Très récemment, la fonction génératricede la suitede Stern, définie paretpour tout entier,a été considérée du point de vue arithmétique. Coons [8] a montré la transcendance depour toutalgébrique avec,et ce résultat fut généralisé dans [6] de sorte que, pour les mêmes,les nombressont algébriquement indépendants. À peu près au même temps, Bacher [4] a étudié la version torduede la suite de Stern, définie paretpour tout.
Les objectifs principaux du présent travail sont d’établir les analogues sur la fonction génératricededes résultats arithmétiques mentionnés plus haut concernant,de démontrer l’indépendance algébrique desur le corps,d’utiliser ce fait pour en déduire que, pour tout nombre complexeavec,le degré de transcendance du corpssurest au moins 2, et de fournir des majorations assez bonnes pour l’exposant d’irrationalité deet de,oùsont des entiers avecetsuffisamment petit.
Very recently, the generating functionof the Stern sequence,defined byandfor any integer,has been considered from the arithmetical point of view. Coons [8] proved the transcendence offor every algebraicwith,and this result was generalized in [6] to the effect that, for the same’s, all numbersare algebraically independent. At about the same time, Bacher [4] studied the twisted versionof Stern’s sequence, defined byandfor any.
The aim of our paper is to show the analogs on the generating functionofof the above-mentioned arithmetical results on,to prove the algebraic independence ofover the field,to use this fact to conclude that, for any complexwith,the transcendence degree of the fieldoveris at least 2, and to provide rather good upper bounds for the irrationality exponent ofandfor integerswithand sufficiently small.
@article{JTNB_2013__25_1_43_0, author = {Peter Bundschuh and Keijo V\ "a\" an\ "anen}, title = {Algebraic independence of the generating functions of {Stern{\textquoteright}s} sequence and of its twist}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {43--57}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {25}, number = {1}, year = {2013}, doi = {10.5802/jtnb.824}, mrnumber = {3063829}, zbl = {1268.11096}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.824/} }
TY - JOUR AU - Peter Bundschuh AU - Keijo Väänänen TI - Algebraic independence of the generating functions of Stern’s sequence and of its twist JO - Journal de théorie des nombres de Bordeaux PY - 2013 SP - 43 EP - 57 VL - 25 IS - 1 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.824/ DO - 10.5802/jtnb.824 LA - en ID - JTNB_2013__25_1_43_0 ER -
%0 Journal Article %A Peter Bundschuh %A Keijo Väänänen %T Algebraic independence of the generating functions of Stern’s sequence and of its twist %J Journal de théorie des nombres de Bordeaux %D 2013 %P 43-57 %V 25 %N 1 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.824/ %R 10.5802/jtnb.824 %G en %F JTNB_2013__25_1_43_0
Peter Bundschuh; Keijo Väänänen. Algebraic independence of the generating functions of Stern’s sequence and of its twist. Journal de théorie des nombres de Bordeaux, Tome 25 (2013) no. 1, pp. 43-57. doi: 10.5802/jtnb.824. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.824/
[1]B. Adamczewski and T. Rivoal,Irrationality measures for some automatic real numbers.Math. Proc. Cambridge Phil. Soc.147(2009), 659–678. | MR | Zbl
[2]J.-P. Allouche,On the Stern sequence and its twisted version.Integers12(2012), A58. | MR
[3]M. Amou,Algebraic independence of the values of certain functions at a transcendental number.Acta Arith.59(1991), 71–82. | MR | Zbl
[4]R. Bacher,Twisting the Stern sequence.Preprint, 2010, available at http://arxiv.org/abs/1005.5627
[5]Y. Bugeaud,On the rational approximation to the Thue-Morse-Mahler numbers.Ann. Inst. Fourier (Grenoble)61(2011), 2065–2076. | Numdam | MR
[6]P. Bundschuh,Transcendence and algebraic independence of series related to Stern’s squence.Int. J. Number Theory8(2012), 361–376. | MR
[7]F. Carlson,Über Potenzreihen mit ganzen Koeffizienten.Math. Z.9(1921), 1–13. | MR
[8]M. Coons,The transcendence of series related to Stern’s diatomic sequence.Int. J. Number Theory6(2010), 211–217. | MR | Zbl
[9]P. Corvaja and U. Zannier,Some new applications of the subspace theorem.Compos. Math.131(2002), 319–340. | MR | Zbl
[10]K. K. Kubota,On the algebraic independence of holomorphic solutions of certain functional equations and their values.Math. Ann.227(1977), 9–50. | MR | Zbl
[11]K. Mahler,Arithmetische Eigenschaften der Lösungen einer Klasse von Funktionalgleichungen.Math. Ann.101(1929), 342–366. | MR
[12]Ke. Nishioka,A note on differentially algebraic solutions of first order linear difference equations.Aequationes Math.27(1984), 32–48. | MR | Zbl
[13]Ku. Nishioka,New approach in Mahler’s method.J. Reine Angew. Math.407(1990), 202–219. | MR | Zbl
[14]Ku. Nishioka,Mahler Functions and Transcendence,Lecture Notes in Math.1631.Springer, Berlin, 1996. | MR | Zbl
[15]M. A. Stern,Über eine zahlentheoretische Funktion.J. Reine Angew. Math.55(1858), 193–220. | Zbl
Cité parSources: