TheBeiDou Navigation Satellite System(BDS;Chinese:Bắc đấu vệ tinh đạo hàng hệ thống;pinyin:běidǒu wèixīng dǎoháng xìtǒng) is asatellite-based radio navigation systemowned and operated by theChina National Space Administration.[4]It provides geolocation and time information to a BDS receiver anywhere on or near the Earth where there is an unobstructed line of sight to four or more BDS satellites.[5]It does not require the user to transmit any data and operates independently of any telephonic or Internet reception, though these technologies can enhance the usefulness of the BDS positioning information;[6]however, concerns have been raised about embedded malware leaking information in this way.[7]

BeiDou Navigation Satellite System
Logo of BeiDou
Country/ies of originPeople's Republic of China
Operator(s)China National Space Administration
TypeMilitary, commercial
StatusOperational
CoverageGlobal
Accuracy3.6 m (global, public)
2.6 m (Asia Pacific, public)
10 cm (encrypted)[1]
Constellation size
Nominalsatellites30
Current usablesatellites35
First launch31 October 2000
Last launch23 June 2020[2]
Total launches59[3]
Orbital characteristics
Regime(s)GEO,IGSO,MEO
Orbital period713sdor 12 hours and 53 minutes
Revisit period7 sidereal days
Websiteen.beidou.gov.cnEdit this at Wikidata

The current service,BeiDou-3(third-generation BeiDou), provides full global coverage for timing and navigation, along with Russia'sGLONASS,the EuropeanGalileo,and the US'sGPS.[8]It consists of satellites in three different orbits, including 24 satellites in medium-circle orbits (covering the world), 3 satellites in inclined geosynchronous orbits (covering the Asia-Pacific region), and 3 satellites in geostationary orbits (covering China). The BeiDou-3 system was fully operational in July 2020.[9][10][11][12][13]In 2016, BeiDou-3 reached millimeter-level accuracy with post-processing.[14]

Predecessors includedBeiDou-1(first-generation BeiDou), consisting of three satellites in aregional satellite navigation system.Since 2000, the system has mainly provided navigation services within China. In December 2012, as the design life of BeiDou-1 expired, it stopped operating.[15] TheBeiDou-2(second-generation BeiDou) system was also a regional satellite navigation system containing 16 satellites, including 6 geostationary satellites, 6 inclined geosynchronous orbit satellites, and 4 medium earth orbit satellites. In November 2012, BeiDou-2 began to provide users with regional positioning services in theAsia-Pacific region.[16][17]Within the region, BeiDou is more accurate than GPS.[18]: 179 

In 2015, fifteen years after the satellite system was launched, it was generating a turnover of $31.5 billion per annum for major companies such asChina Aerospace Science and Industry Corporation,AutoNavi,andNorinco.[19]The industry has grown an average of over 20% in value annually to reach $64 billion in 2020.[20][21]

Nomenclature

edit

The official English name of the system isBeiDou Navigation Satellite System.[22]It is named after theBig Dipperasterism,which is known in Chinese asBěidǒu(Chinese:Bắc đấu). The name literally means "Northern Dipper", the name given by ancient Chinese astronomers to the seven brightest stars of theUrsa Major constellation.[23]Historically, this set of stars was used in navigation to locate theNorth Star.As such, the name BeiDou also serves as a metaphor for the purpose of the satellite navigation system.[citation needed]

History

edit

Conception and initial development

edit

The original idea of a Chinese satellite navigation system was conceived byChen Fangyunand his colleagues in the 1980s.[24]TheGulf Warin 1991 showcased how the GPS gave the US complete advantage on the battlefield and how satellite navigation systems can be used to conduct "space warfare".[25]In 1993, China realised the risk of denied access to GPS during theYinhe incidentand including an alleged case in 1996 during theThird Taiwan Strait Crisis,gave impetus to the creation of its own indigenous satellite navigation system which officially began in 1994.[26]

According to theChina National Space Administration,in 2010, the development of the system would be carried out in three steps:[27]

  1. 2000–2003: experimental BeiDou navigation system consisting of three satellites
  2. By 2012: regional BeiDou navigation system covering China and neighboring regions
  3. By 2020: global BeiDou navigation system

The first satellite,BeiDou-1A,was launched on 30 October 2000, followed byBeiDou-1Bon 20 December 2000. The third satellite,BeiDou-1C(a backup satellite), was put into orbit on 25 May 2003.[28]The successful launch ofBeiDou-1Calso meant the establishment of the BeiDou-1 navigation system.

On 2 November 2006, China announced that from 2008 BeiDou would offer an open service with an accuracy of 10 metres, timing of 0.2 microseconds, and speed of 0.2 metres/second.[29]

In February 2007, the fourth and last satellite of the BeiDou-1 system,BeiDou-1D(sometimes calledBeiDou-2A,serving as a backup satellite), was launched.[30]It was reported that the satellite had suffered from a control system malfunction but was then fully restored.[31][32]

In April 2007, the first satellite of BeiDou-2, namelyCompass-M1(to validate frequencies for the BeiDou-2 constellation) was successfully put into its working orbit. The second BeiDou-2 constellation satelliteCompass-G2was launched on 15 April 2009.[33]

On 15 January 2010, the official website of the BeiDou Navigation Satellite System went online,[34]and the system's third satellite (Compass-G1) was carried into its orbit by aLong March 3Crocket on 17 January 2010.[34]

On 2 June 2010, the fourth satellite was launched successfully into orbit.[35]

The fifth orbiter was launched into space fromXichang Satellite Launch Centerby anLM-3Icarrier rocket on 1 August 2010.[36]

Three months later, on 1 November 2010, the sixth satellite was sent into orbit by LM-3C.[37]

Another satellite, the BeiDou-2/Compass IGSO-5 (fifth inclined geosynchronous orbit) satellite, was launched from the Xichang Satellite Launch Center by aLong March 3Aon 1 December 2011 (UTC).[38]

Rendering of BeiDou satellite on Chinese news television

Chinese involvement in Galileo system

edit

In September 2003, China intended to join the EuropeanGalileo positioning systemproject and was to invest €230 million (US$296 million, £160 million) in Galileo over the next few years.[39]At the time, it was believed that China's "BeiDou" navigation system would then only be used by its armed forces.[29]

In October 2004, China officially joined the Galileo project by signing theAgreement on the Cooperation in the Galileo Program between the "Galileo Joint Undertaking" (GJU) and the "National Remote Sensing Centre of China" (NRSCC).[40]Based on the Sino-European Cooperation Agreement on Galileo program, China Galileo Industries (CGI),[41]the prime contractor of China's involvement in Galileo programs, was founded in December 2004.[42]By April 2006, eleven cooperation projects within the Galileo framework had been signed between China and the EU.[43]

Phase III

edit
Model of BeiDou Phase III satellite orbits
  • In November 2014, BeiDou became part of the World-Wide Radionavigation System (WWRNS) at the 94th meeting of theInternational Maritime Organization(IMO) Maritime Safety Committee,[44]which approved the "Navigation Safety Circular" of the BeiDou Navigation Satellite System (BDS).[45][46]
  • At Beijing time 21:52, 30 March 2015, the first new-generation BeiDou Navigation satellite (and the 17th overall) was successfully set to orbit by aLong March 3Crocket.[47][48]
  • On 20 April 2019, a BeiDou satellite was successfully launched. Launch occurred at 22:41Beijing time,and the Long March 3B delivered the BeiDou navigation payload into an elliptical transfer orbit ranging between 220 kilometres and 35,787 kilometres, with an inclination of 28.5° to the equator, according to U.S. military tracking data.[49]
  • On 23 June 2020, the final BeiDou satellite was successfully launched, the launch of the 55th satellite in the BeiDou family. The third iteration of the BeiDou Navigation Satellite System provides global coverage for timing and navigation, offering an alternative to Russia'sGLONASSand the EuropeanGalileo positioning system,as well as the US'sGPS.[50]

Use outside China

edit

In 2018, thePakistan Armed Forcesreceived access to BeiDou for military purposes.[51]In 2019, the SaudiMinistry of Defensesigned an agreement for military use of BeiDou.[51]In 2020, Argentina entered into a cooperation agreement with China regarding the use of BeiDou.[52]In 2021, the first China-Africa BeiDou System Cooperation Forum was held in Beijing.[52]In 2022,Vladimir Putinsigned an agreement for the interoperability of BeiDou andGLONASS.[51][53]

GPS vs. BeiDou Capabilities

edit

The National Space-Based Positioning, Navigation, and Timing (PNT) Advisory Board, which offers independent guidance to the U.S. government on GPS policy, issued a summary report from its 27th meeting held on November 16–17, 2022. During the meeting, it was highlighted that "GPS capabilities are now significantly surpassed by China's BeiDou system."[54]

BeiDou-3

edit

Hydrogen maserused by BeiDou-3

The third phase of the BeiDou system (BDS-3) includes three GEO satellites, three IGSO satellites, and twenty-four MEO satellites which introduce new signal frequencies B1C/B1I/B1A (1575.42MHz), B2a/B2b (1191.79MHz), B3I/B3Q/B3A (1268.52MHz), and Bs test frequency (2492.02MHz). Interface control documents on the new open signals were published in 2017–2018.[55]

On 23 June 2020, the BDS-3 constellation deployment was fully completed after the last satellite was successfully launched at theXichang Satellite Launch Center.[56][57]BDS-3 satellites also includeSBAS(B1C, B2a, B1A - GEO sats),Precise Point Positioning(B2b - GEO sats),[58]andsearch and rescue transponder(6MEOSAR) capabilities.[59]

From left to right: Mockups of Beidou-3 satellites operating inMEO,IGSO,andGEO
Characteristics of BeiDou-2/Compass and BeiDou-3 signals[60][55]
BeiDou signal B1I B1Q B1C B1A B2I B2Q B2a B2b B3I B3Q B3A
GIOVE/Compass signal E2-I E2-Q E1-I E1-Q E5B-I E5B-Q E5a E5b E6-I E6-Q
Access type Open Authorized Open Authorized Open Authorized Open Open Open Authorized Authorized
Code modulation BPSK(2) BPSK(2) MBOC(6,1,1/11) BOC(14,2) BPSK(2) BPSK(10) AltBOC(15,10) AltBOC(15,10) BPSK(10) BPSK(10) BOC(15,2.5)
Carrier frequency (MHz) 1561.098 1561.098 1575.42 1575.42 1207.14 1207.14 1176.45 1207.14 1268.52 1268.52 1268.52
Chip rate (Mchips/s) 2.046 2.046 2.046 10.230 10.230 10.230
Code period (chips) 2046 ? 2046 ?? 10230 ?
Code period (ms) 1.0 >400 1.0 >160 1.0 >160
Symbols rate (bits/s) 50 ? 50 ? 50 ?
Navigation frames (s) 6 ? 6 ? ? ?
Navigation sub-frames (s) 30 ? 30 ? ? ?
Navigation period (min) 12.0 ? 12.0 ? ? ?

Characteristics of the "I" signals on E2 and E5B are generally similar to the civilian codes of GPS (L1-CA and L2C), but Compass signals have somewhat greater power. The notation of Compass signals used in this page follows the naming of the frequency bands and agrees with the notation used in the American literature on the subject, but the notation used by the Chinese seems to be different.[citation needed]

There has also been an experimentalS bandbroadcast called "Bs" at 2492.028 MHz,[55]following similar experiments on BeiDou-1.[61]

Predecessors

edit

BeiDou-1

edit
Coverage polygon of BeiDou-1

BeiDou-1 was an experimental regional navigation system, which consisted of four satellites (three working satellites and one backup satellite). The satellites themselves were based on the ChineseDFH-3geostationary communications satellite and had a launch weight of 1,000 kg each.[62]

Unlike the AmericanGPS,Russian GLONASS, and EuropeanGalileosystems, which usemedium Earth orbitsatellites, BeiDou-1 used satellites ingeostationary orbit.This means that the system does not require a large constellation of satellites, but it also limits the coverage to areas on Earth where the satellites are visible.[28]The area that can be serviced is from longitude 70° E to 140° E and from latitude 5° N to 55° N. The frequency of the system is 2,491.75 MHz.[31]

Completion

edit

The first satellite, BeiDou-1A, was launched on 31 October 2000. The second satellite, BeiDou-1B, was successfully launched on 21 December 2000. The last operational satellite of the constellation, BeiDou-1C, was launched on 25 May 2003.[28]

Position calculation

edit

In 2007, the officialXinhua News Agencyreported that the resolution of the BeiDou system was as high as 0.5 metre.[63]With the existing user terminals it appears that the calibrated accuracy is 20 m (100 m, uncalibrated).[64]

Terminals

edit

In 2008, a BeiDou-1 ground terminal cost aroundCN¥20,000 (US$2,929), almost 10 times the price of a contemporary GPS terminal.[65]The price of the terminals was explained as being due to the cost of imported microchips.[66]At the China High-Tech Fair ELEXCON of November 2009 inShenzhen,a BeiDou terminal priced atCN¥3,000 was presented.[67]

Applications

edit
  • Over 1000 BeiDou-1 terminals were used after the2008 Sichuan earthquake,providing information from the disaster area.[68]
  • As of October 2009, all Chinese border guards inYunnanwere equipped with BeiDou-1 devices.[69]

Sun Jiadong,the chief designer of the navigation system, said in 2010 that "Many organizations have been using our system for a while, and they like it very much".[70]

Decommissioning

edit

BeiDou-1 was decommissioned at the end of 2012, after the BeiDou-2 system became operational.

BeiDou-2

edit

Coverage polygon of BeiDou-2 in 2012
Frequency allocation ofGPS,Galileo,and COMPASS; the light red color of E1 band indicates that the transmission in this band has not yet been detected.

BeiDou-2 (formerly known as COMPASS)[71]is not an extension to the older BeiDou-1, but rather supersedes it outright. The new system is a constellation of 35 satellites, which include 5 geostationary orbit satellites for backward compatibility with BeiDou-1, and 30 non-geostationary satellites (27 inmedium Earth orbitand 3 in inclinedgeosynchronous orbit),[72]that offer complete coverage of the globe.

The ranging signals are based on theCDMAprinciple and have complex structure typical ofGalileoor modernizedGPS.Similar to the otherglobal navigation satellite systems(GNSSs), there are two levels of positioning service: open (public) and restricted (military). The public service is available globally to general users. When all the currently planned GNSSs are deployed, users of multi-constellation receivers will benefit from a total over 100 satellites, which will significantly improve all aspects of positioning, especially availability of the signals in so-calledurban canyons.[73]The general designer of the COMPASS navigation system isSun Jiadong,who is also the general designer of its predecessor, the original BeiDou navigation system.[citation needed]All BeiDou satellites are equipped with laserretroreflectorarrays forsatellite laser ranging[74]and the verification of the orbit quality.[75][76]

Accuracy

edit

There are two levels of service provided – a free service to civilians and licensed service to theChinese governmentand military.[35][77][78]The free civilian service has a 10-metre location-tracking accuracy, synchronizes clocks with an accuracy of 10 nanoseconds, and measures speeds to within 0.2 m/s. The restricted military service has a location accuracy of 10 cm,[79]can be used for communication, and will supply information about the system status to the user.[citation needed]In 2019, the International GNSS Service started providing precise orbits of BeiDou satellites in experimental products.[74]

To date, the military service has been granted only to thePeople's Liberation Armyand to thePakistan Armed Forces.[80][81][82]

Frequencies

edit

Frequencies for COMPASS are allocated in four bands: E1, E2, E5B, and E6; they overlap with Galileo. The fact of overlapping could be convenient from the point of view of the receiver design, but on the other hand raises the issues of system interference, especially within E1 and E2 bands, which are allocated for Galileo's publicly regulated service.[83]However, underInternational Telecommunication Union(ITU) policies, the first nation to start broadcasting in a specific frequency will have priority to that frequency, and any subsequent users will be required to obtain permission prior to using that frequency, and otherwise ensure that their broadcasts do not interfere with the original nation's broadcasts. As of 2009, it appeared that Chinese COMPASS satellites would start transmitting in the E1, E2, E5B, and E6 bands before Europe's Galileo satellites and thus have primary rights to these frequency ranges.[84]

Compass-M1

edit

Compass-M1 is an experimental satellite launched for signal testing and validation and for the frequency filing on 14 April 2007. The role of Compass-M1 for Compass is similar to the role of theGIOVEsatellites for the Galileo system. The orbit of Compass-M1 is nearly circular, has an altitude of 21,150 km and an inclination of 55.5°.[citation needed]

The investigation of the transmitted signals started immediately after the launch of Compass-M1 on 14 April 2007. Soon after in June 2007, engineers atCNESreported the spectrum and structure of the signals.[85]A month later, researchers fromStanford Universityreported the complete decoding of the "I" signals components.[86][87]The knowledge of the codes allowed a group of engineers atSeptentrioto build the COMPASS receiver[88]and report tracking and multipath characteristics of the "I" signals on E2 and E5B.[89]

Operation

edit
Ground trackof BeiDou-M5 (2012-050A)

In December 2011, the system went into operation on a trial basis.[90]It started providing navigation, positioning and timing data to China and the neighbouring area for free from 27 December 2011. During this trial run, Compass offered positioning accuracy to within 25 metre and the precision improved as more satellites were launched. Upon the system's official launch, it pledged to offer general users positioning information accurate to the nearest 10 m, measure speeds within 0.2 metre per second, and provide signals for clock synchronisation accurate to 0.02 microseconds.[91]

The BeiDou-2 system began offering services for the Asia-Pacific region in December 2012.[17]At this time, the system could provide positioning data between longitude 55° E to 180° E and from latitude 55° S to 55° N.[92]

The new-generation BeiDou satellites support short message service.[48]

Completion

edit

In December 2011,Xinhuastated that "[t]he basic structure of the BeiDou system has now been established, and engineers are now conducting comprehensive system test and evaluation. The system will provide test-run services of positioning, navigation and time for China and the neighboring areas before the end of this year, according to the authorities".[93]The system became operational in the China region that same month.[16]The global navigation system should be finished by 2020.[94]

As of December 2012, 16 satellites for BeiDou-2 had been launched, with 14 in service. As of December 2017, 150 million Chinese smartphones (20% of the market) were equipped to utilize BeiDou.[95]

Constellations

edit
Summary of satellites, as of 19 May 2023
Block Launch
period
Satellite launches Currently in orbit
and healthy
Success Failure Planned
1 2000–2006 4 0 0 0
2 2007–2019 20 0 0 15
3 2015–present 36 0 0 31
Total 60 0 0 46

The regional BeiDou-1 system was decommissioned at the end of 2012.[citation needed]

The first satellite of the second-generation system, Compass-M1 was launched in 2007. It was followed by further nine satellites during 2009–2011, achieving functional regional coverage. A total of 16 satellites were launched during this phase.[citation needed]

In 2015, the system began its transition towards global coverage with the first launch of a new-generation of satellites,[48]and the 17th one within the new system. On 25 July 2015, the 18th and 19th satellites were successfully launched from theXichang Satellite Launch Center,marking the first time for China to launch two satellites at once on top of aLong March 3B/Expedition 1carrier rocket.The Expedition-1 is an independentupper stagecapable of delivering one or more spacecraft into different orbits. On 29 September 2015, the 20th satellite was launched, carrying ahydrogen maserfor the first time within the system.[96]

In 2016, the 21st, 22nd and 23rd satellites were launched fromXichang Satellite Launch Center,[97]the last two of which entered into service on 5 August and 30 November, respectively.[98][99]

Orbital period: 12 hours and 53 minutes (every 13 revolutions, done in 7 sidereal days,a satellite passes over the same location).[100]

Animation of BeiDou-3
Around the Earth
Around the Earth – polar view
Earth fixed frame– equatorial view, front
Earth fixed frame– equatorial view, side
Earth·I1·I2·I3·G1·G2·G3

Prohibitions

edit

In 2018, Taiwan'sNational Communications Commissionannounced that it would be illegal to use BeiDou products in Taiwan without its approval.[101]

See also

edit

References

edit
  1. ^May 27, Merryl Azriel on; Space, 2013 in; Relations, International (27 May 2013)."US Department of Defense Reports on China's Space Capabilities".Space Safety Magazine.Archivedfrom the original on 7 September 2016.Retrieved1 August2015.{{cite web}}:CS1 maint: numeric names: authors list (link)
  2. ^"China puts final satellite for Beidou network into orbit -state media".Financialpost.Financial Post.Archivedfrom the original on 25 June 2020.Retrieved22 June2020.
  3. ^"Bắc đấu vệ tinh phát xạ nhất lãm biểu".Bắc đấu vệ tinh đạo hàng hệ thống.Archivedfrom the original on 19 November 2018.Retrieved19 November2018.
  4. ^"Bắc đấu đạo hàng hệ thống".www.cnsa.gov.cn.Archivedfrom the original on 4 November 2023.Retrieved4 November2023.
  5. ^Xiong, Jing; Han, Fei (1 January 2020)."Positioning performance analysis on combined GPS/BDS precise point positioning".Geodesy and Geodynamics.11(1): 78–83.Bibcode:2020G&G....11...78X.doi:10.1016/j.geog.2019.11.001.ISSN1674-9847.S2CID214436136.
  6. ^"The Application Service Architecture of BeiDou Navigation Satellite System"(PDF).China Satellite Navigation Office.
  7. ^"China's Rival to GPS Navigation Carries Big Risks".Voice of America.8 July 2020.Archivedfrom the original on 12 April 2024.Retrieved6 October2024.
  8. ^Kumar, Pavan; Srivastava, Prashant K.; Tiwari, Prasoon; Mall, R.K. (2021), "Application of GPS and GNSS technology in geosciences",GPS and GNSS Technology in Geosciences,Elsevier, pp. 415–427,doi:10.1016/b978-0-12-818617-6.00018-4,ISBN978-0-12-818617-6
  9. ^"Trung quốc bắc đấu đạo hàng vệ tinh tái thứ tiến nhập mật tập phát xạ kỳ".Trung quốc tân văn xã. 31 March 2015.Archivedfrom the original on 11 July 2017.Retrieved16 June2017.
  10. ^PTI, K. J. M. Varma (27 December 2018)."China's BeiDou navigation satellite, rival to US GPS, starts global services".livemint.com.Archivedfrom the original on 27 December 2018.Retrieved27 December2018.
  11. ^"The BDS-3 Preliminary System Is Completed to Provide Global Services".news.dwnews.com.Archivedfrom the original on 27 December 2018.Retrieved27 December2018.
  12. ^"China puts final satellite for Beidou network into orbit – state media".Reuters.23 June 2020. Archived fromthe originalon 28 October 2020.Retrieved23 June2020.
  13. ^""Sổ" thuyết bắc đấu cổn bắc đấu cứu cánh phát liễu đa thiếu khỏa vệ tinh? _ tân văn _ ương thị võng (cctv.com) ".m.news.cctv.com.Archivedfrom the original on 4 November 2023.Retrieved4 November2023.
  14. ^"Directions 2017: BeiDou's road to global service".GPS World.6 December 2016.Archivedfrom the original on 27 May 2017.Retrieved8 May2017.
  15. ^"20 niên ma nhất kiếm —— bắc đấu đạo hàng hệ thống đích phát triển lịch trình -- trung quốc sổ tự khoa kỹ quán".China Digital Science and Technology Museum.Archivedfrom the original on 22 October 2022.Retrieved4 November2023.
  16. ^ab"China GPS rival Beidou starts offering navigation data".BBC. 27 December 2011.Archivedfrom the original on 3 February 2012.Retrieved20 June2018.
  17. ^ab"China's Beidou GPS-substitute opens to public in Asia".BBC. 27 December 2012.Archivedfrom the original on 27 December 2012.Retrieved27 December2012.
  18. ^Parzyan, Anahit (2023). "China's Digital Silk Road: Empowering Capabilities for Digital Leadership in Eurasia".China and Eurasian Powers in a Multipolar World Order 2.0: Security, Diplomacy, Economy and Cyberspace.Mher Sahakyan. New York:Routledge.ISBN978-1-003-35258-7.OCLC1353290533.
  19. ^"Sky's the limit for Beidou's clients[1]- Chinadaily.com.cn".chinadaily.com.cn.Archivedfrom the original on 1 March 2017.Retrieved18 November2015.
  20. ^"China's answer to GPS poised to create US$156 billion industry".South China Morning Post.27 May 2021.Archivedfrom the original on 26 October 2021.Retrieved26 October2021.
  21. ^"China's Beidou navigation system to serve $156 billion home market by 2025".Reuters.26 May 2021.Archivedfrom the original on 26 October 2021.Retrieved26 October2021.
  22. ^"English Name of BeiDou".Archivedfrom the original on 18 October 2015.Retrieved31 May2015.
  23. ^Atkins, William (5 February 2007)."Chinese BeiDou navigation satellite launched from Long March 3A rocket".iTWire.com.Archivedfrom the original on 4 December 2012.Retrieved19 May2010.
  24. ^"̽ bắc đấu ký —— tham bí trung quốc bắc đấu vệ tinh đạo hàng định vị hệ thống".focus.news.163.com.Archived fromthe originalon 10 June 2015.Retrieved3 October2011.
  25. ^"GPS and the World's First" Space War "".Scientific American.Archivedfrom the original on 31 January 2023.Retrieved10 February2023.
  26. ^"'Unforgettable humiliation' led to development of GPS equivalent ".12 November 2009.Archivedfrom the original on 7 August 2020.Retrieved27 August2020.
  27. ^"The construction of BeiDou navigation system steps into important stage," Three Steps "development guideline clear and certain"(in Chinese). China National Space Administration. 19 May 2010. Archived fromthe originalon 27 January 2012.Retrieved19 May2010.
  28. ^abc"Comparable with American and Russian in terms of performance, BeiDou-1 navigates for China"(in Chinese). China National Space Administration. 30 May 2003. Archived fromthe originalon 26 February 2012.Retrieved19 May2010.
  29. ^abMarks, Paul (8 November 2006)."China's satellite navigation plans threaten Galileo".New Scientist.Archivedfrom the original on 24 April 2015.Retrieved9 November2006.
  30. ^"China puts new navigation satellite into orbit".Gov.cn. 3 February 2007. Archived fromthe originalon 2 February 2012.Retrieved20 May2010.
  31. ^ab"BeiDou 1 Experimental Satellite Navigation System".SinoDefence.com. 24 September 2008. Archived fromthe originalon 27 March 2010.Retrieved20 May2010.
  32. ^"60-day works in space – Story of reparation of the BeiDou satellite"(in Chinese).Sohu.18 April 2007.Archivedfrom the original on 8 December 2014.Retrieved23 May2010.
  33. ^"Compass due Next Year".Magazine article.Asian Surveying and Mapping. 4 May 2009. Archived fromthe originalon 19 May 2009.Retrieved5 May2009.
  34. ^ab"China successfully launched the third BeiDou satellite"(in Chinese). Sohu. 17 January 2010.Archivedfrom the original on 5 March 2012.Retrieved19 May2010.
  35. ^ab"China sends Beidou navigation satellite to orbit".Spaceflight Now. 2 June 2010.Archivedfrom the original on 5 June 2010.Retrieved4 June2010.
  36. ^"China successfully launches fifth satellite for its own global navigation network".Xinhua.1 August 2010. Archived fromthe originalon 3 August 2010.Retrieved1 August2010.
  37. ^"China launches 6th satellite for indigenous global navigation, positioning network".gov.cn. 1 November 2010. Archived fromthe originalon 31 December 2010.Retrieved21 November2010.
  38. ^"Beidou Launch Completes Regional Nav System".GPS World. 6 December 2010. Archived fromthe originalon 12 March 2012.Retrieved23 December2011.
  39. ^"China joins EU's satellite network".Business News.BBC News. 19 September 2003.Archivedfrom the original on 7 January 2007.Retrieved9 November2006.
  40. ^"First contracts of the Galileo project signed, China is to invest 200 million Euro"(in Chinese).Xinhua.29 July 2005. Archived fromthe originalon 11 February 2010.Retrieved26 May2010.
  41. ^China Galileo Industries (CGI)
  42. ^"About us".China Galileo Industries. Archived fromthe originalon 7 July 2011.Retrieved26 May2010.
  43. ^"Eleven projects within the China-EU Galileo project have been signed and are carrying out"(in Chinese). Xinhua. 13 April 2006. Archived fromthe originalon 19 July 2011.Retrieved26 May2010.
  44. ^"SOLAS amendments to make IGF Code mandatory approved by Maritime Safety Committee".Maritime Safety Committee (MSC), 94th session, 17–21 November 2014.International Maritime Organization.26 November 2014.Archivedfrom the original on 7 April 2015.Retrieved7 April2015.
  45. ^Feng, Bruce (4 December 2014)."A Step Forward for Beidou, China's Satellite Navigation System".The New York Times.Archivedfrom the original on 14 April 2015.Retrieved7 April2015.
  46. ^"Chinese Beidou Navigation Satellite System officially into Global Radio Navigation System".BeiDou. 1 December 2014.Archivedfrom the original on 14 April 2015.Retrieved7 April2015.
  47. ^Barbosa, Rui C. (30 March 2015)."Long March 3C in secretive launch with new Upper Stage".NASASpaceFlight.com.Archivedfrom the original on 2 April 2015.Retrieved7 April2015.
  48. ^abc"China successfully launched the first New-Generation Beidou Navigation Satellite".BeiDou. 1 April 2015.Archivedfrom the original on 5 April 2015.Retrieved7 April2015.
  49. ^Clark, Stephen."Beidou navigation satellite successfully launched by China – Spaceflight Now".Archivedfrom the original on 23 April 2019.Retrieved23 April2019.
  50. ^"China launches final satellite in GPS-like Beidou system".phys.org.Archivedfrom the original on 24 June 2020.Retrieved24 June2020.
  51. ^abcBaar, Jemima (1 March 2024)."BeiDou And Strategic Advancements in PRC Space Navigation".Jamestown Foundation.Archivedfrom the original on 6 October 2024.Retrieved1 March2024.
  52. ^abAoyama, Rumi (3 July 2022)."China's dichotomous BeiDou strategy: led by the party for national deployment, driven by the market for global reach".Journal of Contemporary East Asia Studies.11(2): 282–299.doi:10.1080/24761028.2023.2178271.ISSN2476-1028.
  53. ^"China, Russia sign new satnav deal to strengthen position as GPS challengers".South China Morning Post.5 February 2022.Archivedfrom the original on 31 March 2023.Retrieved1 March2024.
  54. ^Allen, Chair, PNTAB, Adm (USCG, ret.) Thad (27 January 2023)."T: Summary Report of the 27th National Space-Based PNT Advisory Board Meeting held 16-17 November 2022"(PDF).www.gps.gov/.Archived(PDF)from the original on 6 October 2024.Retrieved4 September2024.{{cite web}}:CS1 maint: multiple names: authors list (link)
  55. ^abcUpdate on the BeiDou Satellite Navigation SystemArchived23 October 2018 at theWayback Machine.12th ICG Meeting. Jia-Qing Ma, China Satellite Navigation Office.
  56. ^"APPLICATIONS-Transport".en.beidou.gov.cn.Archivedfrom the original on 23 June 2020.Retrieved23 June2020.
  57. ^Howell, Elizabeth (23 June 2020)."China launches final Beidou satellite to complete GPS-like navigation system".Space.com.Archivedfrom the original on 23 June 2020.Retrieved23 June2020.
  58. ^BeiDou satellite statusArchived11 August 2023 at theWayback Machine-- shows status of navigation, PPP, and SBAS services
  59. ^"APPLICATIONS-Transport".en.beidou.gov.cn.Archivedfrom the original on 23 October 2018.Retrieved22 October2018.
  60. ^"European radio navigation plan (ERNP)".Archivedfrom the original on 24 October 2018.Retrieved23 October2018.
  61. ^Tần, bằng tiêu (15 May 2013)."S tần đoạn tín hào đích nghiên cứu".Đệ tứ giới trung quốc vệ tinh đạo hàng học thuật niên hội.Archived fromthe originalon 5 May 2021.Retrieved16 November2020.
  62. ^Goebel, Greg (1 September 2008)."International Navigation Satellite Systems".vectorsite.net.Archivedfrom the original on 1 October 2015.Retrieved6 April2007.
  63. ^"BeiDou navigation system first goes to public, with resolution 0.5 metre"(in Chinese).Phoenix Television.18 July 2007. Archived fromthe originalon 27 February 2009.Retrieved19 May2010.
  64. ^"BeiDou Products".BDStar Navigation. Archived fromthe originalon 5 January 2009.
  65. ^"BeiDou-1 commercial controversy: 10 times the price of GPS terminal"(in Chinese).NetEase.28 June 2008. Archived fromthe originalon 21 July 2011.Retrieved23 May2010.
  66. ^"Why is China's Beidou terminal so expensive?".PRLog.31 August 2008.Archivedfrom the original on 15 October 2015.Retrieved29 May2010.
  67. ^"3000Yuan BeiDou Satellite Positioning System terminal solution was presented at ELEXCON"(in Chinese). eetrend.com. 17 November 2009. Archived fromthe originalon 13 May 2010.Retrieved29 May2010.
  68. ^"Hongkong report: BeiDou-1 played an important role in rescuing, 7 nations providing free satellite data"(in Chinese). Sohu. 20 May 2008.Archivedfrom the original on 8 December 2014.Retrieved23 May2010.
  69. ^"BeiDou-1 has equipped Yunnan troops, leading to command reform"(in Chinese). Sohu. 14 October 2009.Archivedfrom the original on 8 December 2014.Retrieved23 May2010.
  70. ^"China To Set Up Independent Satellite Navigation System".SpaceDaily.com. 24 May 2010.Archivedfrom the original on 27 May 2010.Retrieved4 June2010.
  71. ^"The Logo Image of BeiDou Navigation Satellite System Issued".BeiDou.gov.cn. 27 December 2012. Archived fromthe originalon 23 September 2015.Retrieved1 January2013.
  72. ^"China Launches Another Compass GEO Navigation Satellite".Inside GNSS.2 June 2010. Archived fromthe originalon 11 June 2010.Retrieved4 June2010.
  73. ^G. Gibbons. China GNSS 101.Compass in the rearview mirror.Inside GNSS,January/February 2008, pp. 62–63[1]Archived2 March 2012 at theWayback Machine
  74. ^abSośnica, Krzysztof; Zajdel, Radosław; Bury, Grzegorz; Bosy, Jarosław; Moore, Michael; Masoumi, Salim (2020)."Quality assessment of experimental IGS multi-GNSS combined orbits".GPS Solutions.24(54).Bibcode:2020GPSS...24...54S.doi:10.1007/s10291-020-0965-5.
  75. ^Bury, Grzegorz; Sośnica, Krzysztof; Zajdel, Radosław (2019)."Multi-GNSS orbit determination using satellite laser ranging".Journal of Geodesy.93(12): 2447–2463.Bibcode:2019JGeod..93.2447B.doi:10.1007/s00190-018-1143-1.
  76. ^Kazmierski, Kamil; Zajdel, Radoslaw; Sośnica, Krzysztof (2020)."Evolution of orbit and clock quality for real-time multi-GNSS solutions".GPS Solutions.24(111).Bibcode:2020GPSS...24..111K.doi:10.1007/s10291-020-01026-6.
  77. ^"Introduction of the BeiDou Navigation Satellite System"(in Chinese). BeiDou.gov.cn. 15 January 2010. Archived fromthe originalon 18 March 2010.Retrieved4 June2010.
  78. ^Dotson, John (15 July 2020)."The Beidou Satellite Network and the" Space Silk Road "in Eurasia".Jamestown.Archivedfrom the original on 16 July 2020.Retrieved16 July2020.
  79. ^"Precise orbit determination of Beidou Satellites with precise positioning".Science China.2012. Archived fromthe originalon 17 June 2013.Retrieved26 June2013.
  80. ^"GPS rival Beidou will cover Asia Pac by end of the year".The Register.17 May 2012.Archivedfrom the original on 28 July 2013.Retrieved26 June2013.
  81. ^"US Department of Defense Reports on China's Space Capabilities".Space Safety Magazine.27 May 2013.Archivedfrom the original on 15 November 2013.Retrieved26 June2013.
  82. ^"China will make BeiDou Navigation Satellite System available to global users by 2020".Next Big Future.28 June 2016.Archivedfrom the original on 3 February 2017.Retrieved3 February2017.
  83. ^Galileo, Compass on collision course,GPS World, April 2008, p. 27
  84. ^Levin, Dan (23 March 2009)."Chinese square off with Europe in space".The New York Times.China.Archivedfrom the original on 1 May 2011.Retrieved30 December2011.
  85. ^T. Grelier, J. Dantepal, A. Delatour, A. Ghion, L. Ries,Initial observation and analysis of Compass MEO satellite signals,Inside GNSS,May/June 2007[2]Archived2 March 2012 at theWayback Machine
  86. ^G. Xingxin Gao, A. Chen, S. Lo, D. De Lorenzo, P. Enge, GNSS over China.The Compass MEO satellite codes.Inside GNSS,July/August 2007, pp. 36–43[3]Archived2 March 2012 at theWayback Machine
  87. ^G. Xingxin Gao, A. Chen, Sh. Lo, D. De Lorenzo and Per Enge,Compass-M1 broadcast codes and their application to acquisition and tracking,Proceedings of the ION National Technical Meeting 2008, San Diego, California, January 2008."Compass-M1 Broadcast Codes and Their Application to Acquisition and Tracking"(PDF).Archived fromthe original(PDF)on 20 October 2012.Retrieved8 February2016.
  88. ^W. De Wilde, F. Boon, J.-M. Sleewaegen, F. Wilms,More Compass points. Tracking China’s MEO satellite on a hardware receiver.Inside GNSS,July/August 2007, pp. 44–48.[4]Archived8 February 2012 at theWayback Machine
  89. ^A. Simsky, D. Mertens, Wim De Wilde,Field Experience with Compass-M1 E2 and E5B Signals.Proceedings of ENC GNSS 2008, Toulouse, 22–25 April 2008.
  90. ^"Satellite navigation system launched".China Daily.28 December 2010.Archivedfrom the original on 24 December 2013.Retrieved29 December2011.
  91. ^"China GPS rival Beidou starts offering navigation data".BBC.27 December 2010.Archivedfrom the original on 3 February 2012.Retrieved29 December2011.
  92. ^"5+5+4" giá dạng đích tinh tọa kết cấu hữu thập ma đặc điểm?(in Chinese). WWW.BEIDOU.GOV.CN. 26 December 2012. Archived fromthe originalon 24 March 2013.Retrieved3 January2013.
  93. ^"China launches 10th satellite for independent navigation system".Xinhua. 2 December 2011. Archived fromthe originalon 6 January 2012.Retrieved23 December2011.
  94. ^"BeiDou navigation system covers Asia-Pacific region till 2012"(in Chinese). Xinhua News Agency. 3 March 2010. Archived fromthe originalon 9 March 2010.Retrieved19 May2010.
  95. ^"A digital Silk Road".Archivedfrom the original on 4 December 2017.Retrieved3 December2017.
  96. ^"Ngã quốc thành công phát xạ đệ tứ khỏa tân nhất đại bắc đấu đạo hàng vệ tinh".beidou.gov.cn. 30 September 2015.Archivedfrom the original on 25 December 2016.Retrieved24 December2016.
  97. ^"Ngã quốc thành công phát xạ đệ ngũ khỏa tân nhất đại bắc đấu đạo hàng vệ tinh".beidou.gov.cn. 1 February 2016.Archivedfrom the original on 10 May 2017.Retrieved24 December2016.
  98. ^"Đệ 22 khỏa bắc đấu đạo hàng vệ tinh chính thức nhập võng đề cung phục vụ".beidou.gov.cn. 5 August 2016.Archivedfrom the original on 25 December 2016.Retrieved24 December2016.
  99. ^"Đệ 23 khỏa bắc đấu đạo hàng vệ tinh nhập võng công tác".beidou.gov.cn. 30 November 2016.Archivedfrom the original on 25 December 2016.Retrieved24 December2016.
  100. ^Aswal, Dinesh K.; Yadav, Sanjay; Takatsuji, Toshiyuki; Rachakonda, Prem; Kumar, Harish (23 August 2023).Handbook of Metrology and Applications.Springer Nature. p. 512.ISBN978-981-99-2074-7.Archivedfrom the original on 30 October 2023.Retrieved30 November2023.
  101. ^"Drug smuggling fishermen used Chinese sat nav to avoid detection".Focus Taiwan.14 November 2023.Archivedfrom the original on 14 November 2023.Retrieved14 November2023.Since 2018, the NCC has banned the use of BeiDou Navigation Satellite System products without approval, and asked related agencies to confiscate such equipment from those found illegally importing, using or selling it.
edit