Algebraic independence of the generating functions of Stern’s sequence and of its twist
Journal de théorie des nombres de Bordeaux, Tome 25 (2013) no. 1, pp. 43-57.

Très récemment, la fonction génératriceA(z)de la suite(an)n0de Stern, définie para0:=0,a1:=1,eta2n:=an,a2n+1:=an+an+1pour tout entiern>0,a été considérée du point de vue arithmétique. Coons [8] a montré la transcendance deA(α)pour toutαalgébrique avec0<|α|<1,et ce résultat fut généralisé dans [6] de sorte que, pour les mêmesα,les nombresA(α),A(α),A(α),...sont algébriquement indépendants. À peu près au même temps, Bacher [4] a étudié la version tordue(bn)de la suite de Stern, définie parb0:=0,b1:=1,etb2n:=-bn,b2n+1:=-(bn+bn+1)pour toutn>0.

Les objectifs principaux du présent travail sont d’établir les analogues sur la fonction génératriceB(z)de(bn)des résultats arithmétiques mentionnés plus haut concernantA(z),de démontrer l’indépendance algébrique deA(z),B(z)sur le corps(z),d’utiliser ce fait pour en déduire que, pour tout nombre complexeαavec0<|α|<1,le degré de transcendance du corps(α,A(α),B(α))surest au moins 2, et de fournir des majorations assez bonnes pour l’exposant d’irrationalité deA(r/s)et deB(r/s),oùr,ssont des entiers avec0<|r|<set(log|r|)/(logs)suffisamment petit.

Very recently, the generating functionA(z)of the Stern sequence(an)n0,defined bya0:=0,a1:=1,anda2n:=an,a2n+1:=an+an+1for any integern>0,has been considered from the arithmetical point of view. Coons [8] proved the transcendence ofA(α)for every algebraicαwith0<|α|<1,and this result was generalized in [6] to the effect that, for the sameα’s, all numbersA(α),A(α),A(α),...are algebraically independent. At about the same time, Bacher [4] studied the twisted version(bn)of Stern’s sequence, defined byb0:=0,b1:=1,andb2n:=-bn,b2n+1:=-(bn+bn+1)for anyn>0.

The aim of our paper is to show the analogs on the generating functionB(z)of(bn)of the above-mentioned arithmetical results onA(z),to prove the algebraic independence ofA(z),B(z)over the field(z),to use this fact to conclude that, for any complexαwith0<|α|<1,the transcendence degree of the field(α,A(α),B(α))overis at least 2, and to provide rather good upper bounds for the irrationality exponent ofA(r/s)andB(r/s)for integersr,swith0<|r|<sand sufficiently small(log|r|)/(logs).

DOI: 10.5802/jtnb.824
Peter Bundschuh&hairsp;1; Keijo Väänänen&hairsp;2

1Mathematisches Institut Universität zu Köln Weyertal 86-90 50931 Köln, Germany
2Department of Mathematical Sciences University of Oulu P. O. Box 3000 90014 Oulu, Finland
@article{JTNB_2013__25_1_43_0,
author = {Peter Bundschuh and Keijo V\ "a\" an\ "anen},
title = {Algebraic independence of the generating functions of {Stern{\textquoteright}s} sequence and of its twist},
journal = {Journal de th\'eorie des nombres de Bordeaux},
pages = {43--57},
publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
volume = {25},
number = {1},
year = {2013},
doi = {10.5802/jtnb.824},
mrnumber = {3063829},
zbl = {1268.11096},
language = {en},
url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.824/}
}
TY - JOUR
AU - Peter Bundschuh
AU - Keijo Väänänen
TI - Algebraic independence of the generating functions of Stern’s sequence and of its twist
JO - Journal de théorie des nombres de Bordeaux
PY - 2013
SP - 43
EP - 57
VL - 25
IS - 1
PB - Société Arithmétique de Bordeaux
UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.824/
DO - 10.5802/jtnb.824
LA - en
ID - JTNB_2013__25_1_43_0
ER -
%0 Journal Article
%A Peter Bundschuh
%A Keijo Väänänen
%T Algebraic independence of the generating functions of Stern’s sequence and of its twist
%J Journal de théorie des nombres de Bordeaux
%D 2013
%P 43-57
%V 25
%N 1
%I Société Arithmétique de Bordeaux
%U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.824/
%R 10.5802/jtnb.824
%G en
%F JTNB_2013__25_1_43_0
Peter Bundschuh; Keijo Väänänen. Algebraic independence of the generating functions of Stern’s sequence and of its twist. Journal de théorie des nombres de Bordeaux, Tome 25 (2013) no. 1, pp. 43-57. doi: 10.5802/jtnb.824. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.824/

[1]B. Adamczewski and T. Rivoal,Irrationality measures for some automatic real numbers.Math. Proc. Cambridge Phil. Soc.147(2009), 659–678. | MR | Zbl

[2]J.-P. Allouche,On the Stern sequence and its twisted version.Integers12(2012), A58. | MR

[3]M. Amou,Algebraic independence of the values of certain functions at a transcendental number.Acta Arith.59(1991), 71–82. | MR | Zbl

[4]R. Bacher,Twisting the Stern sequence.Preprint, 2010, available at http://arxiv.org/abs/1005.5627

[5]Y. Bugeaud,On the rational approximation to the Thue-Morse-Mahler numbers.Ann. Inst. Fourier (Grenoble)61(2011), 2065–2076. | Numdam | MR

[6]P. Bundschuh,Transcendence and algebraic independence of series related to Stern’s squence.Int. J. Number Theory8(2012), 361–376. | MR

[7]F. Carlson,Über Potenzreihen mit ganzen Koeffizienten.Math. Z.9(1921), 1–13. | MR

[8]M. Coons,The transcendence of series related to Stern’s diatomic sequence.Int. J. Number Theory6(2010), 211–217. | MR | Zbl

[9]P. Corvaja and U. Zannier,Some new applications of the subspace theorem.Compos. Math.131(2002), 319–340. | MR | Zbl

[10]K. K. Kubota,On the algebraic independence of holomorphic solutions of certain functional equations and their values.Math. Ann.227(1977), 9–50. | MR | Zbl

[11]K. Mahler,Arithmetische Eigenschaften der Lösungen einer Klasse von Funktionalgleichungen.Math. Ann.101(1929), 342–366. | MR

[12]Ke. Nishioka,A note on differentially algebraic solutions of first order linear difference equations.Aequationes Math.27(1984), 32–48. | MR | Zbl

[13]Ku. Nishioka,New approach in Mahler’s method.J. Reine Angew. Math.407(1990), 202–219. | MR | Zbl

[14]Ku. Nishioka,Mahler Functions and Transcendence,Lecture Notes in Math.1631.Springer, Berlin, 1996. | MR | Zbl

[15]M. A. Stern,Über eine zahlentheoretische Funktion.J. Reine Angew. Math.55(1858), 193–220. | Zbl

Cité parSources: