Skip to main content

Thank you for visiting nature. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Selective prebiotic formation of RNA pyrimidine and DNA purine nucleosides

Abstract

The nature of the first genetic polymer is the subject of major debate1.Although the ‘RNA world’ theory suggests that RNA was the first replicable information carrier of the prebiotic era—that is, prior to the dawn of life2,3—other evidence implies that life may have started with a heterogeneous nucleic acid genetic system that included both RNA and DNA4.Such a theory streamlines the eventual ‘genetic takeover’ of homogeneous DNA from RNA as the principal information-storage molecule, but requires a selective abiotic synthesis of both RNA and DNA building blocks in the same local primordial geochemical scenario. Here we demonstrate a high-yielding, completely stereo-, regio- and furanosyl-selective prebiotic synthesis of the purine deoxyribonucleosides: deoxyadenosine and deoxyinosine. Our synthesis uses key intermediates in the prebiotic synthesis of the canonical pyrimidine ribonucleosides (cytidine and uridine), and we show that, once generated, the pyrimidines persist throughout the synthesis of the purine deoxyribonucleosides, leading to a mixture of deoxyadenosine, deoxyinosine, cytidine and uridine. These results support the notion that purine deoxyribonucleosides and pyrimidine ribonucleosides may have coexisted before the emergence of life5.

This is a preview of subscription content,access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Previous synthesis of RNA pyrimidine nucleosides C (1), U (2) and a deoxypyrimidine nucleoside (5), and the present work.
Fig. 2: Prebiotic route to purine deoxyribonucleosides, 7 (dA) and 9 (dI).
Fig. 3: Proposed mechanism of photoreduction ofN7-8,2′-anhydro-thioadenosine (18) andN9-8,2′-anhydro-thioadenosine (19) nucleosides.
Fig. 4: A systems-level approach to a potential primordial genetic Alpha bet composed of 1 (C), 2 (U), 7 (dA) and 9 (dI).

Similar content being viewed by others

Data and materials availability

TheSupplementary Informationavailable for this Article contains all procedures, characterization data, NMR spectra, HPLC traces, X-ray data and Cambridge Crystallographic Data Centre (CCDC) numbers, plus theoretical methods and data. Any additional data are available from the corresponding author upon reasonable request.

Code availability

All custom code used to generate the data in this study is available upon reasonable request.

References

  1. Samanta, B. & Joyce, G. F. A reverse transcriptase ribozyme.eLife6,e31153 (2017).

    PubMed PubMed Central Google Scholar

  2. Gilbert, W. Origin of life: the RNA world.Nature319,618 (1986).

    ADS Google Scholar

  3. Joyce, G. F. The antiquity of RNA-based evolution.Nature418,214–221 (2002).

    ADS CAS PubMed Google Scholar

  4. Bhowmik, S. & Krishnamurthy, R. The role of sugar-backbone heterogeneity and chimeras in the simultaneous emergence of RNA and DNA.Nat. Chem.11,1009–1018 (2019).

    CAS PubMed PubMed Central Google Scholar

  5. Xu, J., Green, N. J., Gibard, C., Krishnamurthy, R. & Sutherland, J. D. Prebiotic phosphorylation of 2-thiouridine provides either nucleotides or DNA building blocks via photoreduction.Nat. Chem.11,457–462 (2019).

    CAS PubMed PubMed Central Google Scholar

  6. Powner, M. W., Gerland, B. & Sutherland, J. D. Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions.Nature459,239–242 (2009).

    ADS CAS PubMed Google Scholar

  7. Xu, J. et al. A prebiotically plausible synthesis of pyrimidine β-ribonucleosides and their phosphate derivatives involving photoanomerization.Nat. Chem.9,303–309 (2017).

    CAS PubMed Google Scholar

  8. Heuberger, B. D., Pal, A., Del Frate, F., Topkar, V. V. & Szostak, J. W. Replacing uridine with 2-thiouridine enhances the rate and fidelity of nonenzymatic RNA primer extension.J. Am. Chem. Soc.137,2769–2775 (2015).

    CAS PubMed PubMed Central Google Scholar

  9. Walton, T. & Szostak, J. W. A highly reactive imidazolium-bridged dinucleotide intermediate in nonenzymatic RNA primer extension.J. Am. Chem. Soc.138,11996–12002 (2016).

    CAS PubMed PubMed Central Google Scholar

  10. Li, L. et al. Enhanced nonenzymatic RNA copying with 2-aminoimidazole activated nucleotides.J. Am. Chem. Soc.139,1810–1813 (2017).

    CAS PubMed PubMed Central Google Scholar

  11. Fuller, W. D., Orgel, L. E. & Sanchez, R. A. Studies in prebiotic synthesis: VI. Solid-state synthesis of purine nucleosides.J. Mol. Evol.1,249–257 (1972).

    ADS CAS PubMed Google Scholar

  12. Becker, S. et al. A high-yielding, strictly regioselective prebiotic purine nucleoside formation pathway.Science352,833–836 (2016).

    ADS CAS PubMed Google Scholar

  13. Kim, H. & Benner, S. A. Prebiotic stereoselective synthesis of purine and noncanonical pyrimidine nucleotides from nucleobases and phosphorylated carbohydrates.Proc. Natl Acad. Sci. USA114,11315–11320 (2017).

    CAS PubMed Google Scholar

  14. Becker, S. et al. Unified prebiotically plausible synthesis of pyrimidine and purine RNA ribonucleotides.Science366,76–82 (2019).

    ADS CAS PubMed Google Scholar

  15. Teichert, J. S., Kruse, F. M. & Trapp, O. Direct prebiotic pathway to DNA nucleosides.Angew. Chem. Int. Ed.58,9944–9947 (2019).

    CAS Google Scholar

  16. Reichard, P. From RNA to DNA, why so many ribonucleotide reductases?Science260,1773–1777 (1993).

    ADS CAS PubMed Google Scholar

  17. Leu, K., Obermayer, B., Rajamani, S., Gerland, U. & Chen, I. A. The prebiotic evolutionary advantage of transferring genetic information from RNA to DNA.Nucleic Acids Res.39,8135–8147 (2011).

    CAS PubMed PubMed Central Google Scholar

  18. Sutherland, J. D. & Whitfield, J. N. Prebiotic chemistry: a bioorganic perspective.Tetrahedron53,11493–11527 (1997).

    CAS Google Scholar

  19. Trevino, S. G., Zhang, N., Elenko, M. P., Lupták, A. & Szostak, J. W. Evolution of functional nucleic acids in the presence of nonheritable backbone heterogeneity.Proc. Natl Acad. Sci. USA108,13492–13497 (2011).

    ADS CAS PubMed Google Scholar

  20. Gavette, J. V., Stoop, M., Hud, N. V. & Krishnamurthy, R. RNA–DNA chimeras in the context of an RNA world transition to an RNA/DNA world.Angew. Chem. Int. Ed.55,13204–13209 (2016).

    CAS Google Scholar

  21. Schoffstall, A. M. Prebiotic phosphorylation of nucleosides in formamide.Orig. Life7,399–412 (1976).

    ADS CAS PubMed Google Scholar

  22. Lohrmann, R. & Orgel, L. E. Urea-inorganic phosphate mixtures as prebiotic phosphorylating agents.Science171,490–494 (1971).

    ADS CAS PubMed Google Scholar

  23. Patel, B. H., Percivalle, C., Ritson, D. J., Duffy, C. D. & Sutherland, J. D. Common origins of RNA, protein and lipid precursors in a cyanosulfidic protometabolism.Nat. Chem.7,301–307 (2015).

    CAS PubMed PubMed Central Google Scholar

  24. Ishiwata, A., Lee, Y. J. & Ito, Y. Recent advances in stereoselective glycosylation through intramolecular aglycon delivery.Org. Biomol. Chem.8,3596–3608 (2010).

    CAS PubMed Google Scholar

  25. Springsteen, G. & Joyce, G. F. Selective derivatization and sequestration of ribose from a prebiotic mix.J. Am. Chem. Soc.126,9578–9583 (2004).

    CAS PubMed Google Scholar

  26. Anastasi, C., Crowe, M. A., Powner, M. W. & Sutherland, J. D. Direct assembly of nucleoside precursors from two- and three-carbon units.Angew. Chem. Int. Ed.45,6176–6179 (2006).

    CAS Google Scholar

  27. Vorbrüggen, H. & Ruh-Pohlenz, C.Handbook of Nucleoside Synthesis(Wiley, 2001).

  28. Holm, N. G., Oze, C., Mousis, O., Waite, J. H. & Guilbert-Lepoutre, A. Serpentinization and the formation of H2and CH4on celestial bodies (planets, moons, comets).Astrobiology15,587–600 (2015).

    ADS CAS PubMed PubMed Central Google Scholar

  29. Sanchez, R. A., Ferris, J. P. & Orgel, L. E. Studies in prebiotic synthesis. II: Synthesis of purine precursors and amino acids from aqueous hydrogen cyanide.J. Mol. Biol.80,223–253 (1967).

    Google Scholar

  30. Hudson, J. S. et al. A unified mechanism for abiotic adenine and purine synthesis in formamide.Angew. Chem. Int. Ed.51,5134–5137 (2012).

    CAS Google Scholar

  31. Giner-Sorolla, A., Thom, E. & Bendich, A. Studies on the thiation of purines.J. Org. Chem.29,3209–3212 (1964).

    CAS Google Scholar

  32. Levy, M. & Miller, S. L. The stability of the RNA bases: implications for the origin of life.Proc. Natl Acad. Sci. USA95,7933–7938 (1998).

    ADS CAS PubMed Google Scholar

  33. Ritson, D. J. & Sutherland, J. D. Synthesis of aldehydic ribonucleotide and amino acid precursors by photoredox chemistry.Angew. Chem. Int. Ed.52,5845–5847 (2013).

    CAS Google Scholar

  34. Robertson, M. P., Levy, M. & Miller, S. L. Prebiotic synthesis of diaminopyrimidine and thiocytosine.J. Mol. Evol.43,543–550 (1996).

    ADS CAS PubMed Google Scholar

  35. Roberts, S. J. et al. Selective prebiotic conversion of pyrimidine and purine anhydronucleosides into Watson–Crick base-pairing arabino-furanosyl nucleosides in water.Nat. Commun.9,4073–4082 (2018).

    ADS PubMed PubMed Central Google Scholar

  36. Ranjan, S., Todd, Z. R., Rimmer, P. B., Sasselov, D. D. & Babbin, A. R. Nitrogen oxide concentrations in natural waters on early Earth.Geochem. Geophys. Geosyst.20,2021–2039 (2019).

    ADS CAS Google Scholar

  37. Xu, J. et al. Photochemical reductive homologation of hydrogen cyanide using sulfite and ferrocyanide.Chem. Commun.54,5566–5569 (2018).

    CAS Google Scholar

  38. Marion, G. M., Kargel, J. S., Crowley, J. K. & Catling, D. C. Sulfite–sulfide–sulfate–carbonate equilibria with applications to Mars.Icarus225,342–351 (2013).

    ADS CAS Google Scholar

  39. Rios, A. C. & Tor, Y. On the origin of the canonical nucleobases: an assessment of selection pressures across chemical and early biological evolution.Isr. J. Chem.53,469–483 (2013).

    CAS PubMed PubMed Central Google Scholar

  40. Rios, A. C., Yu, H. T. & Tor, Y. Hydrolytic fitness ofN-glycosyl bonds: comparing the deglycosylation kinetics of modified, alternative, and native nucleosides.J. Phys. Org. Chem.28,173–180 (2014).

    PubMed Central Google Scholar

  41. Panzica, R. P., Rousseau, R. J., Robins, R. K. & Townsend, L. B. Relative stability and a quantitative approach to the reaction mechanism of the acid-catalyzed hydrolysis of certain 7-and 9-β-d-ribofuranosylpurines.J. Am. Chem. Soc.94,4708–4714 (1972).

    CAS PubMed Google Scholar

  42. Lindahl, T. & Nyberg, B. Rate of depurination of native deoxyribonucleic acid.Biochemistry11,3610–3618 (1972).

    CAS PubMed Google Scholar

  43. Hättig, C. Structure optimizations for excited states with correlated second-order methods: CC2 and ADC(2).Adv. Quantum Chem.50,37–60 (2005).

    ADS Google Scholar

  44. Dreuw, A. & Wormit, M. The algebraic diagrammatic construction scheme for the polarization propagator for the calculation of excited states.Wiley Interdiscip. Rev. Comput. Mol. Sci.5,82–95 (2015).

    CAS Google Scholar

  45. Sauer, M. C., Crowell, R. A. & Shkrob, I. A. Electron photodetachment from aqueous anions. 1. Quantum yields for generation of hydrated electron by 193 and 248 nm laser photoexcitation of miscellaneous inorganic anions.J. Phys. Chem. A108,5490–5502 (2004).

    CAS Google Scholar

  46. Pascoe, D. J., Ling, K. B. & Cockroft, S. L. The origin of chalcogen-bonding interactions.J. Am. Chem. Soc.139,15160–15167 (2017).

    CAS PubMed Google Scholar

  47. Kim, S. C., O’Flaherty, D. K., Zhou, L., Lelyveld, V. S. & Szostak, J. W. Inosine, but none of the 8-oxo-purines, is a plausible component of a primordial version of RNA.Proc. Natl Acad. Sci. USA115,13318–13323 (2018).

    CAS PubMed Google Scholar

  48. Karran, P. & Lindahl, T. Hypoxanthine in deoxyribonucleic acid: generation by heat-induced hydrolysis of adenine residues and release in free form by a deoxyribonucleic acid glycosylase from calf thymus.Biochemistry19,6005–6011 (1980).

    CAS PubMed Google Scholar

  49. Shapiro, R. & Pohl, S. H. Reaction of ribonucleosides with nitrous acid. Side products and kinetics.Biochemistry7,448–455 (1968).

    CAS PubMed Google Scholar

  50. Mariani, A. D., Russell, A., Javelle, T. & Sutherland, J. D. A light-releasable potentially prebiotic nucleotide activating agent.J. Am. Chem. Soc.140,8657–8661 (2018).

    CAS PubMed PubMed Central Google Scholar

Download references

Acknowledgements

The authors thank all JDS group members for discussions. This research was supported by the Medical Research Council (MC_UP_A024_1009), the Simons Foundation (290362 to J.D.S., 494188 to R.S.), and a grant from the National Science Centre Poland (2016/23/B/ST4/01048 to R.W.G.). M.J.J. acknowledges the support of the ‘Diamond Grant’ (0144/DIA/2017/46) from the Polish Ministry of Science and Higher Education and a computational grant from Wrocław Centre of Networking and Supercomputing (WCSS). R.S. thanks the Foundation for Polish Science for support from the START Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

Experimental contributions by J.X., V.C., N.J.G., D.A.R. and A.D.B. Theoretical contributions by M.J.J., R.W.G. and R.S. Crystallography by A.D.B. This work was supervised by J.D.S. All authors co-wrote the manuscript.

Corresponding author

Correspondence to John D. Sutherland.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review informationNaturethanks Hannes Mutschler and Yitzhak Tor for their contribution to the peer review of this work.

Publisher’s noteSpringer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 A summary of the main findings of the work.

Previously, a prebiotically plausible synthesis of β-ribopyrimdines C and U has been identified using α-thiocytidine. Herein, we demonstrate that the same intermediate can undergo a distinct prebiotically plausible process that could have happened in a similar—or the same—environment. This process furnishes β-D-N9-deoxyribopurine nucleosides dA and dI alongside the pyrimidines. Remarkable selectivity enforced by UV irradiation and hydrolysis operates throughout the reported ribosylpyrimidine synthesis and the discovered deoxyribosylpurine synthesis, resulting in a set of nucleosides with only the canonical regio- and stereochemistry. The coexistence in one location of a set of nucleosides similar to this is thought to be a precondition for the spontaneous emergence of life on Earth6,47.

Extended Data Fig. 21H NMR spectra of conversion of α-anhydrouridine (15) from α-thiouridine (14).

a,1H NMR spectrum of15.b,1H NMR spectrum of the reaction mixture after heating14in H2O.c,1H NMR spectrum of the reaction mixture after heating14in formamide. f1, chemical shift (δ).

Extended Data Fig. 31H NMR spectra of photoreduction ofN7-8,2′-anhydro-thioadenosine (18) andN9-8,2′-anhydro-thioadenosine (19) mixture with bisulfite.

a,1H NMR spectrum of the crude mixture before irradiation; the ratio ofN7:N9isomer was 4:5.b,1H NMR spectrum of the mixture after irradiation for 7 h; theN9isomers dA (7) and26are the only detectable products. f1, chemical shift (δ).

Extended Data Fig. 4 Potential energy surfaces and S1/S0state crossings of the key photochemical steps in deoxyadenosine synthesis calculated using ADC(2) and the ma-def2-TZVP basis set.

SeeSupplementary Informationfor details.a,Potential energy profile of UV-induced C–S bond scission of18.C–S bond opening may spontaneously occur in18,leading to a peaked S1/S0state crossing; however, a reducing agent is necessary to maintain that geometry after reaching the S0state.b,Potential energy profile of UV-induced N7–C8 bond scission of19.N7–C8 bond rupture is the lowest-energy photochemical process in19and results in destruction of the purine ring.c,d,Potential energy profiles of the UV-induced C–S bond scission of encounter complexes18(c) and19(d) with HS.Photochemical C–S bond rupture induced by charge transfer from HSto a chromophore and is a barrierless process.

Extended Data Fig. 5 Equilibrium geometries of C2, S8 radical anion (31) and C8, N9 radical anion (32).

Radical anions may be formed after accepting a hydrated electron from the environment. The adiabatic electron affinities are calculated using ωB97X-D/IEFPCM and the ma-def2-TZVP basis set.

Extended Data Fig. 61H NMR spectra for the reactions of deoxyadenosine (dA, 7) and cytidine (C, 1) with nitrous acid.

a,1H NMR spectrum of the mixture of dA (7) and C (1).b,1H NMR spectrum of the reaction mixture after 4 d, showing that the ratio of the four (deoxy)nucleosides dA (7), deoxyinosine (dI,9), C (1), and uridine (U,2) is 30:17:42:11. f1, chemical shift (δ).

Extended Data Fig. 71H NMR spectra for stability study of cytidine (C; 1) and uridine (U; 2) at 254 nm irradiation with bisulfite.

a,1H NMR spectrum of the mixture of C (1), bisulfite and K4Fe(CN)6in the dark.b,As ina,after 10 h of irradiation.c,1H NMR spectrum of the mixture of U (2), bisulfite and K4Fe(CN)6in the dark.d,As inc,after 10 h of irradiation.e,1H NMR spectrum of the mixture of C (1), U (2),N9-thioanhydroadenosine (18), bisulfite and K4Fe(CN)6in the dark.f,As ine,after 10 h of irradiation. f1, chemical shift (δ).

Extended Data Fig. 81H NMR spectra for sequential reactions with the mixture of α-anhydrouridine (15), C (1) and U (2).

a,1H NMR spectrum of the mixture after heating with 8-mercaptoadenine (16) and magnesium chloride at 150 °C for 1.5 d.b,As ina,after irradiation with hydrogen sulfide at 254 nm.c,As ina,after reacting with nitrous acid for 2 d; dA (7):dI (9):C (1):U (2) = 14:14:44:28). f1, chemical shift (δ).

Supplementary information

Supplementary Information

This file contains Supplementary Materials and Methods, Supplementary Figures 1-56, Supplementary Tables 1-9 and Supplementary References.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Chmela, V., Green, N.et al.Selective prebiotic formation of RNA pyrimidine and DNA purine nucleosides. Nature582,60–66 (2020). https://doi.org/10.1038/s41586-020-2330-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:https://doi.org/10.1038/s41586-020-2330-9

This article is cited by

Comments

By submitting a comment you agree to abide by ourTermsandCommunity Guidelines.If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for theNature Briefingnewsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing