.Appl. Environ. Microbiol.65,5554–5563 (1999).

    CAS PubMed PubMed Central Google Scholar

  7. Karl, D. M. & Lukas, R. The Hawaii Ocean Time-series (HOT) program: Background, rationale and field implementation.Deep-Sea Res.43,129–156 ( 1996).

    ADS CAS Google Scholar

  8. Porter, K. & Feig, Y. S. The use of DAPI for identifying and counting aquatic microflora.Limnol. Oceanogr.25,943–948 (1980).

    Article ADS Google Scholar

  9. Hicks, R. E., Amann, R. I. & Stahl, D. A. Dual staining of natural bacterioplankton with 4′, 6-diamidino-2-phenylindole and fluorescent oligonucleotide probes targeting kingdom-level 16S rRNA sequences.Appl. Environ. Microbiol.58,2158–2163 (1992).

    CAS PubMed PubMed Central Google Scholar

  10. Massana, R., Murray, A. E., Preston, C. M. & DeLong, E. F. Vertical distribution and phylogenetic characterization of marine planktonicArchaeain the Santa Barbara Channel.Appl. Environ. Microbiol.63,50–56 ( 1997).

    CAS PubMed PubMed Central Google Scholar

  11. Murray, A. E.et al.A time series assessment of planktonic archaeal variability in the Santa Barbara Channel.Aquat. Microb. Ecol.20,129–145 (1999).

    Article Google Scholar

  12. Olsen, G. J. Archaea, archaea everywhere.Nature371,657–658 (1994).

    Article ADS CAS PubMed Google Scholar

  13. Stein, J. L. & Simon, M. I. Archaeal ubiquity.Proc. Natl Acad. Sci. USA93,6228– 6230 (1996).

    Article ADS CAS PubMed PubMed Central Google Scholar

  14. DeLong, E., Wu, K. Y., Prézlin, B. B. & Jovine, R. V. M. High abundance of Archaea in Antarctic marine picoplankton.Nature371,695–697 ( 1994).

    Article ADS CAS PubMed Google Scholar

  15. Massana, R.et al.Vertical distribution and temporal variation of marine planktonic Archaea in the Gerlache strait, Antarctica, during early spring.Limnol. Oceanogr.43,607–617 (1998).

    Article ADS CAS Google Scholar

  16. Amann, R. I., Krumholz, L. & Stahl, D. A. Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology.J. Bacteriol.172,762– 770 (1990).

    Article CAS PubMed PubMed Central Google Scholar

  17. Lee, S. & Kemp, P. F. Single-cell RNA content of natural marine planktonic bacteria measured by hybridization with multiple 16S rRNA-targeted fluorescent probes.Limnol. Oceanogr.39,869–879 (1994).

    Article ADS CAS Google Scholar

  18. Murray, A. E.et al.Seasonal and spatial variability of bacterial and archaeal assemblages in the coastal waters near Anvers island, Antarctica.Appl. Environ. Microbiol.64,2585– 2595 (1998).

    CAS PubMed PubMed Central Google Scholar

  19. Glöckner, F. O., Fuchs, B. M. & Amann, R. Bacterioplankton compositions of lakes and oceans: a first comparison based on fluorescencein situhybridization.Appl. Environ. Microbiol.65,3721– 3726 (1999).

    PubMed PubMed Central Google Scholar

  20. Simon, M., Glöckner, F. O. & Amann, R. Different community structure and temperature optima of heterotrophic picoplankton in various regions of the Southern Ocean.Aquat. Microb. Ecol.18,275–284 (1999).

    Article Google Scholar

  21. Nagata, T., Fukuda, H., Fukuda, R. & Koike, I. Bacterioplankton distribution and production in deep Pacific waters: Large-scale geographic variations and possible coupling with sinking particle fluxes.Limnol. Oceanogr.45,426–435 (2000).

    Article ADS CAS Google Scholar

  22. Courties, C.et al.Smallest eukaryotic organism.Nature370,255 (1994).

    Article ADS Google Scholar

  23. Zweifel, U. L. & Hagström, Å. Total counts of marine bacteria include a large fraction of non-nucleoid-containing bacteria (ghosts).Appl. Environ. Microbiol.61,2180–2185 (1995).

    CAS PubMed PubMed Central Google Scholar

  24. Karner, M. & Fuhrman, J. Determination of active marine bacterioplankton: a comparison of universal 16S rRNA probes, autoradiography, and nucleoid staining.Appl. Environ. Microbiol.63,1208– 1213 (1997).

    CAS PubMed PubMed Central Google Scholar

  25. Williams, P. M., Carlucci, A. F. & Olson, R. A deep profile of some biologically important properties in the central North Pacific gyre.Oceanol. Acta3,471–476 (1980).

    Google Scholar

  26. Menard, H. W. & Smith, S. M. Hypsometry of ocean basin provinces.J. Geophys. Res.71,4305– 4325 (1966).

    Article ADS Google Scholar

Download references

Acknowledgements

We thank the crew of theRV Moana Wave,L. Tupas and K. Björkman for help with sampling. T. Taylor helped standardizing probing protocols, and L. Fujieki provided computational support. This study was supported by NOAA-Seagrant Office (MBK/DMK), NSF (DMK), and support from the David and Lucile Packard Foundation (EFD). This is SOEST contribution number 5313 and US JGOFS contribution number 647.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus B. Karner.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karner, M., DeLong, E. & Karl, D. Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature409,507–510 (2001). https://doi.org/10.1038/35054051

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:https://doi.org/10.1038/35054051

This article is cited by

Comments

By submitting a comment you agree to abide by ourTermsandCommunity Guidelines.If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for theNature Briefingnewsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing