Yasunobu Nakamura( trung thôn thái tínNakamura Yasunobu) is a Japanesephysicist.He is a professor at theUniversity of Tokyo'sResearch Center for Advanced Science and Technology (RCAST)[6]and the Principal Investigator of the Superconducting Quantum Electronics Research Group (SQERG) at the Center for Emergent Matter Science (CEMS) withinRIKEN.[7]He has contributed primarily to the area ofquantum information science,[8]particularly insuperconducting quantum computingand hybrid quantum systems.[9][10][11]
Yasunobu Nakamura | |
---|---|
Born | 1968 |
Known for | Work with "hybrid quantum information systems".[1][2] First demonstration of coherent control of aCooper pairbox-basedsuperconductingcharge qubit.[3][4] |
Awards | Micius Quantum Prize2021 |
Scientific career | |
Fields | Quantum information science,Superconducting quantum computing |
Education and early work
editWhile a child, Nakamura's family moved fromOsakatoHinode, Tokyo,where he would gain his early education.[12]He obtained hisBachelor of Science(1990),Master of Science(1992), andPh.D.(2011) degrees at theUniversity of Tokyo.In 1999, as a researcher atNEC,Nakamura and collaborators Yuri Pashkin andJaw-Shen Tsaidemonstrated "electrical coherent control of a qubit in a solid-state electronic device"[3]and in 2001 "realized the first measurement of the Rabi oscillations associated with the transition between twoJosephsonlevels in theCooper pair box"[13][14]in a configuration developed byMichel Devoretand colleagues in 1998.[13][15]
In 2000, Nakamura was featured as a "Younger Scientist" by theJapan Society of Applied Physicsfor his work atNECin "quantum-state control of nanoscale superconducting devices."[16]From 2001-2002, he visited the group ofHans Mooij atTU Delfton a sabbatical from NEC, where he worked with Irinel Chiorescu, Kees Harmans, and Mooij to create the firstflux qubit.[17][18][19]In 2003, he was named one ofMIT Technology Review's top innovators under 35 years old, in which editors noted that "Nakamura and a collaborator got twoqubitsto interact in a manner that had been predicted but never demonstrated "at the time.[20]
Current work
editAs of 3 October 2016[update],the Japan Science and Technology Agency ( khoa học kỹ thuật chấn hưng cơ cấu ) announced funding for Nakamura's work through their Exploratory Research for Advanced Technology (ERATO) program.[21]The project, entitled Macroscopic Quantum Machines,[22]seeks to dramatically improve quantum state control technology to further the field ofquantum computing.Of principal focus is the development of a highly scalable platform for implementing quantum information processing techniques, as well as the creation of hybrid quantum systems which interface with microwavequantum optics.In an article inNikkei Science in 2018, it was announced that work towards the construction of a quantum computer with 100superconducting qubitswas underway.[23]In 2019, the JapaneseMinistry of Education, Culture, Sports, Science and Technologylaunched a quantum technology project known as QLEAP, with Nakamura as the team leader for the quantum information processing component.[24]The project aims to develop superconducting quantum computers and other quantum technologies over a ten-year period, by increasing collaboration between academia and industry.
In past years, Nakamura and collaborators have published their findings on the efficient detection of singlemicrowavefrequencyphotons,[25]the suppression ofquasiparticlesin superconducting quantum computing environments for the improvement of qubitcoherencetimes,[26]the development of "a deterministic scheme to generate maximalentanglementbetween remote superconducting atoms, using a propagating microwave photon as a flying qubit ",[27]and the realization of a hybrid quantum system by the strong,coherentcouplingbetween a collective magneticmodeof aferromagneticsphere and a superconducting qubit.[1]
More recently, results have been published in which superconducting qubits were used to resolve quanta ofmagnonnumber states,[28][29]to create a quantitatively non-classical photon number distribution,[30]to measure fluctuations in asurface acoustic wave(SAW) resonator,[31]and to measure an itinerant microwave photon in aquantum nondemolition(QND) detection experiment.[32][33]A superconducting circuit was later used to realize information-to-work conversion by aMaxwell's demon,[34]radio wavesand optical light wereoptomechanicallycoupled to surface acoustic waves,[35]and an orderedvortexlattice in aJosephson junctionarray was observed.[36]
Nakamura has spoken several times at quantum information science conferences and seminars, including at theUniversity of Vienna,[37]the Institute for Theoretical Atomic Molecular and Optical Physics atHarvard University,[38][39]the National Center of Competence in Research's Quantum Science and TechnologyMonte Veritàconference,[40]theInstitute for Quantum Computingat theUniversity of Waterloo,[41]theInstitute for Molecular Engineeringat theUniversity of Chicago[42]theInstitute for Quantum Optics and Quantum Information(IQOQI),[43]and the Yale Quantum Institute atYale University.[44]
In 2020, Nakamura was named as a fellow of theAmerican Physical Societyfor "the first demonstration of coherent time-dependent manipulation of superconducting qubits, and for contributions to the development of superconducting quantum circuits, microwave quantum optics, and hybrid quantum systems".[45]
Honors and awards
edit- 1999 – Young Investigator Award,Japan Society of Applied Physics[46]
- 1999 – The 1st SirMartin WoodPrize for Japan[47][48]
- 1999 – The 45thNishina Memorial Prize[49]
- 2003 –TR100,MIT Technology Review[20]
- 2004 –Agilent TechnologiesEurophysics Prize(withMichel Devoret,Daniel Esteve, and Hans Mooij)[50]
- 2008 –Simon Memorial Prize(with Jaw-Shen Tsai)[51]
- 2014 – The 11thLeo Esaki Prize (with Jaw-Shen Tsai)[52]
- 2018 - The 19thJSAPOutstanding Achievement Award[53][54]
- 2020 - American Physical Society (APS) Fellow[45]
References
edit- ^abY. Tabuchi, S. Ishino, A. Noguchi, T. Ishikawa, R. Yamazaki, K. Usami, and Y. Nakamura, "Coherent coupling between a ferromagnetic magnon and a superconducting qubit",Science349,405-408 (2015),doi:10.1126/science.aaa3693
- ^Y. Tabuchi, S. Ishino, T. Ishikawa, R. Yamazaki, K. Usami, and Y. Nakamura, "Hybridizing Ferromagnetic Magnons and Microwave Photons in the Quantum Limit",Physical Review Letters113,083603 (2014),doi:10.1103/PhysRevLett.113.083603,arxiv:1405.1913
- ^abY. Nakamura, Yu. A. Pashkin andJ.- S. Tsai,"Coherent control of macroscopic quantum states in a single-Cooper-pair box",Nature398,786-788 (1999),doi:10.1038/19718,arXiv:9904003
- ^T. Yamamoto, Yu. A. Pashkin, O. Astafiev, Y. Nakamura, and J.- S. Tsai, "Demonstration of conditional gate operation using superconducting charge qubits",Nature425,941-944 (2003),doi:10.1038/nature02015,arxiv:0311067
- ^"RIKEN Tuning Into Quantum Computers".2007-08-17.Retrieved2017-06-19.
- ^"Research Groups".Retrieved2016-12-21.
- ^"Superconducting Quantum Electronics Research Group".Retrieved2020-10-22.
- ^T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J.L. O'Brien, "Quantum computers",Nature464,45-53 (2010),doi:10.1038/nature08812,arxiv:1009:2267
- ^"マイナビニュース".2015-07-10.Retrieved2016-12-22.
- ^"ようこそ lượng tử Interview".2016-11-15.Retrieved2016-12-22.
- ^"Science Daily 2015".2015-08-03.Retrieved2016-12-22.
- ^"UTokyo Voices 066".2019-06-20.Retrieved2019-06-21.
- ^ab"Bell Prize 2013".Archived fromthe originalon 2014-06-04.Retrieved2016-12-21.
- ^Y. Nakamura, Y.A. Pashkin, and J.S. Tsai, "Rabi Oscillations in a Josephson-Junction Charge Two-Level System",Physical Review Letters87,246601 (2001),doi:10.1103/PhysRevLett.87.246601
- ^V. Bouchiat, D. Vion, P. Joyez, D. Esteve and M. H. Devoret, "Quantum coherence with a single Cooper pair",Physica ScriptaT76,165-170 (1998),doi:10.1238/Physica.Topical.076a00165
- ^"JSAP Younger Scientists"(PDF).Retrieved2016-12-21.
- ^I. Chiorescu, Y. Nakamura, C. J. P. M. Harmans, and J. E. Mooij, "Coherent Quantum Dynamics of a Superconducting Flux Qubit",Science299,5614, 1869-1871, (2003),doi:10.1126/science.1081045,arxiv:0305461
- ^J. Clarke, "Flux Qubit Completes the Hat Trick",Science299,5614, 1850-1851, (2003), doi:10.1126/science.1083001
- ^"The first Delft qubit".2017-11-04.Retrieved2017-11-04.
- ^ab"Innovators Under 35".Retrieved2016-12-21.
- ^"Chiến lược đích sang tạo nghiên cứu thôi tiến sự nghiệp における".Retrieved2016-12-21.
- ^"Nghiên cứu tổng quát および nghiên cứu lĩnh vực".Retrieved2016-12-21.
- ^"Siêu điện đạo lượng tử ビットを sang thủy 100ビットを mục chỉ す".September 2018.Retrieved2019-06-21.
- ^"Quang ・ lượng tử phi dược フラッグシッププログラム ( Q-LEAP )".Retrieved2019-04-03.
- ^abK. Inomata, Z. Lin, K. Koshino, W. D. Oliver, J.- S. Tsai, T. Yamamoto, and Y. Nakamura, "Single microwave-photon detector using an artificial Λ-type three-level system",Nature Communications7,12303 (2016),doi:10.1038/ncomms12303
- ^S. Gustavsson, F. Yan, G. Catelani, J. Bylander, A. Kamal, J. Birenbaum, D. Hover, D. Rosenberg, G. Samach, A. P. Sears, S. J. Weber, J. L. Yoder, J. Clarke, A. J. Kerman, F. Yoshihara, Y. Nakamura, T. P. Orlando, and W. D. Oliver, "Suppressing relaxation in superconducting qubits by quasiparticle pumping",Science354,6319, 1573-1577 (2016),doi:10.1126/science.aah5844
- ^K. Koshino, K. Inomata, Z. R. Lin, Y. Tokunaga, T. Yamamoto, and Y. Nakamura, "Theory of Deterministic Entanglement Generation between Remote Superconducting Atoms",Physical Review Applied7,064006 (2017),doi:10.1103/PhysRevApplied.7.064006
- ^D. Lachance-Quiriom, Y. Tabuchi, S. Ishino, A. Noguchi, T. Ishikawa, R. Yamazaki, and Y. Nakamura, "Resolving quanta of collective spin excitations in a millimeter-sized ferromagnet",Science Advances3,7,e1603150 (2017),doi:10.1126/sciadv.1603150
- ^"Quantifying quanta".2017-11-22.Retrieved2019-04-03.
- ^S. Kono, Y. Masuyama, T. Ishikawa, Y. Tabuchi, R. Yamazaki, K. Usami, K. Koshino, and Y. Nakamura, "Nonclassical Photon Number Distribution in a Superconducting Cavity under a Squeezed Drive",Physical Review Letters119,023602 (2017),doi:10.1103/PhysRevLett.119.023602
- ^A. Noguchi, R. Yamazaki, Y. Tabuchi, and Y. Nakamura, "Qubit-Assisted Transduction for a Detection of Surface Acoustic Waves near the Quantum Limit",Physical Review Letters119,180505 (2017),doi:10.1103/PhysRevLett.119.180505
- ^S. Kono, K. Koshino, Y. Tabuchi, A. Noguchi, and Y. Nakamura, "Quantum non-demolition detection of an itinerant microwave photon",Nature Physics14,546-549 (2018),doi:10.1038/s41567-018-0066-3
- ^"Viewpoint: Single Microwave Photons Spotted on the Rebound".2018-04-23.Retrieved2019-04-03.
- ^Y. Masuyama, K. Funo, Y. Murashita, A. Noguchi, S. Kono, Y. Tabuchi, R. Yamazaki, M. Ueda, and Y. Nakamura, "Information-to-work conversion by Maxwell’s demon in a superconducting circuit quantum electrodynamical system",Nature Communications9,1291 (2018),doi:10.1038/s41467-018-03686-y
- ^A. Okada, F. Oguro, A. Noguchi, Y. Tabuchi, R. Yamazaki, K. Usami, and Y. Nakamura, "Cavity Enhancement of Anti-Stokes Scattering via Optomechanical Coupling with Surface Acoustic Waves",Physical Review Applied10,024002 (2018),doi:10.1103/PhysRevApplied.10.024002
- ^R. Cosmic, K. Ikegami, Z. Lin, K. Inomata, J. M. Taylor, and Y. Nakamura, "Circuit-QED-based measurement of vortex lattice order in a Josephson junction array",Physical Review B98,060501(R) (2018),doi:10.1103/PhysRevB.98.060501
- ^"University of Vienna 2014".Retrieved2016-12-21.
- ^"ITAMP".Retrieved2016-12-21.
- ^"ITAMP Video".YouTube.2015-07-15.Retrieved2016-12-22.
- ^"NCCR QSIT".Retrieved2016-12-21.
- ^"IQC 2016".Retrieved2016-12-21.
- ^"IME Distinguished Colloquium Series".Retrieved2019-04-03.
- ^"IQOQI Colloquium".Retrieved2019-04-03.
- ^"YQI Colloquium".Retrieved2019-04-03.
- ^ab"APS Fellows".Retrieved2020-12-01.
- ^"JSAP Younger Scientists"(PDF).Retrieved2017-01-24.
- ^"Prize Winners".Millennium Science Forum.Retrieved2019-04-03.
- ^"2016 Sir Martin Wood Prize for Japan".Oxford Instruments.Retrieved2017-01-24.
- ^"NEC Awards FY1999".Retrieved2017-01-24.
- ^"Agilent Technologies Prize".2004-06-17.Retrieved2016-12-21.
- ^"Simon Memorial Prize: Past Winners".Retrieved2017-06-13.
- ^"RCAST News".2014.Retrieved2017-01-24.
- ^"JSAP Outstanding Achievement Award Recipients".Retrieved2019-06-21.
- ^"Đệ 19 hồi ứng dụng vật lý học hội nghiệp tích thưởng".Retrieved2019-06-21.