Alkaloidsare a class ofbasic,naturally occurringorganic compoundsthat contain at least onenitrogenatom. This group also includes some related compounds with neutral[2]and even weaklyacidicproperties.[3]Some synthetic compounds of similar structure may also be termed alkaloids.[4]In addition tocarbon,hydrogenandnitrogen,alkaloids may also containoxygenorsulfur.Rarer still, they may contain elements such asphosphorus,chlorine,andbromine.[5]

The first individual alkaloid,morphine,was isolated in 1804 from theopium poppy(Papaver somniferum).[1]

Alkaloids are produced by a large variety of organisms includingbacteria,fungi,plants,andanimals.[6]They can be purified from crude extracts of these organisms byacid-base extraction,or solvent extractions followed by silica-gelcolumn chromatography.[7]Alkaloids have a wide range ofpharmacologicalactivities includingantimalarial(e.g.quinine),antiasthma(e.g.ephedrine),anticancer(e.g.homoharringtonine),[8]cholinomimetic(e.g.galantamine),[9]vasodilatory(e.g.vincamine),antiarrhythmic(e.g.quinidine),analgesic(e.g.morphine),[10]antibacterial(e.g.chelerythrine),[11]andantihyperglycemicactivities (e.g.berberine).[12][13]Many have found use intraditionalormodern medicine,or as starting points fordrug discovery.Other alkaloids possesspsychotropic(e.g.psilocin) andstimulantactivities (e.g.cocaine,caffeine,nicotine,theobromine),[14]and have been used inentheogenicrituals or asrecreational drugs.Alkaloids can betoxictoo (e.g.atropine,tubocurarine).[15]Although alkaloids act on a diversity of metabolic systems in humans and other animals, they almost uniformly evoke abitter taste.[16]

The boundary between alkaloids and other nitrogen-containing natural compounds is not clear-cut.[17]Compounds likeamino acidpeptides,proteins,nucleotides,nucleic acid,amines,andantibioticsare usually not called alkaloids.[2]Natural compounds containing nitrogen in theexocyclicposition (mescaline,serotonin,dopamine,etc.) are usually classified asaminesrather than as alkaloids.[18]Some authors, however, consider alkaloids a special case of amines.[19][20][21]

Naming

edit
The article that introduced the concept of "alkaloid".

The name "alkaloids" (German:Alkaloide) was introduced in 1819 by German chemistCarl Friedrich Wilhelm Meissner,and is derived from late Latin rootalkaliand the Greek-language suffix-οειδής-('like').[nb 1]However, the term came into wide use only after the publication of a review article, by Oscar Jacobsen in the chemical dictionary ofAlbert Ladenburgin the 1880s.[22][23]

There is no unique method for naming alkaloids.[24]Many individual names are formed by adding the suffix "ine" to the species or genus name.[25]For example,atropineis isolated from the plantAtropa belladonna;strychnineis obtained from the seed of theStrychnine tree(Strychnos nux-vomicaL.).[5]Where several alkaloids are extracted from one plant their names are often distinguished by variations in the suffix: "idine", "anine", "aline", "inine" etc. There are also at least 86 alkaloids whose names contain the root "vin" because they are extracted fromvincaplants such asVinca rosea(Catharanthus roseus);[26]these are calledvincaalkaloids.[27][28][29]

History

edit
Friedrich Sertürner,the German chemist who first isolated morphine from opium.

Alkaloid-containing plants have been used by humans since ancient times for therapeutic and recreational purposes. For example, medicinal plants have been known inMesopotamiafrom about 2000 BC.[30]TheOdysseyof Homer referred to a gift given to Helen by the Egyptian queen, a drug bringing oblivion. It is believed that the gift was an opium-containing drug.[31]A Chinese book on houseplants written in 1st–3rd centuries BC mentioned a medical use ofephedraandopium poppies.[32]Also,cocaleaves have been used by Indigenous South Americans since ancient times.[33]

Extracts from plants containing toxic alkaloids, such asaconitineandtubocurarine,were used since antiquity for poisoning arrows.[30]

Studies of alkaloids began in the 19th century. In 1804, the German chemistFriedrich Sertürnerisolated from opium a "soporific principle" (Latin:principium somniferum), which he called "morphium", referring toMorpheus,the Greek god of dreams; in German and some other Central-European languages, this is still the name of the drug. The term "morphine", used in English and French, was given by the French physicistJoseph Louis Gay-Lussac.

A significant contribution to the chemistry of alkaloids in the early years of its development was made by the French researchersPierre Joseph PelletierandJoseph Bienaimé Caventou,who discoveredquinine(1820) andstrychnine(1818). Several other alkaloids were discovered around that time, includingxanthine(1817),atropine(1819),caffeine(1820),coniine(1827),nicotine(1828),colchicine(1833),sparteine(1851), andcocaine(1860).[34]The development of the chemistry of alkaloids was accelerated by the emergence ofspectroscopicandchromatographicmethods in the 20th century, so that by 2008 more than 12,000 alkaloids had been identified.[35]

The first complete synthesis of an alkaloid was achieved in 1886 by the German chemistAlbert Ladenburg.He producedconiineby reacting 2-methylpyridine withacetaldehydeandreducingthe resulting 2-propenyl pyridine with sodium.[36][37]

Bufotenin,an alkaloid from some toads, contains anindolecore, and is produced in living organisms from the amino acidtryptophan.

Classifications

edit
Thenicotinemolecule contains bothpyridine(left) andpyrrolidinerings (right).

Compared with most other classes of natural compounds, alkaloids are characterized by a great structural diversity. There is no uniform classification.[38]Initially, when knowledge of chemical structures was lacking, botanical classification of the source plants was relied on. This classification is now considered obsolete.[5][39]

More recent classifications are based on similarity of the carbon skeleton (e.g.,indole-,isoquinoline-, andpyridine-like) or biochemical precursor (ornithine,lysine,tyrosine,tryptophan,etc.).[5]However, they require compromises in borderline cases;[38]for example,nicotinecontains a pyridine fragment fromnicotinamideand apyrrolidinepart from ornithine[40]and therefore can be assigned to both classes.[41]

Alkaloids are often divided into the following major groups:[42]

  1. "True alkaloids" containnitrogenin theheterocycleand originate fromamino acids.[43]Their characteristic examples areatropine,nicotine,andmorphine.This group also includes some alkaloids that besides the nitrogen heterocycle containterpene(e.g.,evonine[44]) or peptide fragments (e.g.ergotamine[45]). The piperidine alkaloidsconiineandconiceinemay be regarded as true alkaloids (rather than pseudoalkaloids: see below)[46]although they do not originate from amino acids.[47]
  2. "Protoalkaloids", which containnitrogen(but not the nitrogen heterocycle) and also originate from amino acids.[43]Examples includemescaline,adrenalineandephedrine.
  3. Polyaminealkaloids – derivatives ofputrescine,spermidine,andspermine.
  4. Peptide andcyclopeptidealkaloids.[48]
  5. Pseudoalkaloids – alkaloid-like compounds that do not originate from amino acids.[49]This group includesterpene-like andsteroid-like alkaloids,[50]as well aspurine-like alkaloids such ascaffeine,theobromine,theacrineandtheophylline.[51]Some authors classifyephedrineandcathinoneas pseudoalkaloids. Those originate from the amino acidphenylalanine,but acquire their nitrogen atom not from the amino acid but throughtransamination.[51][52]

Some alkaloids do not have the carbon skeleton characteristic of their group. So,galanthamineand homoaporphines do not containisoquinolinefragment, but are, in general, attributed to isoquinoline alkaloids.[53]

Main classes of monomeric alkaloids are listed in the table below:

Class Major groups Main synthesis steps Examples
Alkaloids with nitrogen heterocycles (true alkaloids)
Pyrrolidinederivatives[54]
Ornithineorarginineputrescine→ N-methylputrescine → N-methyl-Δ1-pyrroline[55] Cuscohygrine,hygrine,hygroline, stachydrine[54][56]
Tropanederivatives[57]
Atropine group
Substitution in positions 3, 6 or 7
Ornithineorarginineputrescine→ N-methylputrescine → N-methyl-Δ1-pyrroline[55] Atropine,scopolamine,hyoscyamine[54][57][58]
Cocaine group
Substitution in positions 2 and 3
Cocaine,ecgonine[57][59]
Pyrrolizidinederivatives[60]
Non-esters In plants:ornithineorarginineputrescinehomospermidineretronecine[55] Retronecine,heliotridine, laburnine[60][61]
Complexestersof monocarboxylic acids Indicine, lindelophin, sarracine[60]
Macrocyclic diesters Platyphylline,trichodesmine[60]
1-aminopyrrolizidines (lolines) Infungi:L-proline+L-homoserineN-(3-amino-3-carboxypropyl)proline → norloline[62][63] Loline,N-formylloline,N-acetylloline[64]
Piperidinederivatives[65]
Lysinecadaverine→ Δ1-piperideine[66] Sedamine,lobeline, anaferine,piperine[46][67]
Octanoic acid→ coniceine →coniine[47] Coniine,coniceine[47]
Quinolizidinederivatives[68][69]
Lupininegroup Lysinecadaverine→ Δ1-piperideine[70] Lupinine,nupharidin[68]
Cytisinegroup Cytisine[68]
Sparteinegroup Sparteine,lupanine,anahygrine[68]
Matrinegroup. Matrine, oxymatrine, allomatridine[68][71][72]
Ormosaninegroup Ormosanine, piptantine[68][73]
Indolizidinederivatives[74]
Lysine→ δ-semialdehyde ofα-aminoadipic acidpipecolic acid→ 1 indolizidinone[75] Swainsonine,castanospermine[76]
Pyridinederivatives[77][78]
Simple derivatives of pyridine Nicotinic acid→ dihydronicotinic acid → 1,2-dihydropyridine[79] Trigonelline,ricinine,arecoline[77][80]
Polycyclic noncondensing pyridine derivatives Nicotine,nornicotine,anabasine,anatabine[77][80]
Polycyclic condensed pyridine derivatives Actinidine,gentianine,pediculinine[81]
Sesquiterpenepyridine derivatives Nicotinic acid,isoleucine[21] Evonine, hippocrateine, triptonine[78][79]
Isoquinolinederivatives and related alkaloids[82]
Simple derivatives of isoquinoline[83] Tyrosineorphenylalaninedopamineortyramine(for alkaloids Amarillis)[84][85] Salsoline,lophocerine[82][83]
Derivatives of 1- and 3-isoquinolines[86] N-methylcoridaldine, noroxyhydrastinine[86]
Derivatives of 1- and 4-phenyltetrahydroisoquinolines[83] Cryptostilin[83][87]
Derivatives of 5-naftil-isoquinoline[88] Ancistrocladine[88]
Derivatives of 1- and 2-benzyl-izoquinolines[89] Papaverine,laudanosine,sendaverine
Cularinegroup[90] Cularine, yagonine[90]
Pavinesand isopavines[91] Argemonine,amurensine[91]
Benzopyrrocolines[92] Cryptaustoline[83]
Protoberberines[83] Berberine,canadine,ophiocarpine, mecambridine, corydaline[93]
Phthalidisoquinolines[83] Hydrastine,narcotine(Noscapine)[94]
Spirobenzylisoquinolines[83] Fumaricine[91]
Ipecacuanhaalkaloids[95] Emetine, protoemetine, ipecoside[95]
Benzophenanthridines[83] Sanguinarine, oxynitidine, corynoloxine[96]
Aporphines[83] Glaucine,coridine, liriodenine[97]
Proaporphines[83] Pronuciferine, glaziovine[83][92]
Homoaporphines[98] Kreysiginine, multifloramine[98]
Homoproaporphines[98] Bulbocodine[90]
Morphines[99] Morphine,codeine,thebaine,sinomenine[100]
Homomorphines[101] Kreysiginine, androcymbine[99]
Tropoloisoquinolines[83] Imerubrine[83]
Azofluoranthenes[83] Rufescine, imeluteine[102]
Amaryllisalkaloids[103] Lycorine,ambelline, tazettine,galantamine,montanine[104]
Erythrina alkaloids[87] Erysodine, erythroidine[87]
Phenanthrenederivatives[83] Atherosperminine[83][93]
Protopines[83] Protopine,oxomuramine, corycavidine[96]
Aristolactam[83] Doriflavin[83]
Oxazolederivatives[105]
Tyrosinetyramine[106] Annuloline, halfordinol, texaline, texamine[107]
Isoxazolederivatives
Ibotenic acidMuscimol Ibotenic acid, Muscimol
Thiazolederivatives[108]
1-Deoxy-D-xylulose 5-phosphate(DOXP),tyrosine,cysteine[109] Nostocyclamide, thiostreptone[108][110]
Quinazolinederivatives[111]
3,4-Dihydro-4-quinazolone derivatives Anthranilic acidorphenylalanineorornithine[112] Febrifugine[113]
1,4-Dihydro-4-quinazolone derivatives Glycorine, arborine, glycosminine[113]
Pyrrolidine and piperidine quinazoline derivatives Vazicine(peganine)[105]
Acridinederivatives[105]
Anthranilic acid[114] Rutacridone,acronicine[115][116]
Quinolinederivatives[117][118]
Simple derivatives of quinoline derivatives of2–quinolonesand4-quinolone Anthranilic acid→ 3-carboxyquinoline[119] Cusparine,echinopsine,evocarpine[118][120][121]
Tricyclic terpenoids Flindersine[118][122]
Furanoquinoline derivatives Dictamnine,fagarine,skimmianine[118][123][124]
Quinines Tryptophantryptaminestrictosidine(withsecologanin) → korinanteal →cinhoninon[85][119] Quinine,quinidine,cinchonine,cinhonidine[122]
Indolederivatives[100]
Non-isoprene indole alkaloids
Simple indole derivatives[125] Tryptophantryptamineor5-Hydroxytryptophan[126] Serotonin,psilocybin,dimethyltryptamine(DMT),bufotenin[127][128]
Simple derivatives ofβ-carboline[129] Harman,harmine,harmaline,eleagnine[125]
Pyrroloindole alkaloids[130] Physostigmine(eserine), etheramine, physovenine, eptastigmine[130]
Semiterpenoid indole alkaloids
Ergot alkaloids[100] Tryptophan→ chanoclavine → agroclavine → elimoclavine →paspalic acidlysergic acid[130] Ergotamine,ergobasine, ergosine[131]
Monoterpenoid indole alkaloids
Corynanthetype alkaloids[126] Tryptophantryptaminestrictosidine(withsecologanin)[126] Ajmalicine, sarpagine, vobasine,ajmaline,yohimbine,reserpine,mitragynine,[132][133]groupstrychnineand (Strychninebrucine,aquamicine,vomicine[134])
Iboga-type alkaloids[126] Ibogamine,ibogaine,voacangine[126]
Aspidosperma-type alkaloids[126] Vincamine,vincaalkaloids,[27][135]vincotine, aspidospermine[136][137]
Imidazolederivatives[105]
Directly fromhistidine[138] Histamine,pilocarpine,pilosine,stevensine[105][138]
Purinederivatives[139]
Xanthosine(formed in purine biosynthesis) → 7 methylxantosine →7-methylxanthinetheobrominecaffeine[85] Caffeine,theobromine,theophylline,saxitoxin[140][141]
Alkaloids with nitrogen in the side chain (protoalkaloids)
β-Phenylethylaminederivatives[92]
Tyrosineorphenylalaninedioxyphenilalaninedopamineadrenalineandmescalinetyrosinetyraminephenylalanine → 1-phenylpropane-1,2-dione →cathinoneephedrineandpseudoephedrine[21][52][142] Tyramine,ephedrine,pseudoephedrine,mescaline,cathinone,catecholamines(adrenaline,noradrenaline,dopamine)[21][143]
Colchicinealkaloids[144]
Tyrosineorphenylalaninedopamineautumnalinecolchicine[145] Colchicine,colchamine[144]
Muscarine[146]
Glutamic acid→ 3-ketoglutamic acid → muscarine (withpyruvic acid)[147] Muscarine,allomuscarine, epimuscarine, epiallomuscarine[146]
Benzylamine[148]
Phenylalaninewithvaline,leucineorisoleucine[149] Capsaicin,dihydrocapsaicin,nordihydrocapsaicin,vanillylamine[148][150]
Polyamines alkaloids
Putrescinederivatives[151]
ornithineputrescinespermidinespermine[152] Paucine[151]
Spermidinederivatives[151]
Lunarine, codonocarpine[151]
Sperminederivatives[151]
Verbascenine, aphelandrine[151]
Peptide (cyclopeptide) alkaloids
Peptide alkaloids with a 13-membered cycle[48][153] Nummularine C type From different amino acids[48] Nummularine C, Nummularine S[48]
Ziziphinetype Ziziphine A, sativanine H[48]
Peptide alkaloids with a 14-membered cycle[48][153] Frangulanine type Frangulanine, scutianine J[153]
Scutianine A type Scutianine A[48]
Integerrine type Integerrine, discarine D[153]
Amphibine F type Amphibine F, spinanine A[48]
Amfibine B type Amphibine B, lotusine C[48]
Peptide alkaloids with a 15-membered cycle[153] Mucronine A type Mucronine A[45][153]
Pseudoalkaloids (terpenesandsteroids)
Diterpenes[45]
Lycoctonine type Mevalonic acidIsopentenyl pyrophosphategeranyl pyrophosphate[154][155] Aconitine,delphinine[45][156]
Steroidal alkaloids[157]
Cholesterol,arginine[158] Solanidine,cyclopamine,batrachotoxin[159]

Properties

edit

Most alkaloids contain oxygen in their molecular structure; those compounds are usually colorless crystals at ambient conditions. Oxygen-free alkaloids, such asnicotine[160]orconiine,[36]are typically volatile, colorless, oily liquids.[161]Some alkaloids are colored, likeberberine(yellow) andsanguinarine(orange).[161]

Most alkaloids are weak bases, but some, such astheobromineandtheophylline,areamphoteric.[162]Many alkaloids dissolve poorly in water but readily dissolve inorganic solvents,such asdiethyl ether,chloroformor1,2-dichloroethane.Caffeine,[163]cocaine,[164]codeine[165]andnicotine[166]are slightly soluble in water (with a solubility of ≥1g/L), whereas others, includingmorphine[167]andyohimbine[168]are very slightly water-soluble (0.1–1 g/L). Alkaloids and acids form salts of various strengths. These salts are usually freely soluble in water andethanoland poorly soluble in most organic solvents. Exceptions includescopolaminehydrobromide, which is soluble in organic solvents, and the water-soluble quinine sulfate.[161]

Most alkaloids have a bitter taste or are poisonous when ingested. Alkaloid production in plants appeared to have evolved in response to feeding by herbivorous animals; however, some animals have evolved the ability to detoxify alkaloids.[169]Some alkaloids can produce developmental defects in the offspring of animals that consume but cannot detoxify the alkaloids. One example is the alkaloidcyclopamine,produced in the leaves ofcorn lily.During the 1950s, up to 25% of lambs born by sheep that had grazed on corn lily had serious facial deformations. These ranged from deformed jaws tocyclopia(see picture). After decades of research, in the 1980s, the compound responsible for these deformities was identified as the alkaloid 11-deoxyjervine, later renamed to cyclopamine.[170]

Distribution in nature

edit
Strychnine tree.Its seeds are rich instrychnineandbrucine.

Alkaloids aregeneratedby various living organisms, especially byhigher plants– about 10 to 25% of those contain alkaloids.[171][172]Therefore, in the past the term "alkaloid" was associated with plants.[173]

The alkaloids content in plants is usually within a few percent and is inhomogeneous over the plant tissues. Depending on the type of plants, the maximum concentration is observed in the leaves (for example,black henbane),fruitsorseeds(Strychnine tree), root (Rauvolfia serpentina) or bark (cinchona).[174]Furthermore, different tissues of the same plants may contain different alkaloids.[175]

Beside plants, alkaloids are found in certain types offungus,such aspsilocybinin the fruiting bodies of the genusPsilocybe,and in animals, such asbufoteninin the skin of some toads[24]and a number of insects, markedly ants.[176]Many marine organisms also contain alkaloids.[177]Someamines,such asadrenalineandserotonin,which play an important role in higher animals, are similar to alkaloids in their structure and biosynthesis and are sometimes called alkaloids.[178]

Extraction

edit
Crystals ofpiperineextracted fromblack pepper.

Because of the structural diversity of alkaloids, there is no single method of their extraction from natural raw materials.[179]Most methods exploit the property of most alkaloids to be soluble in organic solvents[7]but not in water, and the opposite tendency of their salts.

Most plants contain several alkaloids. Their mixture is extracted first and then individual alkaloids are separated.[180]Plants are thoroughly ground before extraction.[179][181]Most alkaloids are present in the raw plants in the form of salts of organic acids.[179]The extracted alkaloids may remain salts or change into bases.[180]Base extraction is achieved by processing the raw material with alkaline solutions and extracting the alkaloid bases with organic solvents, such as 1,2-dichloroethane, chloroform, diethyl ether or benzene. Then, the impurities are dissolved by weak acids; this converts alkaloid bases into salts that are washed away with water. If necessary, an aqueous solution of alkaloid salts is again made alkaline and treated with an organic solvent. The process is repeated until the desired purity is achieved.

In the acidic extraction, the raw plant material is processed by a weak acidic solution (e.g.,acetic acidin water, ethanol, or methanol). A base is then added to convert alkaloids to basic forms that are extracted with organic solvent (if the extraction was performed with alcohol, it is removed first, and the remainder is dissolved in water). The solution is purified as described above.[179][182]

Alkaloids are separated from their mixture using their different solubility in certain solvents and different reactivity with certain reagents or bydistillation.[183]

A number of alkaloids are identified frominsects,among which thefire antvenomalkaloids known assolenopsinshave received greater attention from researchers.[184]These insect alkaloids can be efficiently extracted by solvent immersion of live fire ants[7]or by centrifugation of live ants[185]followed by silica-gel chromatography purification.[186]Tracking and dosing the extracted solenopsin ant alkaloids has been described as possible based on their absorbance peak around 232 nanometers.[187]

Biosynthesis

edit

Biological precursors of most alkaloids areamino acids,such asornithine,lysine,phenylalanine,tyrosine,tryptophan,histidine,aspartic acid,andanthranilic acid.[188]Nicotinic acidcan be synthesized from tryptophan or aspartic acid. Ways of alkaloid biosynthesis are too numerous and cannot be easily classified.[85]However, there are a few typical reactions involved in the biosynthesis of various classes of alkaloids, including synthesis ofSchiff basesandMannich reaction.[188]

Synthesis of Schiff bases

edit

Schiff bases can be obtained by reacting amines with ketones or aldehydes.[189]These reactions are a common method of producing C=N bonds.[190]

In the biosynthesis of alkaloids, such reactions may take place within a molecule,[188]such as in the synthesis of piperidine:[41]

Mannich reaction

edit

An integral component of the Mannich reaction, in addition to an amine and acarbonylcompound, is acarbanion,which plays the role of the nucleophile in thenucleophilic additionto the ion formed by the reaction of the amine and the carbonyl.[190]

The Mannich reaction can proceed both intermolecularly and intramolecularly:[191][192]

Dimer alkaloids

edit

In addition to the described above monomeric alkaloids, there are alsodimeric,and eventrimericandtetramericalkaloids formed upon condensation of two, three, and four monomeric alkaloids. Dimeric alkaloids are usually formed from monomers of the same type through the following mechanisms:[193]

There are also dimeric alkaloids formed from two distinct monomers, such as thevincaalkaloidsvinblastineand vincristine,[27][135]which are formed from the coupling ofcatharanthineandvindoline.[194][195]The newersemi-syntheticchemotherapeutic agentvinorelbineis used in the treatment ofnon-small-cell lung cancer.[135][196]It is another derivative dimer of vindoline and catharanthine and is synthesised fromanhydrovinblastine,[197]starting either fromleurosine[198][199]or the monomers themselves.[135][195]

Biological role

edit

Alkaloids are among the most important and best-knownsecondary metabolites,i.e. biogenic substances not directly involved in the normalgrowth,development,orreproductionof the organism. Instead, they generally mediate ecologicalinteractions,which may produce a selective advantage for the organism by increasing itssurvivabilityorfecundity.In some cases their function, if any, remains unclear.[200]An early hypothesis, that alkaloids are the final products ofnitrogenmetabolismin plants, asureaanduric acidare in mammals, was refuted by the finding that their concentration fluctuates rather than steadily increasing.[17]

Most of the known functions of alkaloids are related to protection. For example,aporphinealkaloidliriodenineproduced by thetulip treeprotects it from parasitic mushrooms. In addition, the presence of alkaloids in the plant prevents insects andchordateanimals from eating it. However, some animals are adapted to alkaloids and even use them in their own metabolism.[201]Such alkaloid-related substances asserotonin,dopamineandhistamineare importantneurotransmittersin animals. Alkaloids are also known to regulate plant growth.[202]One example of an organism that uses alkaloids for protection is theUtetheisa ornatrix,more commonly known as the ornate moth. Pyrrolizidine alkaloids render these larvae and adult moths unpalatable to many of their natural enemies like coccinelid beetles, green lacewings, insectivorous hemiptera and insectivorous bats.[203]Another example of alkaloids being utilized occurs in thepoison hemlock moth(Agonopterix alstroemeriana).This moth feeds on its highly toxic and alkaloid-rich host plantpoison hemlock(Conium maculatum) during its larval stage.A. alstroemerianamay benefit twofold from the toxicity of the naturally-occurring alkaloids, both through the unpalatability of the species to predators and through the ability ofA. alstroemerianato recognizeConium maculatumas the correct location for oviposition.[204]Afire antvenomalkaloid known assolenopsinhas been demonstrated to protect queens ofinvasive fire antsduring the foundation of new nests, thus playing a central role in the spread of this pest ant species around the world.[205]

Applications

edit

In medicine

edit

Medical use of alkaloid-containing plants has a long history, and, thus, when the first alkaloids were isolated in the 19th century, they immediately found application in clinical practice.[206]Many alkaloids are still used in medicine, usually in the form of salts widely used including the following:[17][207]

Alkaloid Action
Ajmaline Antiarrhythmic
Emetine Antiprotozoal agent,emesis
Ergot alkaloids Vasoconstriction,hallucinogenic,Uterotonic
Glaucine Antitussive
Morphine Analgesic
Nicotine Stimulant,nicotinic acetylcholine receptor agonist
Physostigmine Inhibitor ofacetylcholinesterase
Quinidine Antiarrhythmic
Quinine Antipyretic,antimalarial
Reserpine Antihypertensive
Tubocurarine Muscle relaxant
Vinblastine,vincristine Antitumor
Vincamine Vasodilating,antihypertensive
Yohimbine Stimulant,aphrodisiac
Berberine Antihyperglycaemic[13]

Many synthetic and semisynthetic drugs are structural modifications of the alkaloids, which were designed to enhance or change the primary effect of the drug and reduce unwanted side-effects.[208]For example,naloxone,anopioid receptorantagonist,is a derivative ofthebainethat is present inopium.[209]

In agriculture

edit

Prior to the development of a wide range of relatively low-toxic syntheticpesticides,some alkaloids, such as salts of nicotine andanabasine,were used asinsecticides.Their use was limited by their high toxicity to humans.[210]

Use as psychoactive drugs

edit

Preparations of plants and fungi containing alkaloids and their extracts, and later pure alkaloids, have long been used aspsychoactive substances.Cocaine,caffeine,andcathinonearestimulantsof thecentral nervous system.[211][212]Mescalineand many indole alkaloids (such aspsilocybin,dimethyltryptamineandibogaine) havehallucinogeniceffect.[213][214]Morphineandcodeineare strong narcotic pain killers.[215]

There are alkaloids that do not have strong psychoactive effect themselves, but areprecursorsfor semi-synthetic psychoactive drugs. For example,ephedrineandpseudoephedrineare used to producemethcathinoneandmethamphetamine.[216]Thebaineis used in the synthesis of many painkillers such asoxycodone.

See also

edit

Explanatory notes

edit
  1. ^Meissner, W. (1819)."Über Pflanzenalkalien: II. Über ein neues Pflanzenalkali (Alkaloid)"[About Plant Alkalis: II. About a New Plant Alkali (Alkaloid)].Journal für Chemie und Physik.25:379–381. Archived fromthe originalon 18 May 2023.In the penultimate sentence of his article, Meissner wrote: "Überhaupt scheint es mir auch angemessen, die bis jetzt bekannten Pflanzenstoffe nicht mit dem Namen Alkalien, sondern Alkaloide zu belegen, da sie doch in manchen Eigenschaften von den Alkalien sehr abweichen, sie würden daher in dem Abschnitt der Pflanzenchemie vor den Pflanzensäuren ihre Stelle finden." [ "In general, it seems appropriate to me to impose on the currently known plant substances not the name 'alkalis' but 'alkaloids', since they differ greatly in some properties from the alkalis; among the chapters of plant chemistry, they would therefore find their place before plant acids (since 'Alkaloid' would precede 'Säure' (acid) but follow 'Alkalien')".]

Citations

edit
  1. ^Luch, Andreas (2009).Molecular, Clinical and Environmental Toxicology, Volume 1: Molecular Toxicology.Vol. 1. Springer. p. 20.ISBN9783764383367.OCLC1056390214.
  2. ^abIUPAC,Compendium of Chemical Terminology,2nd ed. (the "Gold Book" ) (1997). Online corrected version: (2006–) "alkaloids".doi:10.1351/goldbook.A00220
  3. ^Manske, R. H. F. (12 May 2014).The Alkaloids: Chemistry and Physiology, Volume 8.Vol. 8. Saint Louis: Elsevier. pp. 683–695.ISBN9781483222004.OCLC1090491824.
  4. ^Lewis, Robert Alan (23 March 1998).Lewis' Dictionary of Toxicology.CRC Press. p. 51.ISBN9781566702232.OCLC1026521889.
  5. ^abcd"АЛКАЛОИДЫ - Химическая энциклопедия"[Alkaloids - Chemical Encyclopedia].www.xumuk.ru(in Russian).Retrieved18 May2023.
  6. ^Roberts, M. F. (Margaret F.); Wink, Michael (1998).Alkaloids: Biochemistry, Ecology, and Medicinal Applications.Boston: Springer US.ISBN9781475729054.OCLC851770197.
  7. ^abcGonçalves Paterson Fox, Eduardo; Russ Solis, Daniel; Delazari dos Santos, Lucilene; Aparecido dos Santos Pinto, Jose Roberto; Ribeiro da Silva Menegasso, Anally; Cardoso Maciel Costa Silva, Rafael; Sergio Palma, Mario; Correa Bueno, Odair; de Alcântara Machado, Ednildo (April 2013)."A simple, rapid method for the extraction of whole fire ant venom (Insecta: Formicidae: Solenopsis)".Toxicon.65:5–8.Bibcode:2013Txcn...65....5G.doi:10.1016/j.toxicon.2012.12.009.hdl:11449/74946.PMID23333648.
  8. ^Kittakoop P, Mahidol C, Ruchirawat S (2014)."Alkaloids as important scaffolds in therapeutic drugs for the treatments of cancer, tuberculosis, and smoking cessation".Curr Top Med Chem.14(2): 239–252.doi:10.2174/1568026613666131216105049.PMID24359196.
  9. ^Russo P, Frustaci A, Del Bufalo A, Fini M, Cesario A (2013). "Multitarget drugs of plants origin acting on Alzheimer's disease".Curr Med Chem.20(13): 1686–93.doi:10.2174/0929867311320130008.PMID23410167.
  10. ^Raymond S. Sinatra; Jonathan S. Jahr; J. Michael Watkins-Pitchford (2010).The Essence of Analgesia and Analgesics.Cambridge University Press. pp. 82–90.ISBN978-1139491983.
  11. ^Cushnie TP, Cushnie B, Lamb AJ (2014)."Alkaloids: An overview of their antibacterial, antibiotic-enhancing and antivirulence activities".Int J Antimicrob Agents.44(5): 377–386.doi:10.1016/j.ijantimicag.2014.06.001.PMID25130096.S2CID205171789.
  12. ^Singh, Sukhpal; Bansal, Abhishek; Singh, Vikramjeet; Chopra, Tanya; Poddar, Jit (June 2022)."Flavonoids, alkaloids and terpenoids: a new hope for the treatment of diabetes mellitus".Journal of Diabetes & Metabolic Disorders.21(1): 941–950.doi:10.1007/s40200-021-00943-8.ISSN2251-6581.PMC9167359.PMID35673446.
  13. ^abBehl, Tapan; Gupta, Amit; Albratty, Mohammed; Najmi, Asim; Meraya, Abdulkarim M.; Alhazmi, Hassan A.; Anwer, Md. Khalid; Bhatia, Saurabh; Bungau, Simona Gabriela (9 September 2022)."Alkaloidal Phytoconstituents for Diabetes Management: Exploring the Unrevealed Potential".Molecules.27(18): 5851.doi:10.3390/molecules27185851.ISSN1420-3049.PMC9501853.PMID36144587.
  14. ^"Alkaloid".18 December 2007.
  15. ^Robbers JE, Speedie MK, Tyler VE (1996). "Chapter 9: Alkaloids".Pharmacognosy and Pharmacobiotechnology.Philadelphia: Lippincott, Williams & Wilkins. pp. 143–185.ISBN978-0683085006.
  16. ^Rhoades, David F (1979). "Evolution of Plant Chemical Defense against Herbivores". In Rosenthal, Gerald A.; Janzen, Daniel H (eds.).Herbivores: Their Interaction with Secondary Plant Metabolites.New York: Academic Press. p. 41.ISBN978-0-12-597180-5.
  17. ^abcRobert A. MeyersEncyclopedia of Physical Science and Technology– Alkaloids, 3rd edition.ISBN0-12-227411-3
  18. ^Cseke, Leland J.; Kirakosyan, Ara; Kaufman, Peter B.; Warber, Sara; Duke, James A.; Brielmann, Harry L. (19 April 2016).Natural Products from Plants.CRC Press. p. 30.ISBN978-1-4200-0447-2.
  19. ^Johnson, Alyn William (1999).Invitation to Organic Chemistry.Jones & Bartlett Learning. p. 433.ISBN978-0-7637-0432-2.
  20. ^Bansal, Raj K. (2003).A Textbook of Organic Chemistry.New Age International Limited. p. 644.ISBN978-81-224-1459-2.
  21. ^abcdAniszewski,p. 110
  22. ^Hesse,pp. 1–3
  23. ^Ladenburg, Albert (1882).Handwörterbuch der chemie(in German). E. Trewendt. pp. 213–422.
  24. ^abHesse,p. 5
  25. ^The suffix "ine" is a Greek feminine patronymic suffix and means "daughter of"; hence, for example, "atropine" means "daughter of Atropa" (belladonna):"Development of Systematic Names for the Simple Alkanes".yale.edu.Archived fromthe originalon 16 March 2012.
  26. ^Hesse,p. 7
  27. ^abcvan der Heijden, Robert; Jacobs, Denise I.; Snoeijer, Wim; Hallard, Didier; Verpoorte, Robert (2004). "TheCatharanthusalkaloids: Pharmacognosy and biotechnology ".Current Medicinal Chemistry.11(5): 607–628.doi:10.2174/0929867043455846.PMID15032608.
  28. ^Cooper, Raymond; Deakin, Jeffrey John (2016)."Africa's gift to the world".Botanical Miracles: Chemistry of Plants That Changed the World.CRC Press.pp. 46–51.ISBN9781498704304.
  29. ^Raviña, Enrique (2011)."Vinca alkaloids".The evolution of drug discovery: From traditional medicines to modern drugs.John Wiley & Sons.pp. 157–159.ISBN9783527326693.
  30. ^abAniszewski,p. 182
  31. ^Hesse,p. 338
  32. ^Hesse,p. 304
  33. ^Hesse,p. 350
  34. ^Hesse,pp. 313–316
  35. ^Begley,Natural Products in Plants.
  36. ^abКониинin theGreat Soviet Encyclopedia,1969–1978 (in Russian)
  37. ^Hesse,p. 204
  38. ^abHesse,p. 11
  39. ^Orekhov,p. 6
  40. ^Aniszewski,p. 109
  41. ^abDewick,p. 307
  42. ^Hesse,p. 12
  43. ^abPlemenkov,p. 223
  44. ^Aniszewski,p. 108
  45. ^abcdHesse,p. 84
  46. ^abHesse,p. 31
  47. ^abcDewick,p. 381
  48. ^abcdefghiDimitris C. Gournelif; Gregory G. Laskarisb; Robert Verpoorte (1997). "Cyclopeptide alkaloids".Nat. Prod. Rep.14(1): 75–82.doi:10.1039/NP9971400075.PMID9121730.
  49. ^Aniszewski,p. 11
  50. ^Plemenkov,p. 246
  51. ^abAniszewski,p. 12
  52. ^abDewick,p. 382
  53. ^Hesse,pp. 44, 53
  54. ^abcPlemenkov,p. 224
  55. ^abcAniszewski,p. 75
  56. ^Orekhov,p. 33
  57. ^abc"Chemical Encyclopedia: Tropan alkaloids".xumuk.ru.
  58. ^Hesse,p. 34
  59. ^Aniszewski,p. 27
  60. ^abcd"Chemical Encyclopedia: Pyrrolizidine alkaloids".xumuk.ru.
  61. ^Plemenkov,p. 229
  62. ^Blankenship JD, Houseknecht JB, Pal S, Bush LP, Grossman RB, Schardl CL (2005). "Biosynthetic precursors of fungal pyrrolizidines, the loline alkaloids".ChemBioChem.6(6): 1016–1022.doi:10.1002/cbic.200400327.PMID15861432.S2CID13461396.
  63. ^Faulkner JR, Hussaini SR, Blankenship JD, Pal S, Branan BM, Grossman RB, Schardl CL (2006). "On the sequence of bond formation in loline alkaloid biosynthesis".ChemBioChem.7(7): 1078–1088.doi:10.1002/cbic.200600066.PMID16755627.S2CID34409048.
  64. ^Schardl CL, Grossman RB, Nagabhyru P, Faulkner JR, Mallik UP (2007). "Loline alkaloids: currencies of mutualism".Phytochemistry.68(7): 980–996.Bibcode:2007PChem..68..980S.doi:10.1016/j.phytochem.2007.01.010.PMID17346759.
  65. ^Plemenkov,p. 225
  66. ^Aniszewski,p. 95
  67. ^Orekhov,p. 80
  68. ^abcdef"Chemical Encyclopedia: Quinolizidine alkaloids".xumuk.ru.
  69. ^Saxton,Vol. 1, p. 93
  70. ^Aniszewski,p. 98
  71. ^Saxton,Vol. 1, p. 91
  72. ^Joseph P. Michael (2002). "Indolizidine and quinolizidine alkaloids".Nat. Prod. Rep.19(5): 458–475.doi:10.1039/b208137g.PMID14620842.
  73. ^Saxton,Vol. 1, p. 92
  74. ^Dewick,p. 310
  75. ^Aniszewski,p. 96
  76. ^Aniszewski,p. 97
  77. ^abcPlemenkov,p. 227
  78. ^ab"Chemical Encyclopedia: pyridine alkaloids".xumuk.ru.
  79. ^abAniszewski,p. 107
  80. ^abAniszewski,p. 85
  81. ^Plemenkov,p. 228
  82. ^abHesse,p. 36
  83. ^abcdefghijklmnopqrst"Chemical Encyclopedia: isoquinoline alkaloids".xumuk.ru.
  84. ^Aniszewski,pp. 77–78
  85. ^abcdBegley,Alkaloid Biosynthesis
  86. ^abSaxton,Vol. 3, p. 122
  87. ^abcHesse,p. 54
  88. ^abHesse,p. 37
  89. ^Hesse,p. 38
  90. ^abcHesse,p. 46
  91. ^abcHesse,p. 50
  92. ^abcKenneth W. Bentley (1997)."β-Phenylethylamines and the isoquinoline alkaloids"(PDF).Nat. Prod. Rep.14(4): 387–411.doi:10.1039/NP9971400387.PMID9281839.Archived(PDF)from the original on 9 October 2022.
  93. ^abHesse,p. 47
  94. ^Hesse,p. 39
  95. ^abHesse,p. 41
  96. ^abHesse,p. 49
  97. ^Hesse,p. 44
  98. ^abcSaxton,Vol. 3, p. 164
  99. ^abHesse,p. 51
  100. ^abcPlemenkov,p. 236
  101. ^Saxton,Vol. 3, p. 163
  102. ^Saxton,Vol. 3, p. 168
  103. ^Hesse,p. 52
  104. ^Hesse,p. 53
  105. ^abcdePlemenkov,p. 241
  106. ^Brossi,Vol. 35, p. 261
  107. ^Brossi,Vol. 35, pp. 260–263
  108. ^abPlemenkov,p. 242
  109. ^Begley,Cofactor Biosynthesis
  110. ^John R. Lewis (2000). "Amaryllidaceae, muscarine, imidazole, oxazole, thiazole and peptide alkaloids, and other miscellaneous alkaloids".Nat. Prod. Rep.17(1): 57–84.doi:10.1039/a809403i.PMID10714899.
  111. ^"Chemical Encyclopedia: Quinazoline alkaloids".xumuk.ru.
  112. ^Aniszewski,p. 106
  113. ^abAniszewski,p. 105
  114. ^Richard B. Herbert; Herbert, Richard B.; Herbert, Richard B. (1999). "The biosynthesis of plant alkaloids and nitrogenous microbial metabolites".Nat. Prod. Rep.16(2): 199–208.doi:10.1039/a705734b.
  115. ^Plemenkov,pp. 231, 246
  116. ^Hesse,p. 58
  117. ^Plemenkov,p. 231
  118. ^abcd"Chemical Encyclopedia: Quinoline alkaloids".xumuk.ru.
  119. ^abAniszewski,p. 114
  120. ^Orekhov,p. 205
  121. ^Hesse,p. 55
  122. ^abPlemenkov,p. 232
  123. ^Orekhov,p. 212
  124. ^Aniszewski,p. 118
  125. ^abAniszewski,p. 112
  126. ^abcdefAniszewski,p. 113
  127. ^Hesse,p. 15
  128. ^Saxton,Vol. 1, p. 467
  129. ^Dewick,pp. 349–350
  130. ^abcAniszewski,p. 119
  131. ^Hesse,p. 29
  132. ^Hesse,pp. 23–26
  133. ^Saxton,Vol. 1, p. 169
  134. ^Saxton,Vol. 5, p. 210
  135. ^abcdKeglevich, Péter; Hazai, Laszlo; Kalaus, György; Szántay, Csaba (2012)."Modifications on the basic skeletons of vinblastine and vincristine".Molecules.17(5): 5893–5914.doi:10.3390/molecules17055893.PMC6268133.PMID22609781.
  136. ^Hesse,pp. 17–18
  137. ^Dewick,p. 357
  138. ^abAniszewski,p. 104
  139. ^Hesse,p. 72
  140. ^Hesse,p. 73
  141. ^Dewick,p. 396
  142. ^"PlantCyc Pathway: ephedrine biosynthesis".Archived fromthe originalon 10 December 2011.
  143. ^Hesse,p. 76
  144. ^ab"Chemical Encyclopedia: colchicine alkaloids".xumuk.ru.
  145. ^Aniszewski,p. 77
  146. ^abHesse,p. 81
  147. ^Brossi,Vol. 23, p. 376
  148. ^abHesse,p. 77
  149. ^Brossi,Vol. 23, p. 268
  150. ^Brossi,Vol. 23, p. 231
  151. ^abcdefHesse,p. 82
  152. ^"Spermine Biosynthesis".www.qmul.ac.uk.Archived fromthe originalon 13 November 2003.
  153. ^abcdefPlemenkov,p. 243
  154. ^"Chemical Encyclopedia: Terpenes".xumuk.ru.
  155. ^Begley,Natural Products: An Overview
  156. ^Atta-ur-Rahman and M. Iqbal Choudhary (1997). "Diterpenoid and steroidal alkaloids".Nat. Prod. Rep.14(2): 191–203.doi:10.1039/np9971400191.PMID9149410.
  157. ^Hesse,p. 88
  158. ^Dewick,p. 388
  159. ^Plemenkov,p. 247
  160. ^Никотинin theGreat Soviet Encyclopedia,1969–1978 (in Russian)
  161. ^abcGrinkevich,p. 131
  162. ^Spiller, Gene A. (23 April 2019).Caffeine.CRC Press. p. 140.ISBN978-1-4200-5013-4.
  163. ^"Caffeine".DrugBank.Retrieved12 February2013.
  164. ^"Cocaine".DrugBank.Retrieved12 February2013.
  165. ^"Codeine".DrugBank.Retrieved12 February2013.
  166. ^"Nicotine".DrugBank.Retrieved12 February2013.
  167. ^"Morphine".DrugBank.Retrieved12 February2013.
  168. ^"Yohimbine".DrugBank.Archived fromthe originalon 30 January 2013.Retrieved12 February2013.
  169. ^Fattorusso,p. 53
  170. ^Thomas Acamovic; Colin S. Stewart; T. W. Pennycott (2004).Poisonous plants and related toxins, Volume 2001.CABI. p. 362.ISBN978-0-85199-614-1.
  171. ^Aniszewski,p. 13
  172. ^Orekhov,p. 11
  173. ^Hesse,p.4
  174. ^Grinkevich,pp. 122–123
  175. ^Orekhov,p. 12
  176. ^Touchard, Axel; Aili, Samira; Fox, Eduardo; Escoubas, Pierre; Orivel, Jérôme; Nicholson, Graham; Dejean, Alain (20 January 2016)."The Biochemical Toxin Arsenal from Ant Venoms".Toxins.8(1): 30.doi:10.3390/toxins8010030.ISSN2072-6651.PMC4728552.PMID26805882.
  177. ^Fattorusso,p. XVII
  178. ^Aniszewski,pp. 110–111
  179. ^abcdHesse,p. 116
  180. ^abGrinkevich,p. 132
  181. ^Grinkevich,p. 5
  182. ^Grinkevich,pp. 132–134
  183. ^Grinkevich,pp. 134–136
  184. ^Fox, Eduardo Gonçalves Paterson (2016). "Venom Toxins of Fire Ants". In Gopalakrishnakone, P.; Calvete, Juan J. (eds.).Venom Genomics and Proteomics.Springer Netherlands. pp. 149–167.doi:10.1007/978-94-007-6416-3_38.ISBN978-94-007-6415-6.
  185. ^Fox, Eduardo G. P.; Xu, Meng; Wang, Lei; Chen, Li; Lu, Yong-Yue (1 May 2018). "Speedy milking of fresh venom from aculeate hymenopterans".Toxicon.146:120–123.Bibcode:2018Txcn..146..120F.doi:10.1016/j.toxicon.2018.02.050.ISSN0041-0101.PMID29510162.
  186. ^Chen, Jian; Cantrell, Charles L.; Shang, Han-wu; Rojas, Maria G. (22 April 2009). "Piperideine Alkaloids from the Poison Gland of the Red Imported Fire Ant (Hymenoptera: Formicidae)".Journal of Agricultural and Food Chemistry.57(8): 3128–3133.doi:10.1021/jf803561y.ISSN0021-8561.PMID19326861.
  187. ^Fox, Eduardo G. P.; Xu, Meng; Wang, Lei; Chen, Li; Lu, Yong-Yue (1 June 2018)."Gas-chromatography and UV-spectroscopy of Hymenoptera venoms obtained by trivial centrifugation".Data in Brief.18:992–998.Bibcode:2018DIB....18..992F.doi:10.1016/j.dib.2018.03.101.ISSN2352-3409.PMC5996826.PMID29900266.
  188. ^abcPlemenkov,p. 253
  189. ^Plemenkov,p. 254
  190. ^abDewick,p. 19
  191. ^Plemenkov,p. 255
  192. ^Dewick,p. 305
  193. ^Hesse,pp. 91–105
  194. ^Hirata, K.; Miyamoto, K.; Miura, Y. (1994)."Catharanthus roseusL. (Periwinkle): Production of Vindoline and Catharanthine in Multiple Shoot Cultures ".In Bajaj, Y. P. S. (ed.).Biotechnology in Agriculture and Forestry 26.Medicinal and Aromatic Plants. Vol. VI.Springer-Verlag.pp.46–55.ISBN9783540563914.
  195. ^abGansäuer, Andreas; Justicia, José; Fan, Chun-An; Worgull, Dennis; Piestert, Frederik (2007)."Reductive C—C bond formation after epoxide opening via electron transfer".InKrische, Michael J.(ed.).Metal Catalyzed Reductive C—C Bond Formation: A Departure from Preformed Organometallic Reagents.Topics in Current Chemistry. Vol. 279.Springer Science & Business Media.pp. 25–52.doi:10.1007/128_2007_130.ISBN9783540728795.
  196. ^Faller, Bryan A.; Pandi, Trailokya N. (2011)."Safety and efficacy of vinorelbine in the treatment of non-small cell lung cancer".Clinical Medicine Insights: Oncology.5:131–144.doi:10.4137/CMO.S5074.PMC3117629.PMID21695100.
  197. ^Ngo, Quoc Anh; Roussi, Fanny; Cormier, Anthony; Thoret, Sylviane; Knossow, Marcel; Guénard, Daniel; Guéritte, Françoise (2009). "Synthesis and biological evaluation ofVinca alkaloidsand phomopsin hybrids ".Journal of Medicinal Chemistry.52(1): 134–142.doi:10.1021/jm801064y.PMID19072542.
  198. ^Hardouin, Christophe; Doris, Eric; Rousseau, Bernard; Mioskowski, Charles (2002). "Concise synthesis of anhydrovinblastine from leurosine".Organic Letters.4(7): 1151–1153.doi:10.1021/ol025560c.PMID11922805.
  199. ^Morcillo, Sara P.; Miguel, Delia; Campaña, Araceli G.; Cienfuegos, Luis Álvarez de; Justicia, José; Cuerva, Juan M. (2014)."Recent applications of Cp2TiCl in natural product synthesis ".Organic Chemistry Frontiers.1(1): 15–33.doi:10.1039/c3qo00024a.hdl:10481/47295.
  200. ^Aniszewski,p. 142
  201. ^Hesse,pp. 283–291
  202. ^Aniszewski,pp. 142–143
  203. ^W.E. Conner (2009).Tiger Moths and Woolly Bears—behaviour, ecology, and evolution of the Arctiidae.New York: Oxford University Press. pp. 1–10.ISBN0195327373.
  204. ^Castells, Eva; Berenbaum, May R. (June 2006)."Laboratory Rearing of Agonopterix alstroemeriana, the Defoliating Poison Hemlock (Conium maculatum L.) Moth, and Effects of Piperidine Alkaloids on Preference and Performance".Environmental Entomology.35(3): 607–615.doi:10.1603/0046-225x-35.3.607.S2CID45478867– via ResearchGate.
  205. ^Fox, Eduardo G. P.; Wu, Xiaoqing; Wang, Lei; Chen, Li; Lu, Yong-Yue; Xu, Yijuan (1 February 2019). "Queen venom isosolenopsin A delivers rapid incapacitation of fire ant competitors".Toxicon.158:77–83.Bibcode:2019Txcn..158...77F.doi:10.1016/j.toxicon.2018.11.428.ISSN0041-0101.PMID30529381.S2CID54481057.
  206. ^Hesse,p. 303
  207. ^Hesse,pp. 303–309
  208. ^Hesse,p. 309
  209. ^Dewick,p. 335
  210. ^Matolcsy, G.; Nádasy, M.; Andriska, V. (1 January 1989).Pesticide Chemistry.Elsevier. pp. 21–22.ISBN978-0-08-087491-3.
  211. ^Veselovskaya,p. 75
  212. ^Hesse,p. 79
  213. ^Veselovskaya,p. 136
  214. ^Ibogaine: Proceedings from the First International Conference (The Alkaloids Book 56).Elsevier Science. 1950. p. 8.ISBN978-0-12-469556-6.
  215. ^Veselovskaya,p. 6
  216. ^Veselovskaya,pp. 51–52

General and cited references

edit
  • Aniszewski, Tadeusz (2007).Alkaloids: secrets of life.Amsterdam:Elsevier.ISBN978-0-444-52736-3.
  • Begley, Tadhg P. (2009).Encyclopedia of Chemical Biology.Vol. 10. Wiley. pp. 1569–1570.doi:10.1002/cbic.200900262.ISBN978-0-471-75477-0.
  • Brossi, Arnold (1989).The Alkaloids: Chemistry and Pharmacology.Academic Press.
  • Dewick, Paul M. (2002).Medicinal Natural Products: A Biosynthetic Approach(Second ed.). Wiley.ISBN978-0-471-49640-3.
  • Fattorusso, E.; Taglialatela-Scafati, O. (2008).Modern Alkaloids: Structure, Isolation, Synthesis and Biology.Wiley-VCH.ISBN978-3-527-31521-5.
  • Grinkevich NI; Safronich LN, eds. (1983).The chemical analysis of medicinal plants(in Russian). Moscow: Vysshaya Shkola.
  • Hesse, Manfred (2002).Alkaloids: Nature's Curse or Blessing?.Wiley-VCH.ISBN978-3-906390-24-6.
  • Knunyants, IL (1988).Chemical Encyclopedia.Soviet Encyclopedia.
  • Orekhov, AP (1955).Chemistry alkaloids(Acad. 2nd ed.). Moscow.{{cite book}}:CS1 maint: location missing publisher (link)
  • Plemenkov, VV (2001).Introduction to the Chemistry of Natural Compounds.Kazan.{{cite book}}:CS1 maint: location missing publisher (link)
  • Saxton, J. E. (1971).The Alkaloids: A Specialist Periodical Report.London: The Chemical Society.
  • Veselovskaya, N. B.; Kovalenko, A. E. (2000).Drugs.Moscow: Triada-X.
  • Wink, M (2009). "Mode of action and toxicology of plant toxins and poisonous plants".Mitt. Julius Kühn-Inst.421:93–112x.
edit
  • Media related toAlkaloidsat Wikimedia Commons
  • Quotations related toAlkaloidat Wikiquote