Serpens(Ancient Greek:Ὄφις,romanized:Óphis,lit.'the Serpent') is aconstellationin thenorthern celestial hemisphere.One of the 48 constellations listed by the 2nd-century astronomerPtolemy,it remains one of the88 modern constellationsdesignated by theInternational Astronomical Union.It is unique among the modern constellations in being split into two non-contiguous parts,Serpens Caput(Serpent Head) to the west andSerpens Cauda(Serpent Tail) to the east. Between these two halves lies the constellation of Ophiuchus, the "Serpent-Bearer". In figurative representations, the body of the serpent is represented as passing behind Ophiuchus betweenMu SerpentisinSerpens CaputandNu SerpentisinSerpens Cauda.

Serpens
Constellation
Serpens CaputSerpens Cauda
AbbreviationSer
GenitiveSerpentis
Pronunciation/ˈsɜːrpɪnz/,
genitive/sərˈpɛntɪs/
SymbolismtheSnake
Right ascensionSerpens Caput:15h10.4mto16h22.5m
Serpens Cauda:17h16.9mto18h58.3m
DeclinationSerpens Caput:25.66° to −03.72°
Serpens Cauda:06.42° to −16.14°
AreaSerpens Caput:428 sq. deg.
Serpens Cauda:208 sq. deg.
Total:637 sq. deg. (23rd)
Main stars11
Bayer/Flamsteed
stars
57
Stars withplanets15
Stars brighter than 3.00m1
Stars within 10.00 pc (32.62 ly)2
Brightest starα Ser(Unukalhai) (2.63m)
Messier objects2
Meteor showers0
Bordering
constellations
Serpens Caput:
Corona Borealis
Boötes
Virgo
Libra
Ophiuchus
Hercules

Serpens Cauda:
Aquila
Ophiuchus
Sagittarius
Scutum
Visible at latitudes between +80° and −80°.
Best visible at 21:00 (9 p.m.) during the month ofJuly.

The brighteststar in Serpensis thered giantstarAlpha Serpentis,or Unukalhai, in Serpens Caput, with anapparent magnitudeof 2.63. Also located in Serpens Caput are the naked-eyeglobular clusterMessier 5and the naked-eyevariablesR SerpentisandTau4Serpentis.Notable extragalactic objects includeSeyfert's Sextet,one of the densest galaxy clusters known;Arp 220,the prototypicalultraluminous infrared galaxy;andHoag's Object,the most famous of the very rare class of galaxies known asring galaxies.

Part of the Milky Way'sgalactic planepasses through Serpens Cauda, which is therefore rich in galacticdeep-sky objects,such as theEagle Nebula(IC 4703) and its associated star clusterMessier 16.Thenebulameasures 70 light-years by 50 light-years and contains thePillars of Creation,three dust clouds that became famous for the image taken by theHubble Space Telescope.Other striking objects include theRed Square Nebula,one of the few objects in astronomy to take on a square shape; andWesterhout 40,a massive nearbystar-forming regionconsisting of amolecular cloudand anH II region.

History

edit
Serpens held by Ophiuchus, as depicted inUrania's Mirror,a set of constellation cards published inLondonc. 1825. Above the tail of the serpent is the now-obsolete constellationTaurus Poniatoviiwhile below it isScutum

InGreek mythology,Serpens represents asnakeheld by the healerAsclepius.Represented in the sky by the constellation Ophiuchus, Asclepius once killed a snake, but the animal was subsequently resurrected after a second snake placed a revival herb on it before its death. As snakes shed their skin every year, they were known as the symbol of rebirth in ancient Greek society, and legend says Asclepius would revive dead humans using the same technique he witnessed. Although this is likely the logic for Serpens' presence with Ophiuchus, the true reason is still not fully known. Sometimes, Serpens was depicted as coiling around Ophiuchus, but the majority of atlases showed Serpens passing either behind Ophiuchus' body or between his legs.[1]

In some ancient atlases, the constellations Serpens and Ophiuchus were depicted as two separate constellations, although more often they were shown as a single constellation. One notable figure to depict Serpens separately wasJohann Bayer;thus, Serpens' stars are cataloged with separateBayer designationsfrom those of Ophiuchus. WhenEugène Delporteestablished modern constellation boundaries in the 1920s, he elected to depict the two separately. However, this posed the problem of how to disentangle the two constellations, with Deporte deciding to split Serpens into two areas—the head and the tail—separated by the continuous Ophiuchus. These two areas became known as Serpens Caput and Serpens Cauda,[1]caputbeing the Latin word for head andcaudathe Latin word for tail.[2]

InChinese astronomy,most of the stars of Serpens represented part of a wall surrounding a marketplace, known asTianshi,which was in Ophiuchus and part ofHercules.Serpens also contains a fewChinese constellations.Two stars in the tail represented part ofShilou,the tower with the market office. Another star in the tail representedLiesi,jewel shops. One star in the head (Mu Serpentis) markedTianru,thecrown prince's wet nurse, or sometimesrain.[1]

There were two "serpent" constellations inBabylonian astronomy,known as Mušḫuššu and Bašmu. It appears that Mušḫuššu was depicted as a hybrid of a dragon, a lion and a bird, and loosely corresponded toHydra.Bašmu was ahorned serpent(c.f.Ningishzida) and roughly corresponds to the Ὄφις constellation ofEudoxus of Cniduson which the Ὄφις (Serpens) of Ptolemy is based.[3]

Characteristics

edit

Serpens is the only one of the88 modern constellationsto be split into two disconnected regions in the sky:Serpens Caput(the head) andSerpens Cauda(the tail). The constellation is also unusual in that it depends on another constellation for context; specifically, it is being held by the Serpent Bearer Ophiuchus.[1]

Serpens Caput is bordered byLibrato the south,VirgoandBoötesto the west,Corona Borealisto the north, and Ophiuchus andHerculesto the east; Serpens Cauda is bordered bySagittariusto the south, Scutum andAquilato the east, and Ophiuchus to the north and west. Covering 636.9square degreestotal, it ranks 23rd of the 88 constellations in size. It appears prominently in both the northern and southern skies during the Northern Hemisphere's summer.[4]Its mainasterismconsists of 11 stars, and 108 stars in total are brighter than magnitude 6.5, the traditional limit for naked-eye visibility.[4]

Serpens Caput's boundaries, as set by Belgian astronomerEugène Delportein 1930, are defined by a 10-sided polygon, while Serpens Cauda's are defined by a 22-sided polygon. In theequatorial coordinate system,theright ascensioncoordinates of Serpens Caput's borders lie between15h10.4mand16h22.5m,while thedeclinationcoordinates are between 25.66° and −03.72°. Serpens Cauda's boundaries lie between right ascensions of17h16.9mand18h58.3mand declinations of 06.42° and −16.14°.[5]TheInternational Astronomical Union(IAU) adopted the three-letter abbreviation "Ser" for the constellation in 1922.[5][6]

Features

edit

Stars

edit

Head stars

edit
The constellation Serpens (Caput) as it can be seen by the naked eye

Marking the heart of the serpent is the constellation's brightest star,Alpha Serpentis.Traditionally called Unukalhai,[7]is ared giantofspectral typeK2III located approximately 23 parsecs distant with a visualmagnitudeof 2.630 ± 0.009,[8]meaning it can easily be seen with the naked eye even in areas with substantial light pollution. A faint companion is in orbit around the red giant star,[9]although it is not visible to the naked eye. Situated near Alpha isLambda Serpentis,a magnitude 4.42 ± 0.05 star rather similar to the Sun[10]positioned only 12 parsecs away.[11]It has an exoplanet orbiting around it.[12]Anothersolar analogin Serpens is the primary ofPsi Serpentis,a binary star[13]located slightly further away at approximately 14 parsecs.[14]

Beta,Gamma,andIota Serpentisform a distinctive triangular shape marking the head of the snake, withKappa Serpentis(the proper name is Gudja[15]) being roughly midway between Gamma and Iota. The brightest of the four with an apparent magnitude of roughly 3.67, Beta Serpentis is a white main-sequence star roughly 160 parsecs distant.[16]It is likely that a nearby 10th-magnitude star[17]is physically associated with Beta, although it is not certain.[18]TheMira variableR Serpentis,situated between Beta and Gamma, is visible to the naked eye at its maximum of 5th-magnitude, but, typical of Mira variables, it can fade to below magnitude 14.[19]Gamma Serpentis itself is an F-typesubgiantlocated only 11 parsecs distant and thus is quite bright, being of magnitude 3.84 ± 0.05.[20]The star is known to showsolar-like oscillations.[21]Iota Serpentis is a binary star system.[22]

Delta Serpentis,forming part of the body of the snake between the heart and the head, is a multiple star system[23]positioned around 70 parsecs from Earth. Consisting of four stars, the system has a total apparent magnitude of 3.79 as viewed from Earth,[24]although two of the stars, with a combined apparent magnitude of 3.80, provide nearly all the light.[25]The primary, a white subgiant, is aDelta Scuti variablewith an average apparent magnitude of 4.23.[26]Positioned very near Delta, both in the night sky and likely in actual space at an estimated distance of around 70 parsecs,[27]is thebarium star16 Serpentis.[28]Another notable variable star visible to the naked eye isChi Serpentis,anAlpha² Canum Venaticorum variablesituated midway between Delta and Beta which varies from its median brightness of 5.33 by 0.03 magnitudes over a period of approximately 1.5 days.[29]Chi Serpentis is achemically peculiarstar.[30]

The two stars in Serpens Caput that form part of the Snake's body below the heart areEpsilonand Mu Serpentis, both third-magnitudeA-type main-sequence stars.[31][32]Both have a peculiarity: Epsilon is anAm star,[33]while Mu is a binary.[34]Located slightly northwest of Mu is36 Serpentis,another A-type main-sequence star. This star also has a peculiarity; it is a binary with the primary component being aLambda Boötis star,meaning that it has solar-like amounts ofcarbon,nitrogen,andoxygen,while containing very low amounts ofiron peakelements.[35]The secondary star has also been a source of X-ray emissions.[36]25 Serpentis,positioned a few degrees northeast of Mu Serpentis, is aspectroscopic binary[37]consisting of a hotB-type giantand an A-type main-sequence star. The primary is aslowly pulsating B star,which causes the system to vary by 0.03 magnitudes.[38]

Serpens Caput contains manyRR Lyrae variables,although most are too faint to be seen without professional photography. The brightest isVY Serpentis,only of 10th magnitude. This star's period has been increasing by approximately 1.2 seconds per century.[39]A variable star of a different kind isTau4Serpentis,a cool red giant that pulsates between magnitudes 5.89 and 7.07 in 87 days.[40]This star has been found to display an inverseP Cygni profile,[41]where cold infalling gas on to the star createsredshiftedhydrogen absorption lines next to the normal emission lines.[42]

Several stars in Serpens have been found to haveplanets.The brightest,Omega Serpentis,located between Epsilon and Mu, is anorange giantwith a planet of at least 1.7Jupiter-masses.[43]NN Serpentis,an eclipsingpost-common-envelope binaryconsisting of awhite dwarfand ared dwarf,[44]is very likely to have two planets causing variations in the period of the eclipses.[45]Although it does not have a planet, the solar analogHD 137510has been found to have abrown dwarfcompanion within thebrown-dwarf desert.[46]

PSR B1534+11is a system consisting of twoneutron starsorbiting each other, one of which is apulsarwith a period of 37.9 milliseconds. Situated approximately 1000 parsecs distant, the system was used to testAlbert Einstein's theory ofgeneral relativity,validating the system's relativistic parameters to within 0.2% of values predicted by the theory.[47]TheX-rayemission from the system has been found to be present when the non-pulsar star intersects the equatorialpulsar windof the pulsar, and the system's orbit has been found to vary slightly.[48]

Tail stars

edit
The constellation Serpens (Cauda) as it can be seen by the naked eye

The brightest star in the tail,Eta Serpentis,is similar to Alpha Serpentis' primary in that it is a red giant of spectral class K. This star, however, is known to exhibit solar-like oscillations over a period of approximately 2.16 hours.[49][50]The other two stars in Serpens Cauda forming its asterism areThetaandXi Serpentis.Xi, where the asterism crosses over to Mu Serpentis in the head, is a triple star system[9]located approximately 105 parsecs away.[51][52]Two of the stars, with a combined apparent magnitude of around 3.5, form a spectroscopic binary with anangular separationof only 2.2 milliarcseconds,[53]and thus cannot be resolved with modern equipment. The primary is awhite giantwith an excess ofstrontium.[51]Theta, forming the tip of the tail, is also a multiple system, consisting of two A-type main-sequence stars with a combined apparent magnitude of around 4.1 separated by almost half an arcminute.[9]There is also a third G-type star with a mass and radius similar to that of the Sun.[54]

Lying near the boundary with Ophiuchus areZeta,Nu,andOmicron Serpentis.All three are 4th-magnitude main-sequence stars, with Nu and Omicron being of spectral type A[55][56]and Zeta being of spectral type F.[57]Nu is a single star[9]with a 9th-magnitude visual companion,[58]while Omicron is a Delta Scuti variable with amplitude variations of 0.01 magnitudes.[59]In 1909, thesymbiotic nova[60]RT Serpentisappeared near Omicron, although it only reached a maximum magnitude of 10.[61]

The star system59 Serpentis,also known as d Serpentis, is a triple star system[62]consisting of a spectroscopic binary containing an A-type star and an orange giant[63]and an orange giant secondary.[64]The system showsirregular variations in brightnessbetween magnitudes 5.17 and 5.2.[65]In 1970, the novaFH Serpentisappeared just slightly north of 59 Serpentis, reaching a maximum brightness of 4.5.[66]Also near 59 Serpentis in theSerpens Cloudare severalOrion variables.MWC 297is aHerbig Be starthat in 1994 exhibited a largeX-rayflare and increased in X-ray luminosity by five times before returning to the quiescent state.[67]The star also appears to possess acircumstellar disk.[68]Another Orion variable in the region isVV Serpentis,a Herbig Ae star that has been found to exhibit Delta Scuti pulsations.[69]VV Serpentis has also, like MWC 297, been found to have a dusty disk surrounding it,[70]and is also aUX Orionis star,[71]meaning that it shows irregular variations in its brightness.[72]

The starHR 6958,also known as MV Serpentis, is an Alpha2Canum Venaticorum variable that is faintly visible to the naked eye.[73]The star's metal abundance is ten times higher than the Sun for most metals at the iron peak and up to 1,000 times more for heavier elements. It has also been found to contain excesssilicon.[74]Barely visible to the naked eye isHD 172365,[75]a likely post-blue stragglerin the open clusterIC 4756that contains a large excess oflithium.[76]HD 172189,also located in IC 4756, is anAlgol variableeclipsing binary[77]with a 5.70 day period. The primary star in the system is also a Delta Scuti variable, undergoing multiple pulsation frequencies, which, combined with the eclipses, causes the system to vary by around a tenth of a magnitude.[78]

As thegalactic planepasses through it, Serpens Cauda contains many massiveOB stars.Several of these are visible to the naked eye, such asNW Serpentis,an earlyBe starthat has been found to be somewhat variable. The variability is interesting; according to one study, it could be one of the first discovered hybrids betweenBeta Cephei variablesand slowly pulsating B stars.[79]Although not visible to the naked eye,HD 167971(MY Serpentis) is aBeta Lyrae variabletriple system consisting of three very hotO-type stars.A member of the clusterNGC 6604,[80]the two eclipsing stars are both blue giants, with one being of the very early spectral type O7.5III. The remaining star is either a blue giant orsupergiantof a late O or early B spectral type.[81]Also an eclipsing[82]binary, theHD 166734system consists of two O-type blue supergiants in orbit around each other.[83]Less extreme in terms of mass and temperature isHD 161701,a spectroscopic binary consisting of aB-typeprimary and anApsecondary, although it is the only known spectroscopic binary to consist of a star with excess ofmercuryandmanganeseand an Ap star.[84]

South of theEagle Nebulaon the border with Sagittarius is the eclipsing binaryW Serpentis,whose primary is a white giant that is interacting with the secondary. The system has been found to contain anaccretion disk,and was one of the first discoveredSerpentids,which are eclipsing binaries containing exceptionally strongfar-ultravioletspectral lines.[85]It is suspected that such Serpentids are in an earlier evolutionary phase, and will evolve first intodouble periodic variablesand then classical Algol variables.[86]Also near the Eagle Nebula is the eclipsingWolf–RayetbinaryCV Serpentis,consisting of a Wolf–Rayet star and a hot O-type subgiant. The system is surrounded by a ring-shapednebula,likely formed during the Wolf–Rayet phase of the primary.[87]The eclipses of the system vary erratically, and although there are two theories as to why, neither of them is completely consistent with current understanding of stars.[88]

Serpens Cauda contains a fewX-ray binaries.One of these,GX 17+2,is alow-mass X-ray binaryconsisting of a neutron star and, as in all low-mass X-ray binaries, a low-mass star. The system has been classified as aSco-like Z source,meaning that its accretion is near theEddington limit.[89]The system has also been found to approximately every 3 days brighten by around 3.5K-bandmagnitudes, possibly due to the presence of asynchrotron jet.[90]Another low-mass X-ray binary,Serpens X-1,undergoes occasional X-ray bursts. One in particular lasted nearly four hours, possibly explained by the burning of carbon in "a heavy element ocean".[91]

Φ 332 (Finsen 332) is a tiny and difficult double-double star at 18:45 / +5°30', namedTweedledee and Tweedledumby South African astronomerWilliam Stephen Finsen,who was struck by the nearly identical position angles and separations at the time of his 1953 discovery.[92][93][94]Gliese 710is a star that is expected to pass very close to the Solar System in around 1.29 million years.[95][96][97]

Deep-sky objects

edit

Head objects

edit
Messier 5,a globular cluster that can be seen with the naked eye under good conditions

As the galactic plane does not pass through this part of Serpens, a view to many galaxies beyond it is possible. However, a few structures of the Milky Way Galaxy are present in Serpens Caput, such as Messier 5, aglobular clusterpositioned approximately 8° southwest of α Serpentis, next to the star5 Serpentis.Barely visible to the naked eye under good conditions,[98]and is located approximately 25,000 ly distant.[99]Messier 5 contains a large number of known RR Lyrae variable stars,[100]and is receding from us at over 50 km/s.[101]The cluster contains twomillisecond pulsars,one of which is in a binary, allowing theproper motionof the cluster to be measured. The binary could help our understanding ofneutron degenerate matter;the current median mass, if confirmed, would exclude any "soft"equation of statefor such matter.[102]The cluster has been used to test formagnetic dipole momentsin neutrinos, which could shed light on some hypothetical particles such as theaxion.[103]The brightest stars in Messier 5 are around magnitude 10.6,[104]and the globular cluster was first observed byWilliam Herschelin 1791.[105]

Another globular cluster isPalomar 5,found just south of Messier 5. Many stars are leaving this globular cluster due to the Milky Way's gravity, forming atidal tailover 30000 light-years long.[106]It is over 11 billion years old.[107]It has also been flattened and distorted by tidal effects.[108]

TheL134/L183is adark nebulacomplex that, along with a third cloud, is likely formed by fragments of a single original cloud located 36 degrees away from the galactic plane, a large distance for dark nebulae.[109]The entire complex is thought to be around 140 parsecs distant.[110]L183, also referred to as L134N, is home to several infrared sources, indicating pre-stellar sources[111]thought to present the first known observation of the contraction phase between cloud cores and prestellar cores.[112]The core is split into three regions,[113]with a combined mass of around 25 solar masses.[114]

Outside of the Milky Way, there are no bright deep-sky objects for amateur astronomers in Serpens Caput, with nothing else above 10th magnitude. The brightest isNGC 5962,aspiral galaxypositioned around 28 megaparsecs distant[115]with an apparent magnitude of 11.34.[116]Two supernovae have been observed in the galaxy,[117]and NGC 5962 has two satellite galaxies.[118]Slightly fainter isNGC 5921,abarred spiral galaxywith aLINER-typeactive galactic nucleussituated somewhat closer at a distance of 21 megaparsecs.[119]Atype II supernovawas observed in this galaxy in 2001 and was designated SN 2001X.[120]Fainter still are the spiralsNGC 5964[121]andNGC 6118,with the latter being host to thesupernovaSN 2004dk.[122]

Hoag's Object,a galaxy in Serpens and a member of the very rare class known asring galaxies.

Hoag's Object, located 600 million light-years from Earth, is a member of the very rare class of galaxies known as ring galaxies. The outer ring is largely composed of young blue stars while the core is made up of older yellow stars. The predominant theory regarding its formation is that the progenitor galaxy was a barred spiral galaxy whose arms had velocities too great to keep the galaxy's coherence and therefore detached.[123]Arp 220is another unusual galaxy in Serpens. The prototypicalultraluminous infrared galaxy,Arp 220 is somewhat closer than Hoag's Object at 250 million light-years from Earth. It consists of two large spiral galaxies in the process ofcollidingwith their nuclei orbiting at a distance of 1,200 light-years, causing extensivestar formationthroughout both components. It possesses a large cluster of more than a billion stars, partially covered by thick dust clouds near one of the galaxies' core.[123]Another interacting galaxy pair, albeit in an earlier stage, consists of the galaxiesNGC 5953andNGC 5954.In this case, both areactive galaxies,with the former aSeyfert 2 galaxyand the latter a LINER-type galaxy. Both are undergoing a burst of star formation triggered by the interaction.[124]

Seyfert's Sextetis agroupof six galaxies, four of which areinteracting gravitationallyand two of which simply appear to be a part of the group despite their greater distance. The gravitationally boundclusterlies at a distance of 190 millionlight-yearsfrom Earth and is approximately 100,000 light-years across, making Seyfert's Sextet one of the densest galaxy groups known. Astronomers predict that the four interacting galaxies will eventuallymergeto form a largeelliptical galaxy.[123]The radio source3C 326was originally thought to emanate from a giant elliptical galaxy. However, in 1990, it was shown that the source is instead a brighter, smaller galaxy a few arcseconds north.[125]This object, designated 3C 326 N, has enough gas for star formation, but is being inhibited due to the energy from the radio galaxy nucleus.[126]

A much larger galaxy cluster is the redshift-0.0354Abell 2063.[127]The cluster is thought to be interacting with the nearby galaxy groupMKW 3s,based on radial velocity measurements of galaxies and the positioning of thecD galaxyat the center of Abell 2063.[128]The active galaxy at the center of MKW 3s—NGC 5920—appears to be creating a bubble of hot gas from its radio activity.[129]Near the 5th-magnitude starPi SerpentisliesAWM 4,a cluster containing an excess of metals in the intracluster medium. The central galaxy,NGC 6051,is aradio galaxythat is probably responsible for this enrichment.[130]Similar to AWM 4, the clusterAbell 2052has central cD radio galaxy,3C 317.This radio galaxy is believed to have restarted after a period of inactivity less than 200 years ago.[131]The galaxy has over 40,000 known globular clusters, the highest known total of any galaxy as of 2002.[132]

A composite image of3C 321,a merging active galaxy pair

Consisting of two quasars with a separation of less than 5arcseconds,the quasar pair4C 11.50is one of the visually closest pairs of quasars in the sky. The two have markedly different redshifts, however, and are thus unrelated.[133]The foreground member of the pair (4C 11.50 A) does not have enough mass to refract light from the background component (4C 11.50 B) enough to produce alensedimage, although it does have a true companion of its own.[134]An even stranger galaxy pair is3C 321.Unlike the previous pair, the two galaxies making up 3C 321 are interacting with each other and are in the process of merging. Both members appear to be active galaxies; the primary radio galaxy may be responsible for the activity in the secondary by means of the former's jet driving material onto the latter'ssupermassive black hole.[135]

An example ofgravitational lensingis found in the radio galaxy3C 324.First thought to be a single overluminous radio galaxy with a redshift ofz= 1.206, it was found in 1987 to actually be two galaxies, with the radio galaxy at the aforementioned redshift being lensed by another galaxy at redshiftz= 0.845. The first example of a multiply-imaged radio galaxy discovered,[136]the source appears to be an elliptical galaxy with adust laneobscuring our view of the visual and ultraviolet emission from the nucleus.[137]In even shorter wavelengths, theBL Lac objectPG 1553+113is a heavy emitter ofgamma rays.This object is the most distant found to emit photons with energies in theTeVrange as of 2007.[138]The spectrum is unique, with hard emission in some ranges of the gamma-ray spectrum in stark contrast to soft emission in others.[139]In 2012, the object flared in the gamma-ray spectrum, tripling in luminosity for two nights, allowing the redshift to be accurately measured asz= 0.49.[140]

Severalgamma-ray bursts(GRBs) have been observed in Serpens Caput, such asGRB 970111,one of the brightest GRBs observed. An optical transient event associated with this GRB has not been found, despite its intensity. The host galaxy initially also proved elusive, however it now appears that the host is aSeyfert I galaxylocated at redshiftz= 0.657.[141]The X-ray afterglow of the GRB has also been much fainter than for other dimmer GRBs.[142]More distant isGRB 060526(redshiftz= 3.221), from which X-ray and optical afterglows were detected. This GRB was very faint for a long-duration GRB.[143]

Tail objects

edit
ThePillars of Creation,a well-knownstar-forming regionin the Eagle Nebula made famous by this Hubble photograph

Part of the galactic plane passes through the tail, and thus Serpens Cauda is rich in deep-sky objects within the Milky Way galaxy. The Eagle Nebula and its associated star cluster,Messier 16lie around 5,700[144]light-years from Earth in the direction of theGalactic Center.The nebula measures 70 light-years by 50 light-years and contains the Pillars of Creation, three dust clouds that became famous for the image taken by theHubble Space Telescope.The stars being born in the Eagle Nebula, added to those with an approximate age of 5 million years have an average temperature of 45,000kelvinsand produce prodigious amounts of radiation that will eventuallydestroythe dust pillars.[123]Despite its fame, the Eagle Nebula is fairly dim, with an integrated magnitude of approximately 6.0. The star-forming regions in the nebula are oftenevaporating gaseous globules;unlikeBok globulesthey only hold oneprotostar.[145]

North of Messier 16, at a distance of approximately 2000 parsecs, is theOB associationSerpens OB2,containing over 100 OB stars. Around 5 million years old, the association appears to still contain star-forming regions, and the light from its stars is illuminating theHII regionS 54.[146]Within this HII region is the open clusterNGC 6604,which is the same age as the surrounding OB association,[147]and the cluster is now thought to simply be the densest part of it.[148]The cluster appears to be producing a thermal chimney of ionized gas, caused by the interaction of the gas from thegalactic diskwith thegalactic halo.[146]

Another open cluster in Serpens Cauda isIC 4756,containing at least one naked-eye star, HD 172365[149](another naked-eye star in the vicinity,HD 171586,is most likely unrelated). Positioned approximately 440 parsecs distant,[150]the cluster is estimated to be around 800 million years old, quite old for an open cluster.[151]Despite the presence of the Milky Way in Serpens Cauda, one globular cluster can be found:NGC 6535,although invisible to the naked eye, can be made out in small telescopes just north of Zeta Serpentis. Rather small and sparse for a globular cluster,[152]this cluster contains no known RR Lyrae variables, which is unusual for a globular cluster.[153]

MWC 922is a star surrounded by aplanetary nebula.Dubbed theRed Square Nebuladue to its similarities to theRed Rectangle Nebula,the planetary nebula appears to be a nearly perfect square with a dark band around the equatorial regions. The nebula contains concentric rings, which are similar to those seen in the supernovaSN 1987A.[154]MWC 922 itself is anFS Canis Majoris variable,[155]meaning that it is a Be star containing exceptionally brighthydrogenemission linesas well as selectforbidden lines,likely due to the presence of a close binary.[156]East of Xi Serpentis is another planetary nebula,Abell 41,containing the binary starMT Serpentisat its center. The nebula appears to have a bipolar structure, and the axis of symmetry of the nebula has been found to be within 5° of the line perpendicular to the orbital plane of the stars, strengthening the link between binary stars and bipolar planetary nebulae.[157]On the other end of the stellar age spectrum isL483,a dark nebula which contains the protostarIRAS 18418-0440.Although classified as aclass 0 protostar,it has some unusual features for such an object, such as a lack of high-velocitystellar winds,and it has been proposed that this object is in transition between class 0 andclass I.[158]Avariable nebulaexists around the protostar, although it is only visible in infrared light.[159]

Westerhout 40,one of the nearest sites of massive star formation

TheSerpens cloudis a massive star-formingmolecular cloudsituated in the southern part of Serpens Cauda. Only two million years old[160]and 420 parsecs distant,[161]the cloud is known to contain many protostars such asSerpens FIRS 1[162]andSerpens SVS 20.[163]TheSerpens Southprotocluster was uncovered by NASA'sSpitzer Space Telescopein the southern portion of the cloud,[164]and it appears that star formation is still continuing in the region.[165]Another site of star formation is the Westerhout 40 complex, consisting of a prominent HII region adjacent to a molecular cloud.[166]Located around 500 parsecs distant,[167]it is one of the nearest massive regions of star formation, but as the molecular cloud obscures the HII region, rendering it and its embedded cluster tough to see visibly, it is not as well-studied as others.[168]The embedded cluster likely contains over 600 stars above 0.1 solar masses,[169]with several massive stars, including at least one O-type star, being responsible for lighting the HII region and the production of abubble.[167]

Despite the presence of the Milky Way, several active galaxies are visible in Serpens Cauda as well, such asPDS 456,found near Xi Serpentis. The most intrinsically luminous nearby active galaxy,[170]this AGN has been found to be extremely variable in theX-ray spectrum.This has allowed light to be shed on the nature of the supermassive black hole at the center, likely aKerr black hole.[171]It is possible that the quasar is undergoing a transition from an ultraluminous infrared galaxy to a classical radio-quiet quasar, but there are problems with this theory, and the object appears to be an exceptional object that does not completely lie within current classification systems.[170]Nearby isNRAO 530,ablazarthat has been known to flare in the X-rays occasionally. One of these flares was for less than 2000 seconds, making it the shortest flare ever observed in a blazar as of 2004.[172]The blazar also appears to show periodic variability in itsradio waveoutput over two different periods of six and ten years.[173]

Meteor showers

edit

There are two daytimemeteor showersthatradiatefrom Serpens, theOmega Serpentidsand theSigma Serpentids.Both showers peak between December 18 and December 25.[174]

References

edit
  1. ^abcdRidpath, Ian."Serpens".Star Tales.self-published.Retrieved15 May2014.
  2. ^Arnold, Maurice (Toby)."Arnold's Glossary of Anatomy".Anatomy & Histology - Online Learning.The University of Sydney. Archived fromthe originalon 2015-09-02.Retrieved8 August2015.
  3. ^White, Gavin (2007).Babylonian Star-Lore: An Illustrated Guide to the Star-lore and Constellations of Ancient Babylonia.Solaria Publications. p. 180.ISBN978-0-9559037-0-0.
  4. ^abRidpath, Ian."Constellations: Andromeda–Indus".Star Tales.self-published.Retrieved1 April2014.
  5. ^ab"Serpens, Constellation Boundary".The Constellations.International Astronomical Union.Retrieved20 April2014.
  6. ^Russell, H. N. (1922). "The New International Symbols for the Constellations".Popular Astronomy.30:469–71.Bibcode:1922PA.....30..469R.
  7. ^Kunitzsch, Paul; Smart, Tim (2006).A Dictionary of Modern star Names: A Short Guide to 254 Star Names and Their Derivations(2nd rev. ed.). Cambridge, Massachusetts: Sky Pub.ISBN978-1-931559-44-7.
  8. ^"* Alpha Serpentis – Star in double system".SIMBAD.Retrieved18 April2014.
  9. ^abcdEggleton, P. P.; Tokovinin, A. A. (2008)."A catalogue of multiplicity among bright stellar systems".Monthly Notices of the Royal Astronomical Society.389(2): 869.arXiv:0806.2878.Bibcode:2008MNRAS.389..869E.doi:10.1111/j.1365-2966.2008.13596.x.S2CID14878976.
  10. ^Da Silva, R.; Porto De Mello, G. F.; Milone, A. C.; Da Silva, L.; Ribeiro, L. S.; Rocha-Pinto, H. J. (2012). "Accurate and homogeneous abundance patterns in solar-type stars of the solar neighbourhood: A chemo-chronological analysis".Astronomy & Astrophysics.542:A84.arXiv:1204.4433.Bibcode:2012A&A...542A..84D.doi:10.1051/0004-6361/201118751.S2CID118450072.
  11. ^"* Lambda Serpentis – Star".SIMBAD.Retrieved20 May2014.
  12. ^Rosenthal, Lee J.; Fulton, Benjamin J.; Hirsch, Lea A.; Isaacson, Howard T.; Howard, Andrew W.; Dedrick, Cayla M.; Sherstyuk, Ilya A.; Blunt, Sarah C.; Petigura, Erik A.; Knutson, Heather A.; Behmard, Aida; Chontos, Ashley; Crepp, Justin R.; Crossfield, Ian J. M.; Dalba, Paul A.; Fischer, Debra A.; Henry, Gregory W.; Kane, Stephen R.; Kosiarek, Molly; Marcy, Geoffrey W.; Rubenzahl, Ryan A.; Weiss, Lauren M.; Wright, Jason T. (2021), "The California Legacy Survey. I. A Catalog of 178 Planets from Precision Radial Velocity Monitoring of 719 Nearby Stars over Three Decades",The Astrophysical Journal Supplement Series,255(1): 8,arXiv:2105.11583,Bibcode:2021ApJS..255....8R,doi:10.3847/1538-4365/abe23c,S2CID235186973
  13. ^Hall, J. C.; Henry, G. W.; Lockwood, G. W.; Skiff, B. A.; Saar, S. H. (2009). "The Activity and Variability of the Sun and Sun-Like Stars. Ii. Contemporaneous Photometry and Spectroscopy of Bright Solar Analogs".The Astronomical Journal.138(1): 312.Bibcode:2009AJ....138..312H.CiteSeerX10.1.1.216.9004.doi:10.1088/0004-6256/138/1/312.S2CID12332945.
  14. ^"* Psi Serpentis – Double or multiple star".SIMBAD.Retrieved21 June2014.
  15. ^"IAU Catalog of Star Names".International Astronomical Union.Retrieved2018-09-17.
  16. ^"* Beta Serpentis – Star in double system".SIMBAD.Retrieved12 May2014.
  17. ^"* Beta Serpentis B – Star in double system".SIMBAD.Retrieved12 May2014.
  18. ^Shaya, E. J.; Olling, R. P. (2011). "Very Wide Binaries and Other Comoving Stellar Companions: A Bayesian Analysis of The Hipparcos Catalogue".The Astrophysical Journal Supplement Series.192(1): 2.arXiv:1007.0425.Bibcode:2011ApJS..192....2S.doi:10.1088/0067-0049/192/1/2.S2CID119226823.
  19. ^VSX (4 January 2010)."R Serpentis".AAVSO Website.American Association of Variable Star Observers.Retrieved22 May2014.
  20. ^"* Gamma Serpentis – Variable star".SIMBAD.Retrieved22 May2014.
  21. ^Bi, S. -L.; Basu, S.; Li, L. -H. (2008)."Seismological Analysis of the Stars γ Serpentis and ι Leonis: Stellar Parameters and Evolution".The Astrophysical Journal.673(2): 1093–1105.Bibcode:2008ApJ...673.1093B.doi:10.1086/521575.
  22. ^Muterspaugh, Matthew W.; et al. (2010). "The Phases Differential Astrometry Data Archive. II. Updated Binary Star Orbits and a Long Period Eclipsing Binary".The Astronomical Journal.140(6): 1623–1630.arXiv:1010.4043.Bibcode:2010AJ....140.1623M.doi:10.1088/0004-6256/140/6/1623.S2CID6030289.
  23. ^Malkov, O. Y.; Tamazian, V. S.; Docobo, J. A.; Chulkov, D. A. (2012)."Dynamical masses of a selected sample of orbital binaries".Astronomy & Astrophysics.546:A69.Bibcode:2012A&A...546A..69M.doi:10.1051/0004-6361/201219774.
  24. ^"* Delta Serpentis – Double or multiple star".SIMBAD.Retrieved18 May2014.
  25. ^"* Delta Serpentis B – Star in double system".SIMBAD.Retrieved18 May2014.
  26. ^VSX (4 January 2010)."Delta Serpentis".AAVSO Website.American Association of Variable Star Observers.Retrieved18 May2014.
  27. ^"* 16 Serpentis – Star".SIMBAD.Retrieved24 May2014.
  28. ^Tomkin, J.; Lambert, D. L. (1986)."Heavy-element abundances in the mild barium stars Omicron Virginis and 16 Serpentis".The Astrophysical Journal.311:819.Bibcode:1986ApJ...311..819T.doi:10.1086/164821.
  29. ^VSX (4 January 2010)."Chi Serpentis".AAVSO Website.American Association of Variable Star Observers.Retrieved26 May2014.
  30. ^Loden, L. O. (July 1983), "A physical study of the Ursa Major cluster (with special attention to the peculiar A stars)",Astronomy and Astrophysics Supplement Series,53:33–42,Bibcode:1983A&AS...53...33L.
  31. ^"* Epsilon Serpentis – Star".SIMBAD.Retrieved26 May2014.
  32. ^"* Mu Serpentis – Star".SIMBAD.Retrieved26 May2014.
  33. ^Adelman, S. J.; Albayrak, B. (1998)."Elemental abundance analyses with DAO spectrograms -- XX. The early a stars epsilon Serpentis, 29 Vulpeculae and sigma Aquarii".Monthly Notices of the Royal Astronomical Society.300(2): 359.Bibcode:1998MNRAS.300..359A.doi:10.1046/j.1365-8711.1998.01859.x.
  34. ^Gontcharov, G. A.; Kiyaeva, O. V. (2010). "Photocentric orbits from a direct combination of ground-based astrometry with Hipparcos II. Preliminary orbits for six astrometric binaries".New Astronomy.15(3): 324–331.arXiv:1606.08182.Bibcode:2010NewA...15..324G.doi:10.1016/j.newast.2009.09.006.S2CID119252073.
  35. ^Nikolov, G.; Atanasova, E.; Iliev, I. K.; Paunzen, E.; Barzova, I. S. (April 2008). "Spectroscopic orbit determination of two metal-weak dwarf stars: HD64491 and HD141851".Contributions of the Astronomical Observatory Skalnaté Pleso.38(2): 433–434.Bibcode:2008CoSka..38..433N.
  36. ^Mason, Brian D.; et al. (September 2010)."Binary Star Orbits. IV. Orbits of 18 Southern Interferometric Pairs".The Astronomical Journal.140(3): 735–743.Bibcode:2010AJ....140..735M.doi:10.1088/0004-6256/140/3/735.
  37. ^Petrie, R. M.; Phibbs, Edgar (1950). "Redetermination of the Spectrographic Orbits of Iota Pegasi and 25 Serpentis".Publications of the Dominion Astrophysical Observatory Victoria.8:225–234.Bibcode:1950PDAO....8..225P.
  38. ^VSX; Otero, S. A (10 February 2012)."PT Serpentis".AAVSO Website.American Association of Variable Star Observers.Retrieved28 May2014.
  39. ^Wunder, E. (October 1991). "Period Changes of Bright RR Lyrae Stars SU Dra and VY Ser".Information Bulletin on Variable Stars.3669(1): IBVS Homepage.Bibcode:1991IBVS.3669....1W.
  40. ^VSX; Otero, S. A (28 June 2012)."Tau4 Serpentis".AAVSO Website.American Association of Variable Star Observers.Retrieved24 June2014.
  41. ^Kolotilov, E. A.; Russev, R. M. (January 1980). "Inverse P Cyg Profile of Halpha in the Spectrum of the Red Giant HD 139216 = tau4 Ser".Information Bulletin on Variable Stars.1730:1.Bibcode:1980IBVS.1730....1K.
  42. ^Galactic Star and Planet Formation Research Group."Lecture 7: The Collapse of Cores and Infall"(PDF).Department of Physics and Astronomy, University of Toledo.Retrieved17 July2015.
  43. ^Sato, B.; Omiya, M.; Harakawa, H.; Liu, Y. -J.; Izumiura, H.; Kambe, E.; Takeda, Y.; Yoshida, M.; Itoh, Y.; Ando, H.; Kokubo, E.; Ida, S. (2013). "Planetary Companions to Three Evolved Intermediate-Mass Stars: HD 2952, HD 120084, and ω Serpentis".Publications of the Astronomical Society of Japan.65(4): 85.arXiv:1304.4328.Bibcode:2013PASJ...65...85S.doi:10.1093/pasj/65.4.85.S2CID119248666.
  44. ^Parsons, S. G.; Marsh, T. R.; Copperwheat, C. M.; Dhillon, V. S.; Littlefair, S. P.; Gänsicke, B. T.; Hickman, R. (2010)."Precise mass and radius values for the white dwarf and low mass M dwarf in the pre-cataclysmic binary NN Serpentis".Monthly Notices of the Royal Astronomical Society.402(4): 2591.arXiv:0909.4307.Bibcode:2010MNRAS.402.2591P.doi:10.1111/j.1365-2966.2009.16072.x.S2CID15186725.
  45. ^Marsh, T. R.; Parsons, S. G.; Bours, M. C. P.; Littlefair, S. P.; Copperwheat, C. M.; Dhillon, V. S.; Breedt, E.; Caceres, C.; Schreiber, M. R. (2013)."The planets around NN Serpentis: Still there"(PDF).Monthly Notices of the Royal Astronomical Society.437(1): 475.arXiv:1310.1391.Bibcode:2014MNRAS.437..475M.doi:10.1093/mnras/stt1903.S2CID53954504.
  46. ^Endl, Michael; Hatzes, Artie P.; Cochran, William D.; McArthur, Barbara; Prieto, Carlos Allende; Paulson, Diane B.; Guenther, Eike; Bedalov, Ana (2004). "HD 137510: An Oasis in the Brown Dwarf Desert".The Astrophysical Journal.611(2): 1121–1124.arXiv:astro-ph/0404584.Bibcode:2004ApJ...611.1121E.doi:10.1086/422310.S2CID119062344.
  47. ^Fonseca, E.; Stairs, I. H.; Thorsett, S. E. (2014). "A Comprehensive Study of Relativistic Gravity Using PSR B1534+12".The Astrophysical Journal.787(1): 82.arXiv:1402.4836.Bibcode:2014ApJ...787...82F.doi:10.1088/0004-637X/787/1/82.S2CID119198979.
  48. ^Durant, M.; Kargaltsev, O.; Volkov, I.; Pavlov, G. G. (2011). "Orbital Variation of the X-Ray Emission from the Double Neutron Star Binary J1537+1155".The Astrophysical Journal.741(1): 65.arXiv:1108.3330.Bibcode:2011ApJ...741...65D.doi:10.1088/0004-637X/741/1/65.S2CID119200269.
  49. ^Hekker, S.; Aerts, C. (2010). "Line-profile variations of stochastically excited oscillations in four evolved stars".Astronomy and Astrophysics.515:A43.arXiv:1002.2212.Bibcode:2010A&A...515A..43H.doi:10.1051/0004-6361/200912777.S2CID30911563.
  50. ^Tabur, V.; et al. (December 2010), "Period-luminosity relations of pulsating M giants in the solar neighbourhood and the Magellanic Clouds",Monthly Notices of the Royal Astronomical Society,409(2): 777–788,arXiv:1007.2974,Bibcode:2010MNRAS.409..777T,doi:10.1111/j.1365-2966.2010.17341.x,S2CID118411237
  51. ^ab"Xi Serpentis – Spectroscopic binary".SIMBAD.Retrieved21 June2014.
  52. ^Gray, R. O.; et al. (July 2006), "Contributions to the Nearby Stars (NStars) Project: spectroscopy of stars earlier than M0 within 40 pc-The Southern Sample",The Astronomical Journal,132(1): 161–170,arXiv:astro-ph/0603770,Bibcode:2006AJ....132..161G,doi:10.1086/504637,S2CID119476992.
  53. ^Halbwachs, J. L. (1981). "List of Estimated Angular Separations of Spectroscopic Binaries".Astronomy and Astrophysics Supplement.44:47.Bibcode:1981A&AS...44...47H.
  54. ^Boyajian, Tabetha S.; et al. (July 2013). "Stellar Diameters and Temperatures. III. Main-sequence A, F, G, and K Stars: Additional High-precision Measurements and Empirical Relations".The Astrophysical Journal.771(1): 31.arXiv:1306.2974.Bibcode:2013ApJ...771...40B.doi:10.1088/0004-637X/771/1/40.S2CID14911430.40.See Table 3.
  55. ^"Nu Serpentis – Star in double system".SIMBAD.Retrieved20 June2014.
  56. ^"Omicron Serpentis – Variable Star of delta Sct type".SIMBAD.Retrieved20 June2014.
  57. ^"Zeta Serpentis – Star".SIMBAD.Retrieved20 June2014.
  58. ^"BD-12 4724 – Star in double system".SIMBAD.Retrieved20 June2014.
  59. ^VSX (4 January 2010)."Omicron Serpentis".AAVSO Website.American Association of Variable Star Observers.Retrieved20 June2014.
  60. ^Pavlenko, E. P.; Bochkov, V. V.; Vasil'yanovskaya, O. P. (1996). "9,6-Year periodicity of symbiotic nova RT Ser (1909) during the outburst decay from 1940 to 1994".Astrophysics.39(1): 15–19.Bibcode:1996Ap.....39...15P.doi:10.1007/BF02044949.S2CID120532937.
  61. ^VSX; Osborne, W. (1 April 2014)."RT Serpentis".AAVSO Website.American Association of Variable Star Observers.Retrieved28 May2014.
  62. ^Tilley, E. C. (1943). "A Spectrographic Study of the Triple System in 59 D Serpentis".The Astrophysical Journal.98:347.Bibcode:1943ApJ....98..347T.doi:10.1086/144577.
  63. ^Abt, H. A. (2009). "MK Classifications of Spectroscopic Binaries".The Astrophysical Journal Supplement Series.180(1): 117–118.Bibcode:2009ApJS..180..117A.doi:10.1088/0067-0049/180/1/117.S2CID122811461.
  64. ^"HD 169986 – Star in double system".SIMBAD.Retrieved25 May2014.
  65. ^VSX (4 January 2010)."d Serpentis".AAVSO Website.American Association of Variable Star Observers.Retrieved25 May2014.
  66. ^VSX (28 April 2010)."FH Serpentis".AAVSO Website.American Association of Variable Star Observers.Retrieved23 June2014.
  67. ^Hamaguchi, K.; Terada, H.; Bamba, A.; Koyama, K. (2000). "Large X-Ray Flare from the Herbig Be Star MWC 297".The Astrophysical Journal.532(2): 1111.arXiv:astro-ph/9911120.Bibcode:2000ApJ...532.1111H.doi:10.1086/308607.S2CID1508384.
  68. ^Acke, B.; Verhoelst, T.; van den Ancker, M. E.; Deroo, P.; Waelkens, C.; Chesneau, O.; Tatulli, E.; Benisty, M.; Puga, E.; Waters, L. B. F. M.; Verhoeff, A.; de Koter, A. (2008). "MWC 297: A young high-mass star rotating at critical velocity".Astronomy and Astrophysics.485(1): 209–221.arXiv:0804.1212.Bibcode:2008A&A...485..209A.doi:10.1051/0004-6361:200809654.S2CID4794509.
  69. ^Ripepi, V.; Bernabei, S.; Marconi, M.; Ruoppo, A.; Palla, F.; Monteiro, M. J. P. F. G.; Marques, J. P.; Ferrara, P.; Marinoni, S.; Terranegra, L. (2007). "Discovery of δ Scuti pulsation in the Herbig Ae star VV Serpentis".Astronomy and Astrophysics.462(3): 1023.arXiv:astro-ph/0610194.Bibcode:2007A&A...462.1023R.doi:10.1051/0004-6361:20065728.S2CID16241531.
  70. ^Alonso-Albi, T.; Fuente, A.; Bachiller, R.; Neri, R.; Planesas, P.; Testi, L. (2008). "The Dusty Disk around VV Serpens".The Astrophysical Journal.680(2): 1289–1294.arXiv:0802.4152.Bibcode:2008ApJ...680.1289A.doi:10.1086/587935.S2CID118405939.
  71. ^VSX; Otero, S. A. (23 November 2011)."VV Serpentis".AAVSO Website.American Association of Variable Star Observers.Retrieved28 May2014.
  72. ^Ridpath, Ian, ed. (2012)."UX Orionis star".A dictionary of astronomy(2 ed.). Oxford: Oxford University Press.doi:10.1093/acref/9780199609055.001.0001.ISBN9780191739439.Retrieved8 August2015.
  73. ^VSX (4 January 2010)."MV Serpentis".AAVSO Website.American Association of Variable Star Observers.Retrieved25 May2014.
  74. ^López-García, Z.; Adelman, S. J.; Pintado, O. I. (2001)."Elemental abundance studies of CP stars".Astronomy and Astrophysics.367(3): 859–864.Bibcode:2001A&A...367..859L.doi:10.1051/0004-6361:20000438.
  75. ^"HR 7008 – Star in Cluster".SIMBAD.Retrieved14 December2014.
  76. ^Andrievsky, S. M.; Gorlova, N. I.; Klochkova, V. G.; Kovtyuch, V. V.; Panchuk, V. E. (1999). "The Lithium-rich supergiant HD172365".Astronomische Nachrichten.320(1): 35–41.Bibcode:1999AN....320...35A.doi:10.1002/1521-3994(199903)320:1<35::aid-asna35>3.0.co;2-f.
  77. ^Ibanoǧlu, C.; Evren, S.; Taş, G.; Çakırlı, Ö.; Bozkurt, Z.; Afşar, M.; Sipahi, E.; Dal, H. A.; Özdarcan, O.; Çamurdan, D. Z.; Çamurdan, M.; Frasca, A. (2009)."Spectroscopic and photometric observations of the selected Algol-type binaries - IV. V799 Cassiopeiae, BX Piscium and HD 172189".Monthly Notices of the Royal Astronomical Society.392(2): 757.Bibcode:2009MNRAS.392..757I.doi:10.1111/j.1365-2966.2008.14087.x.
  78. ^Costa, J. E. S.; Michel, E.; Peña, J.; Creevey, O.; Li, Z. P.; Chevreton, M.; Belmonte, J. A.; Alvarez, M.; Fox Machado, L.; Parrao, L.; Pérez Hernéndez, F.; Fernández, A.; Fremy, J. R.; Pau, S.; Alonso, R. (2007). "Pulsational frequencies of the eclipsing δ Scuti star HD 172189. Results of the STEPHI XIII campaign".Astronomy and Astrophysics.468(2): 637–642.arXiv:0706.4083.Bibcode:2007A&A...468..637C.doi:10.1051/0004-6361:20065784.
  79. ^Gutiérrez-Soto, J.; Fabregat, J.; Suso, J.; Suárez, J. C.; Moya, A.; Garrido, R.; Hubert, A. -M.; Floquet, M.; Neiner, C.; Frémat, Y. (2007)."Multiperiodic pulsations in the Be stars NW Serpentis and V1446 Aquilae".Astronomy and Astrophysics.472(2): 565–570.Bibcode:2007A&A...472..565G.doi:10.1051/0004-6361:20077414.hdl:10550/15993.
  80. ^De Becker, M.; Rauw, G.; Blomme, R.; Pittard, J. M.; Stevens, I. R.; Runacres, M. C. (2005). "An XMM-Newton observation of the multiple system HD 167971 (O5-8V + O5-8V + (O8I)) and the young open cluster NGC 6604".Astronomy and Astrophysics.437(3): 1029–1046.arXiv:astro-ph/0503471.Bibcode:2005A&A...437.1029D.doi:10.1051/0004-6361:20052810.S2CID16980385.
  81. ^Ibanoglu, C.; Cakirli, O.; Sipahi, E. (2013)."MY Serpentis: A high-mass triple system in the Ser OB2 association".Monthly Notices of the Royal Astronomical Society.436(1): 750–758.arXiv:1308.4971.Bibcode:2013MNRAS.436..750I.doi:10.1093/mnras/stt1616.S2CID119246895.
  82. ^VSX (4 January 2010)."V411 Serpentis".AAVSO Website.American Association of Variable Star Observers.Retrieved25 May2014.
  83. ^Conti, P. S.; Ebbets, D.; Massey, P.; Niemela, V. S. (1980). "Spectroscopic studies of O-type binaries. V - the Of System HD 166734".The Astrophysical Journal.238:184.Bibcode:1980ApJ...238..184C.doi:10.1086/157971.
  84. ^Hubrig, S.; Carroll, T. A.; Gonzalez, J. F.; Scholler, M.; Ilyin, I.; Saffe, C.; Castelli, F.; Leone, F.; Giarrusso, M. (2014)."The magnetic field in HD 161701, the only binary system identified to consist of an HgMnprimary and an Ap secondary ".Monthly Notices of the Royal Astronomical Society: Letters.440:L6–L10.Bibcode:2014MNRAS.440L...6H.doi:10.1093/mnrasl/slu012.hdl:11336/4902.
  85. ^Weiland, J. L.; Shore, S. N.; Beaver, E. A.; Lyons, R. W.; Rosenblatt, E. I. (1995). "Goddard High-Resolution Spectrograph Observations of the Interacting Binary System W Serpentis".The Astrophysical Journal.447:401.Bibcode:1995ApJ...447..401W.doi:10.1086/175883.
  86. ^Mennickent, R. E.; Kolaczkowski, Z. (2009). "Interacting Binary Star Environments and the W Ser - DPV - Algol Connection".The Interferometric View on Hot Stars.38:23–26.arXiv:0904.1539.Bibcode:2010RMxAC..38...23M.
  87. ^Cappa, C. E. (2002)."VLA Radio Continuum and IRAS Observations of the Ring Nebulae around WR 101 and WR 113".The Astronomical Journal.123(6): 3348–3355.Bibcode:2002AJ....123.3348C.doi:10.1086/340725.
  88. ^David-Uraz, Alexandre (2012)."Using MOST to reveal the secrets of the mischievous Wolf-Rayet binary CV Ser".Monthly Notices of the Royal Astronomical Society.426(3): 1720–1730.arXiv:1207.6032.Bibcode:2012MNRAS.426.1720D.doi:10.1111/j.1365-2966.2012.21736.x.
  89. ^Lin, Dacheng (2012). "The Spectral Evolution Along the Z Track of the Bright Neutron Star X-Ray Binary GX 17+2".The Astrophysical Journal.756(1): 34.arXiv:1207.1107.Bibcode:2012ApJ...756...34L.doi:10.1088/0004-637X/756/1/34.S2CID10083273.
  90. ^Bornak, Jillian (2009). "A Possible Period for the K-Band Brightening Episodes of GX 17+2".The Astrophysical Journal.701(2): L110–L113.arXiv:0907.4348.Bibcode:2009ApJ...701L.110B.doi:10.1088/0004-637X/701/2/L110.S2CID18361338.
  91. ^Cornelisse, R. (2002). "A four-hours long burst from Serpens X-1".Astronomy and Astrophysics.382(1): 174–177.arXiv:astro-ph/0111263.Bibcode:2002A&A...382..174C.doi:10.1051/0004-6361:20011591.S2CID16830958.
  92. ^Sky Catalogue 2000.0, Volume 2: Double Stars, Variable Stars, and Nonstellar Objects (edited by Alan Hirshfeld and Roger W. Sinnott, 1985), Chapter 3: Glossary of Selected Astronomical Names.
  93. ^Sky and Telescope, November 1961, page 263.
  94. ^Deep-Sky Name Index 2000.0 - Hugh C. Maddocks (Foxon-Maddocks Associates, 1991).
  95. ^Bailer-Jones, C.A.L.; Rybizki, J; Andrae, R.; Fouesnea, M. (2018). "New stellar encounters discovered in the second Gaia data release".Astronomy & Astrophysics.616:A37.arXiv:1805.07581.Bibcode:2018A&A...616A..37B.doi:10.1051/0004-6361/201833456.S2CID56269929.
  96. ^Berski, Filip; Dybczyński, Piotr A. (2016-11-01)."Gliese 710 will pass the Sun even closer".Astronomy & Astrophysics.595:L10.Bibcode:2016A&A...595L..10B.doi:10.1051/0004-6361/201629835.ISSN0004-6361.
  97. ^García-Sánchez, J.; et al. (1999)."Stellar encounters with the Oort cloud based onHipparcosdata ".The Astronomical Journal.117(2): 1042–1055.Bibcode:1999AJ....117.1042G.doi:10.1086/300723.S2CID122929693.
  98. ^Frommert, H.; Kronberg, C. (21 August 2007)."Messier 5".SEDS.Retrieved16 December2014.
  99. ^Paust, N. E. Q.; Reid, I. N.; Piotto, G.; Aparicio, A.; Anderson, J.; Sarajedini, A.; Bedin, L. R.; Chaboyer, B.; Dotter, A.; et al. (2010). "The ACS Survey of Galactic Globular Clusters. Viii. Effects of Environment on Globular Cluster Global Mass Functions".The Astronomical Journal.139(2): 476.Bibcode:2010AJ....139..476P.doi:10.1088/0004-6256/139/2/476.hdl:2152/34371.S2CID120965440.
  100. ^Szeidl, B.; Hurta, Zs.; Jurcsik, J.; Clement, C.; Lovas, M. (2011)."Long-term photometric monitoring of Messier 5 variables - I. Period changes of RR Lyrae stars".Monthly Notices of the Royal Astronomical Society.411(3): 1744–1762.arXiv:1010.1115.Bibcode:2011MNRAS.411.1744S.doi:10.1111/j.1365-2966.2010.17815.x.S2CID118519067.
  101. ^Harris, William E. (1996). "A Catalog of Parameters for Globular Clusters in the Milky Way".The Astronomical Journal.112:1487.Bibcode:1996AJ....112.1487H.doi:10.1086/118116.
  102. ^Freire, P. C. C.; Wolszczan, A.; van den Berg, M.; Hessels, J. W. T. (2008). "A Massive Neutron Star in the Globular Cluster M5".The Astrophysical Journal.679(2): 1433–1442.arXiv:0712.3826.Bibcode:2008ApJ...679.1433F.doi:10.1086/587832.S2CID118743395.
  103. ^Viaux, N.; Catelan, M.; Stetson, P. B.; Raffelt, G. G.; Redondo, J.; Valcarce, A. A. R.; Weiss, A. (2013). "Particle-physics constraints from the globular cluster M5: Neutrino dipole moments".Astronomy & Astrophysics.558:A12.arXiv:1308.4627.Bibcode:2013A&A...558A..12V.doi:10.1051/0004-6361/201322004.S2CID59056210.
  104. ^Coutts Clement, Christine M.; Sawyer Hogg, Helen (August 1977)."The Bright Variable Stars in Messier 5".Journal of the Royal Astronomical Society of Canada.71:281.Bibcode:1977JRASC..71..281C.Retrieved1 March2021.
  105. ^"William Herschel's Observations of the Messier Objects".www.messier.seds.org.Students for the Exploration and Development of Space. Archived fromthe originalon 24 June 2021.Retrieved1 March2021.
  106. ^Ibata, R.; Gibson, B. (2007). "The Ghosts of Galaxies Past".Scientific American.296(4): 40–5.Bibcode:2007SciAm.296d..40I.doi:10.1038/scientificamerican0407-40.PMID17479629.S2CID45284760.
  107. ^Martell, S. L.; Smith, G. H.; Grillmair, C. J. (2002). "A New Age Measurement for Palomar 5".American Astronomical Society, 201st AAS Meeting, #07.11; Bulletin of the American Astronomical Society.34:1103.Bibcode:2002AAS...201.0711M.
  108. ^Chen, C. W.; Chen, W. P. (October 2010), "Morphological Distortion of Galactic Globular Clusters",The Astrophysical Journal,721(2): 1790–1819,Bibcode:2010ApJ...721.1790C,doi:10.1088/0004-637X/721/2/1790
  109. ^Clark, F. O.; Johnson, D. R. (1981). "The L134-L183-L1778 system of interstellar clouds".Astrophysical Journal, Part 1.247:104–111.Bibcode:1981ApJ...247..104C.doi:10.1086/159014.
  110. ^Cernis, K.; Straizys, V. (1992)."On the distance of the high latitude dark cloud LYNDS 134 in Serpens".Baltic Astronomy.1(2): 163.Bibcode:1992BaltA...1..163C.doi:10.1515/astro-1992-0204.
  111. ^Lehtinen, K.; Mattila, K.; Lemke, D.; Juvela, M.; Prusti, T.; Laureijs, R. (2003). "Faar infrared observations of pre-protostellar sources in Lynds 183".Astronomy and Astrophysics.398(2): 571–581.arXiv:astro-ph/0209617.Bibcode:2003A&A...398..571L.doi:10.1051/0004-6361:20021411.ISSN0004-6361.S2CID15841960.
  112. ^Pagani, L.; Bacmann, A.; Motte, F.; Cambrésy, L.; Fich, M.; Lagache, G.; Miville-Deschênes, M.-A.; Pardo, J.-R.; Apponi, A. J. (2004)."L183 (L134N) Revisited".Astronomy and Astrophysics.417(2): 605–613.Bibcode:2004A&A...417..605P.doi:10.1051/0004-6361:20034087.ISSN0004-6361.
  113. ^Kirk, Jason M.; Crutcher, Richard M.; Ward-Thompson, Derek (2009). "BIMA N2H+1-0 Mapping Observations of L183: Fragmentation and Spin-up in a Collapsing, Magnetized, Rotating, Prestellar Core".The Astrophysical Journal.701(2): 1044–1052.arXiv:0906.3632.Bibcode:2009ApJ...701.1044K.doi:10.1088/0004-637X/701/2/1044.ISSN0004-637X.S2CID119251856.
  114. ^Juvela, M.; Mattila, K.; Lehtinen, K.; Lemke, D.; Laureijs, R.; Prusti, T. (2002). "Far-infrared and molecular line observations of Lynds 183 – Studies of cold gas and dust".Astronomy and Astrophysics.382(2): 583–599.arXiv:astro-ph/0111216.Bibcode:2002A&A...382..583J.doi:10.1051/0004-6361:20011539.ISSN0004-6361.S2CID17367806.
  115. ^"NED results for object NGC 5962".NASA/IPAC Extragalactic Database.Retrieved3 June2015.
  116. ^Gil De Paz, Armando; Boissier, Samuel; Madore, Barry F.; Seibert, Mark; Joe, Young H.; Boselli, Alessandro; Wyder, Ted K.; Thilker, David; Bianchi, Luciana; et al. (2007). "The GALEX Ultraviolet Atlas of Nearby Galaxies".The Astrophysical Journal Supplement Series.173(2): 185–255.arXiv:astro-ph/0606440.Bibcode:2007ApJS..173..185G.doi:10.1086/516636.S2CID119085482.
  117. ^Im, Myungshin; et al. (February 2019). "Intensive Monitoring Survey of Nearby Galaxies (IMSNG)".Journal of the Korean Astronomical Society.52(1): 11–21.arXiv:1901.11353.Bibcode:2019JKAS...52...11I.doi:10.5303/JKAS.2019.52.1.11.S2CID119394084.
  118. ^Mao, Yao-Yuan; et al. (February 2021)."The SAGA Survey. II. Building a Statistical Sample of Satellite Systems around Milky Way-like Galaxies".The Astrophysical Journal.907(2): 35.arXiv:2008.12783.Bibcode:2021ApJ...907...85M.doi:10.3847/1538-4357/abce58.S2CID221376962.85.
  119. ^"NED results for object NGC 5921".NASA/IPAC Extragalactic Database.Retrieved3 June2015.
  120. ^Gal-Yam, A.; Shemmer, O.; Dann, J. (2001). "Supernova 2001X in NGC 5921".IAU Circular.7602:2.Bibcode:2001IAUC.7602....2G.
  121. ^Hernández-Toledo, H. M.; Zendejas-Domínguez, J.; Avila-Reese, V. (2007). "BVRISurface Photometry of Isolated Spiral Galaxies".The Astronomical Journal.134(6): 2286–2307.arXiv:0705.2041.Bibcode:2007AJ....134.2286H.doi:10.1086/521358.S2CID15196263.
  122. ^Stockdale, C. J.; Heim, M. S.; Vandrevala, C. M.; Bauer, F. E.; van Dyk, S. D.; Weiler, K. W.; Pooley, D.; Immler, S.; Dwarkadas, V. (2009). "Supernovae 1996aq and 2004dk".Central Bureau for Electronic Telegrams.1714:1.Bibcode:2009CBET.1714....1S.
  123. ^abcdWilkins, Jamie; Dunn, Robert (2006).300 Astronomical Objects: A Visual Reference to the Universe(1st ed.). Buffalo, New York: Firefly Books.ISBN978-1-55407-175-3.
  124. ^Gonzalez Delgado, Rosa M.; Perez, Enrique (August 1996)."The circumnuclear region in the Seyfert 2 galaxy NGC 5953".Monthly Notices of the Royal Astronomical Society.281(3): 781–798.Bibcode:1996MNRAS.281..781G.doi:10.1093/mnras/281.3.781.
  125. ^Rawlings, S.; Saunders, R; Miller, P.; Jones, M. E.; Eales, S. A. (1990). "A New Identification for the Giant Radiosource 3C326".Monthly Notices of the Royal Astronomical Society.246(3): 21.Bibcode:1990MNRAS.246P..21R.
  126. ^Guillard, P.; Boulanger, F.; Lehnert, M. D.; Pineau de Forêts, G.; Combes, F.; Falgarone, E.; Bernard-Salas, J. (2015). "Exceptional AGN-driven turbulence inhibits star formation in the 3C 326N radio galaxy".Astronomy & Astrophysics.574:15.arXiv:1410.6155.Bibcode:2015A&A...574A..32G.doi:10.1051/0004-6361/201423612.S2CID37207279.
  127. ^Kanov, Kalin N.; Sarazin, Craig L.; Hicks, Amalia K. (2006). "ChandraObservationof the Interaction of the Radio Source and Cooling Core in Abell 2063 ".The Astrophysical Journal.653(1): 184–192.arXiv:astro-ph/0609037.Bibcode:2006ApJ...653..184K.doi:10.1086/508862.S2CID15635049.
  128. ^Krempec-Krygier, J.; Krygier, B. (1999). "Interaction of Abell Cluster 2063 and the Group of Galaxies MKW3s".Acta Astronomica.49:403.Bibcode:1999AcA....49..403K.
  129. ^Giacintucci, S.; Mazzotta, P.; Brunetti, G.; Venturi, T.; Bardelli, S. (2006). "Evidence of gas heating by the central AGN in MKW 3s".Astronomische Nachrichten.327(5–6): 573–574.Bibcode:2006AN....327..573G.doi:10.1002/asna.200610594.
  130. ^O’Sullivan, Ewan; Giacintucci, Simona; David, Laurence P.; Vrtilek, Jan M.; Raychaudhury, Somak (2011)."A deep Chandra observation of the poor cluster AWM 4 - II. The role of the radio jets in enriching the intracluster medium".Monthly Notices of the Royal Astronomical Society.411(3): 1833–1842.arXiv:1010.0610.Bibcode:2011MNRAS.411.1833O.doi:10.1111/j.1365-2966.2010.17812.x.S2CID118394119.
  131. ^Venturi, T.; Dallacasa, D.; Stefanachi, F. (2004). "Radio galaxies in cooling core clusters. Renewed activity in the nucleus of 3C 317?".Astronomy and Astrophysics.422(2): 515–522.arXiv:astro-ph/0404571.Bibcode:2004A&A...422..515V.doi:10.1051/0004-6361:20040089.S2CID14761769.
  132. ^Lee, Myung Gyoon; Kim, Eunhyeuk; Geisler, Doug; Bridges, Terry; Ashman, Keith (2002). "A Comparative Study of Globular Cluster Systems in UGC 9799 and NGC 1129".Extragalactic Star Clusters.207:330.arXiv:astro-ph/0109248.Bibcode:2002IAUS..207..330L.
  133. ^Shaver, P. A.; Robertson, J. G. (1985)."The close QSO pair Q1548 + 114A, B".Monthly Notices of the Royal Astronomical Society.212:15P–20P.Bibcode:1985MNRAS.212P..15S.doi:10.1093/mnras/212.1.15p.
  134. ^Claeskens, J.-F.; Lee, D.-W.; Remy, M.; Sluse, D.; Surdej, J. (2000). "QSO mass constraints from gravitational lensing studies of quasar pairs. The cases of Q1548+114 A & B and Q1148+0055 A & B".Astronomy and Astrophysics.356:840.Bibcode:2000A&A...356..840C.
  135. ^Evans, Daniel A.; Fong, Wen-Fai; Hardcastle, Martin J.; Kraft, Ralph P.; Lee, Julia C.; Worrall, Diana M.; Birkinshaw, Mark; Croston, Judith H.; Muxlow, Tom W. B. (2008). "A Radio through X-Ray Study of the Jet/Companion-Galaxy Interaction in 3C 321".The Astrophysical Journal.675(2): 1057–1066.arXiv:0712.2669.Bibcode:2008ApJ...675.1057E.doi:10.1086/527410.S2CID15820696.
  136. ^Fèvre, O. Le; Hammer, F.; Nottale, L.; Mathez, G. (March 25, 1987). "Is 3C324 the first gravitationally lensed giant galaxy?".Nature.326(6110): 268–269.Bibcode:1987Natur.326..268L.doi:10.1038/326268a0.S2CID4334323.
  137. ^Yamada, Toru; Kajisawa, Masaru; Tanaka, Ichi; Maihara, Toshinori; Iwamuro, Fumihide; Terada, Hiroshi; Goto, Miwa; Motohara, Kentaro; Tanabe, Hirohisa (2000). "High-Resolution Near-Infrared Imaging of the Powerful Radio Galaxy 3C 324 at z = 1.21 with the Subaru Telescope".Publications of the Astronomical Society of Japan.52(1): 43–51.arXiv:astro-ph/0002390.Bibcode:2000PASJ...52...43Y.doi:10.1093/pasj/52.1.43.ISSN0004-6264.S2CID7386303.
  138. ^Treves, A.; Falomo, R.; Uslenghi, M. (2007). "On the distance of PG 1553+11".Astronomy and Astrophysics.473(3): L17–L19.arXiv:0709.1271.Bibcode:2007A&A...473L..17T.doi:10.1051/0004-6361:20078290.ISSN0004-6361.S2CID18568519.
  139. ^Abdo, A. A.; Ackermann, M.; Ajello, M.; Atwood, W. B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; et al. (2010). "Fermi Observations of the Very Hard Gamma-Ray Blazar PG 1553+113".The Astrophysical Journal.708(2): 1310–1320.arXiv:0911.4252.Bibcode:2010ApJ...708.1310A.doi:10.1088/0004-637X/708/2/1310.ISSN0004-637X.S2CID122637947.
  140. ^Abramowski, A.; Aharonian, F.; Benkhali, F. Ait; Akhperjanian, A. G.; Angüner, E. O.; Backes, M.; Balenderan, S.; Balzer, A.;Barnacka, A.;et al. (2015). "The 2012 Flare of PG 1553+113 Seen with H.E.S.S. and Fermi-LAT".The Astrophysical Journal.802(1): 65.arXiv:1501.05087.Bibcode:2015ApJ...802...65A.doi:10.1088/0004-637X/802/1/65.ISSN1538-4357.S2CID115133160.
  141. ^Gorosabel, J.; Castro-Tirado, A. J.; Wolf, C.; Heidt, J.; Seitz, T.; Thommes, E.; Bartolini, C.; Guarnieri, A.; Masetti, N.; et al. (1998). "An optical study of the GRB 970111 field beginning 19 hours after the gamma-ray burst".Astronomy and Astrophysics.339:719–728.arXiv:astro-ph/9809034.Bibcode:1998A&A...339..719G.
  142. ^Feroci, M.; Antonelli, L. A.; Guainazzi, M.; Muller, J. M.; Costa, E.; Piro, L.; In 't Zand, J. J. M.; Frontera, F.; Dal Fiume, D.; et al. (1998). "BeppoSAX follow-up search for the X-ray afterglow of GRB970111".Astronomy and Astrophysics.332:L29.arXiv:astro-ph/9803015.Bibcode:1998A&A...332L..29F.
  143. ^Thöne, C. C.; Kann, D. A.; Jóhannesson, G.; Selj, J. H.; Jaunsen, A. O.; Fynbo, J. P. U.; Akerlof, C. W.; Baliyan, K. S.; Bartolini, C.; et al. (2010). "Photometry and spectroscopy of GRB 060526: A detailed study of the afterglow and host galaxy of az = 3.2 gamma-ray burst".Astronomy & Astrophysics.523:A70.arXiv:0806.1182.Bibcode:2010A&A...523A..70T.doi:10.1051/0004-6361/200810340.S2CID9031695.
  144. ^ Kuhn, Michael A.; Hillenbrand, Lynne A.; Sills, Alison; Feigelson, Eric D.; Getman, Konstantin V. (2018)."Kinematics in Young Star Clusters and Associations with Gaia DR2".The Astrophysical Journal.870(1): 32.arXiv:1807.02115.Bibcode:2019ApJ...870...32K.doi:10.3847/1538-4357/aaef8c.S2CID119328315.
  145. ^Levy, David H. (2005).Deep Sky Objects.Prometheus Books. pp.112–113.ISBN1-59102-361-0.
  146. ^abForbes, D. (2000)."The Serpens OB2 Association and Its Thermal" Chimney "".The Astronomical Journal.120(5): 2594–2608.Bibcode:2000AJ....120.2594F.doi:10.1086/316822.
  147. ^Barbon, R.; Carraro, G.; Munari, U.; Zwitter, T.; Tomasella, L. (2000). "Spectroscopy and BVIC photometry of the young open cluster NGC 6604".Astronomy and Astrophysics Supplement Series.144(3): 451.arXiv:astro-ph/0004012.Bibcode:2000A&AS..144..451B.doi:10.1051/aas:2000193.S2CID6514418.
  148. ^Reipurth, B. (2008). "The Young Cluster NGC 6604 and the Serpens OB2 Association".Handbook of Star Forming Regions, Volume II: The Southern Sky ASP Monograph Publications.5:590.Bibcode:2008hsf2.book..590R.
  149. ^Herzog, A. D.; Sanders, W. L.; Seggewiss, W. (1975). "Membership and photometry of the open cluster IC 4756".Astronomy and Astrophysics.19:211–234.Bibcode:1975A&AS...19..211H.
  150. ^Alcaino, G. (1965). "A photoelectric investigation of the galactic clusters IC 4665 and IC 4756".Bulletin / Lowell Observatory.6(7): 167–172.Bibcode:1965LowOB...6..167A.
  151. ^Phelps, R. L.; Janes, K. A.; Montgomery, K. A. (1994)."Development of the Galactic disk: A search for the oldest open clusters".The Astronomical Journal.107:1079.Bibcode:1994AJ....107.1079P.doi:10.1086/116920.
  152. ^Testa, Vincenzo; Corsi, Carlo E.; Andreuzzi, Gloria; Iannicola, Giacinto; Marconi, Gianni; Piersimoni, Anna Marina; Buonanno, Roberto (2001)."Horizontal-Branch Morphology and Dense Environments: Hubble Space Telescope Observations of Globular Clusters NGC 2298, 5897, 6535, and 6626".The Astronomical Journal.121(2): 916–934.Bibcode:2001AJ....121..916T.doi:10.1086/318752.S2CID118936939.
  153. ^Sarajedini, Ata (1994)."CCD Photometry of the Galactic globular cluster NGC 6535 in the B and V Passbands".Publications of the Astronomical Society of the Pacific.106:404.Bibcode:1994PASP..106..404S.doi:10.1086/133392.
  154. ^Tuthill, P. G.; Lloyd, J. P. (2007). "A Symmetric Bipolar Nebula Around MWC 922".Science.316(5822): 247.Bibcode:2007Sci...316..247T.doi:10.1126/science.1135950.PMID17431173.S2CID15439363.
  155. ^Plummer, A.; Otero, S. A. (27 March 2013)."MWC 922".AAVSO Website.American Association of Variable Star Observers.Retrieved11 May2014.
  156. ^Otero, S. A.; Watson, C.; Wils, P."Variable Star Type Designations in the VSX".AAVSO Website.American Association of Variable Star Observers.Retrieved11 May2014.
  157. ^Jones, D.; Lloyd, M.; Santander-García, M.; López, J. A.; Meaburn, J.; Mitchell, D. L.; O'Brien, T. J.; Pollacco, D.; Rubio-Díez, M. M.; et al. (2010)."Abell 41: Shaping of a planetary nebula by a binary central star".Monthly Notices of the Royal Astronomical Society.408(4): 2312.arXiv:1006.5873.Bibcode:2010MNRAS.408.2312J.doi:10.1111/j.1365-2966.2010.17277.x.S2CID119310966.
  158. ^Tafalla, M.; Myers, P. C.; Mardones, D.; Bachiller, R. (2000). "L483: A protostar in transition from Class 0 to Class I".Astronomy and Astrophysics.359:967.arXiv:astro-ph/0005525.Bibcode:2000A&A...359..967T.
  159. ^Connelley, M. S.; Hodapp, K. W.; Fuller, G. A. (2009). "A Photometrically and Morphologically Variable Infrared Nebula in L483".The Astronomical Journal.137(3): 3494.arXiv:0811.1232.Bibcode:2009AJ....137.3494C.doi:10.1088/0004-6256/137/3/3494.S2CID17056166.
  160. ^Oliveira, I.; Merín, B.; Pontoppidan, K. M.; van Dishoeck, E. F. (2013). "The Physical Structure of Protoplanetary Disks: The Serpens Cluster Compared with Other Regions".The Astrophysical Journal.762(2): 128.arXiv:1212.3340.Bibcode:2013ApJ...762..128O.doi:10.1088/0004-637X/762/2/128.S2CID119114877.
  161. ^Dzib, S.; Loinard, L.; Mioduszewski, A. J.; Boden, A. F.; Rodríguez, L. F.; Torres, R. M. (2010). "VLBA Determination of the Distance to Nearby Star-Forming Regions. IV. A Preliminary Distance to the Proto-Herbig AeBeStar EC 95 in the Serpens Core ".The Astrophysical Journal.718(2): 610.arXiv:1003.5900.Bibcode:2010ApJ...718..610D.doi:10.1088/0004-637X/718/2/610.S2CID1444233.
  162. ^Dionatos, O.; Jørgensen, J. K.; Teixeira, P. S.; Güdel, M.; Bergin, E. (2014). "Atomic jet from SMM1 (FIRS1) in Serpens uncovers protobinary companion".Astronomy & Astrophysics.563:A28.arXiv:1401.3249.Bibcode:2014A&A...563A..28D.doi:10.1051/0004-6361/201322799.S2CID119287830.
  163. ^Ciardi, D. R.; Telesco, C. M.; Packham, C.; Gomez Martin, C.; Radomski, J. T.; De Buizer, J. M.; Phillips, C. J.; Harker, D. E. (2005). "Crystalline Silicate Emission in the Protostellar Binary Serpens SVS 20".The Astrophysical Journal.629(2): 897–902.arXiv:astro-ph/0504665.Bibcode:2005ApJ...629..897C.doi:10.1086/431548.S2CID14553402.
  164. ^Gutermuth, R. A.; Bourke, T. L.;Allen, L. E.;Myers, P. C.; Megeath, S. T.; Matthews, B. C.; Jørgensen, J. K.; Di Francesco, J.; Ward-Thompson, D.; et al. (2008). "TheSpitzerGouldBelt Survey of Large Nearby Interstellar Clouds: Discovery of a Dense Embedded Cluster in the Serpens-Aquila Rift ".The Astrophysical Journal.673(2): L151.arXiv:0712.3303.Bibcode:2008ApJ...673L.151G.doi:10.1086/528710.S2CID339753.
  165. ^Nakamura, F.; Sugitani, K.; Shimajiri, Y.; Tsukagoshi, T.; Higuchi, A.; Nishiyama, S.; Kawabe, R.; Takami, M.; Karr, J. L.; et al. (2011). "Molecular Outflows from the Protocluster Serpens South".The Astrophysical Journal.737(2): 56.arXiv:1105.4481.Bibcode:2011ApJ...737...56N.doi:10.1088/0004-637X/737/2/56.S2CID119195551.
  166. ^Zeilik II, M.; Lada, C.J. (1978)."Near-infrared and CO observations of W40 and W48".Astrophysical Journal, Part 1.222:896–901.Bibcode:1978ApJ...222..896Z.doi:10.1086/156207.
  167. ^abShuping, R. Y.; Vacca, W. D.; Kassis, M.; Yu, K. C. (2012). "Spectral Classification of the Brightest Objects in the Galactic Star-forming Region W40".The Astronomical Journal.144(4): 12.arXiv:1208.4648.Bibcode:2012AJ....144..116S.doi:10.1088/0004-6256/144/4/116.S2CID119227485.
  168. ^Rodney, S. A.; Reipurth, B. (2008). "The W40 Cloud Complex".Handbook of Star Forming Regions, Volume II: The Southern Sky ASP Monograph Publications.5:683.Bibcode:2008hsf2.book..683R.
  169. ^Kuhn, M. A.; Getman, K. V.; Feigelson, E. D.; Reipurth, B.; Rodney, S. A.; Garmire, G. P. (2010). "A Chandra Observation of the Obscured Star-forming Complex W40".The Astrophysical Journal.275(2): 2485–2506.arXiv:1010.5434.Bibcode:2010ApJ...725.2485K.doi:10.1088/0004-637X/725/2/2485.S2CID119192761.
  170. ^abYun, M. S.; Reddy, N. A.; Scoville, N. Z.; Frayer, D. T.; Robson, E. I.; Tilanus, R. P. J. (2004). "Multiwavelength Observations of the Gas-rich Host Galaxy of PDS 456: A New Challenge for the ULIRG-to-QSO Transition Scenario".The Astrophysical Journal.601(2): 723–734.arXiv:astro-ph/0310340.Bibcode:2004ApJ...601..723Y.doi:10.1086/380559.S2CID45476.
  171. ^Reeves, J. N.; Wynn, G.; O'Brien, P. T.; Pounds, K. A. (2002)."Extreme X-ray variability in the luminous quasar PDS 456".Monthly Notices of the Royal Astronomical Society.336(3): L56.arXiv:astro-ph/0209120.Bibcode:2002MNRAS.336L..56R.doi:10.1046/j.1365-8711.2002.06038.x.S2CID14158307.
  172. ^Foschini, L.; Pian, E.; Maraschi, L.; Raiteri, C. M.; Tavecchio, F.; Ghisellini, G.; Tosti, G.; Malaguti, G.; Di Cocco, G. (2006). "A short hard X-ray flare from the blazar NRAO 530 observed by INTEGRAL".Astronomy and Astrophysics.450(1): 77–81.arXiv:astro-ph/0601101.Bibcode:2006A&A...450...77F.doi:10.1051/0004-6361:20064804.S2CID53117963.
  173. ^Lu, J. C.; Wang, J. Y.; An, T.; Lin, J. M.; Qiu, H. B. (2012). "Periodic radio variability in NRAO 530: Phase dispersion minimization analysis".Research in Astronomy and Astrophysics.12(6): 643.arXiv:1202.3873.Bibcode:2012RAA....12..643L.doi:10.1088/1674-4527/12/6/004.S2CID55847749.
  174. ^Jenniskens, Peter (September 2012). "Mapping Meteoroid Orbits: New Meteor Showers Discovered".Sky & Telescope:24.
edit