TheCisuralianis the firstseries/epochof thePermian.The Cisuralian was preceded by thePennsylvanianand followed by theGuadalupian.The Cisuralian Epoch is named after the western slopes of theUral Mountainsin Russia andKazakhstanand dates between 298.9 ± 0.15 – 272.3 ± 0.5Ma.[4]

Cisuralian
298.9 ± 0.15 – 273.01 ± 0.14Ma
A map of Earth 285 million years ago during the Cisuralian Epoch, Artinskian Age
Chronology
Etymology
Name formalityFormal
Synonym(s)Early/Lower Permian
Usage information
Celestial bodyEarth
Regional usageGlobal (ICS)
Time scale(s) usedICS Time Scale
Definition
Chronological unitEpoch
Stratigraphic unitSeries
Time span formalityFormal
Lower boundary definitionFADof theconodontStreptognathodus isolatuswithin themorphotypeStreptognathodus wabaunsensischronocline
Lower boundary GSSPAidaralash,Ural Mountains, Kazakhstan
50°14′45″N57°53′29″E/ 50.2458°N 57.8914°E/50.2458; 57.8914
Lower GSSP ratified1996[2]
Upper boundary definitionFAD of the ConodontJinogondolella nanginkensis
Upper boundary GSSPStratotype Canyon,Guadalupe Mountains,Texas, United States
31°52′36″N104°52′36″W/ 31.8767°N 104.8768°W/31.8767; -104.8768
Upper GSSP ratified2001[3]

In the regional stratigraphy of southwestern North America, the Cisuralian encompasses two series: theWolfcampian(Asselian to mid-Artinskian) andLeonardian(mid-Artinskian to Kungurian).[5][6][7]

The series saw the appearance ofbeetlesandfliesand was a relatively stable warming period of about 21 million years.

Name and background

edit

The Cisuralian is the first series or epoch of the Permian.[8]The Cisuralian was preceded by the last Pennsylvanian epoch (Gzhelian) and is followed by the PermianGuadalupianEpoch.

The name "Cisuralian" was proposed in 1982,[9]and approved by the International Subcommission on Permian Stratigraphy in 1996.[10] The Cisuralian Epoch is named after the western slopes of the Ural Mountains in Russia and Kazakhstan.[11][12][13]

Limestones on the edge ofRussian Platformand make up theIshimbayoil fields. These oil fields were vital to the Soviet Union during WW2 when the Germans controlled the oil fields to the west.[11]

The International Chronostratigraphic Chart (v2018/07)[8]provides a numerical age of 298.9 ± 0.15 – 272.3 ± 0.5 Ma.[14]

The base of the Cisuralian series and the Permiansystemis defined as the place in the stratigraphic record where fossils of the conodontStreptognathodusisolatusfirst appear. The global reference profile for the base (theGSSP or golden spike) is located in the valley of the Aidaralash River, nearAqtöbein the Ural Mountains of Kazakhstan.[15]

Geography

edit
The world at the start of the Cisuralian

Gondwanacollided withLaurussiaand created theAlleghenian orogenyin present-day North America.[11]In northwestern Europe, theHercynian orogenycontinued.[11]This created the large supercontinent,Pangea,by the middle of the early Permian, which was to have an impact on the climate.[11]

Climate

edit

At the start of the Permian, theLate Palaeozoic Ice Age,which began in theCarboniferous,was at its peak.Glaciersreceded over the course of the late Cisuralian as the Earth's climate gradually warmed,[16]particularly during the Artinskian Warming Event,[17]drying the continent's interiors.[18][19][20]The pan-tropical belt of Pangaea experienced particularly significant aridification during this epoch.[21][22][23]

Biodiversity

edit

The swampy fringes were mostly ferns, seed ferns, andlycophytes.The series saw the appearance of beetles and flies.[11]

The coal swamps from theCarboniferousdeclined[24]but the herbivores,DiadectesandEdaphosauruspersisted until the end of this series, approximately.[25][26][27][12]The dry interior had small insectivores.Caseidsand prototherapsidTetraceratopsmade their appearance.[12]The marine life was probably more diverse than modern times as the climate warmed.[11]Unusual sharks such asHelicoprioncontinued in this series.

Early Permian terrestrial faunas were dominated bypelycosaurs(a paraphyletic group of earlysynapsids),diadectids,andtemnospondyls,[28][29]The pelycosaurs appeared during theLate Carboniferous,and reached their apex in the Cisuralian remaining the dominant land animals for some 40 million years.[12][30]A few continued into theCapitanian.They were succeeded by thetherapsids.[12]

Subdivisions

edit

Global

edit
  • Asselianstage (298.9 ± 0.15 – 294.6 ± 0.8 Ma)
  • Sakmarianstage (294.6 ± 0.8 – 290.1 ± 0.7 Ma)
  • Artinskianstage (290.1 ± 0.7 – 283.5 ± 0.7 Ma)
  • Kungurianstage (283.5 ± 0.7 – 272.3 ± 0.5 Ma)

Regional

edit
  • New Zealand
    • Telfordian (289 – 278 Ma)
    • Mangapirian (278 – 270.6 Ma)

References

edit
  1. ^"International Chronostratigraphic Chart"(PDF).International Commission on Stratigraphy.September 2023.RetrievedNovember 10,2024.
  2. ^Davydov, Vladimir; Glenister, Brian; Spinosa, Claude; Ritter, Scott; Chernykh, V.; Wardlaw, B.; Snyder, W. (March 1998)."Proposal of Aidaralash as Global Stratotype Section and Point (GSSP) for base of the Permian System"(PDF).Episodes.21:11–18.doi:10.18814/epiiugs/1998/v21i1/003.Retrieved7 December2020.
  3. ^"GSSP for Roadian Stage".International Commission on Stratigraphy.Retrieved13 December2020.
  4. ^Gradstein, Felix M.; Ogg, James G.; Smith, Alan G. (2004).A Geologic Time Scale 2004.Cambridge University Press.ISBN9780521786737.
  5. ^Ross, C. A.; Ross, June R. P. (1995). "Permian Sequence Stratigraphy".The Permian of Northern Pangea.pp. 98–123.doi:10.1007/978-3-642-78593-1_7.ISBN978-3-642-78595-5.
  6. ^"Permian: Stratigraphy".UC Museum of Paleontology.University of California Berkeley.Retrieved17 June2021.
  7. ^Henderson, C.M.; Shen, S.Z.; Gradstein, F.M.; Agterberg, F.P. (2020),"The Permian Period",Geologic Time Scale 2020,Elsevier, pp. 875–902,doi:10.1016/b978-0-12-824360-2.00024-3,ISBN978-0-12-824360-2,retrieved2023-09-12
  8. ^abInternational Commission on Stratigraphy."Chart".Retrieved10 July2018.
  9. ^Gradstein, Felix M.; Ogg, James G.; Smith, Alan G. (2004).A geologic time scale 2004.Cambridge University Press. p. 250.ISBN978-0-521-78673-7.
  10. ^Ganelin, V.G.; Goman'kov, A.V.; Grunt, T.A.; Durante, M.V. (January 1997)."On the revised stratigraphic scale for the Permian System adopted at the Second Guadalupian Symposium, alpine, Texas, USA, April 1996".Stratigraphy and Geological Correlation.5(2): 126–130.
  11. ^abcdefgRoss, June R.P.;Ross, Charles A. (16 October 2018)."Permian Period".Encyclopædia Britannica.Retrieved18 April2019.
  12. ^abcdeKazlev, M. Alan (4 May 2002)."The Cisuralian Epoch".palaeos.com.Retrieved18 April2019.
  13. ^Allaby, Michael (2015).A Dictionary of Geology and Earth Sciences(4th ed.). Oxford University Press.doi:10.1093/acref/9780199653065.001.0001.ISBN9780199653065.
  14. ^International Commission on Stratigraphy."GSSPs".Retrieved10 July2018.
  15. ^Davydov, V.I.; Glenister, B.F.; Spinosa, C.; Ritter, S.M.; Chernykh, V.V.; Wardlaw, B.R. and Snyder, W.S.;1998:Proposal of Aidaralash as Global Stratotype Section and Point (GSSP) for base of the Permian System,Episodes21(1): pp 11–18.
  16. ^Scotese, Christopher R.; Song, Haijun; Mills, Benjamin J. W.; van der Meer, Douwe G. (April 2021)."Phanerozoic paleotemperatures: The earth's changing climate during the last 540 million years".Earth-Science Reviews.215:103503.Bibcode:2021ESRv..21503503S.doi:10.1016/j.earscirev.2021.103503.ISSN0012-8252.S2CID233579194.Archived fromthe originalon 8 January 2021.Retrieved18 March2023.
  17. ^Marchetti, Lorenzo; Forte, Giuseppa; Kustatscher, Evelyn; DiMichele, William A.; Lucas, Spencer G.; Roghi, Guido; Juncal, Manuel A.; Hartkopf-Fröder, Christoph; Krainer, Karl; Morelli, Corrado; Ronchi, Ausonio (March 2022)."The Artinskian Warming Event: an Euramerican change in climate and the terrestrial biota during the early Permian".Earth-Science Reviews.226:103922.Bibcode:2022ESRv..22603922M.doi:10.1016/j.earscirev.2022.103922.S2CID245892961.Retrieved30 October2022.
  18. ^Michel, Lauren A.; Tabor, Neil J.; Montañez, Isabel P.; Schmitz, Mark D.; Davydov, Vladimir (15 July 2015)."Chronostratigraphy and Paleoclimatology of the Lodève Basin, France: Evidence for a pan-tropical aridification event across the Carboniferous–Permian boundary".Palaeogeography, Palaeoclimatology, Palaeoecology.430:118–131.Bibcode:2015PPP...430..118M.doi:10.1016/j.palaeo.2015.03.020.
  19. ^Palaeos: Life Through Deep Time > The Permian PeriodArchived2013-06-29 at theWayback MachineAccessed 1 April 2013.
  20. ^Grossman, Ethan L.; Yancey, Thomas E.; Jones, Thomas E.; Bruckschen, Peter; Chuvashov, Boris; Mazzullo, S. J.; Mii, Horng-sheng (24 October 2008)."Glaciation, aridification, and carbon sequestration in the Permo-Carboniferous: The isotopic record from low latitudes".Palaeogeography, Palaeoclimatology, Palaeoecology.286(3–4): 222–233.Bibcode:2008PPP...268..222G.doi:10.1016/j.palaeo.2008.03.053.Retrieved30 October2022.
  21. ^Forte, Giuseppa; Kustatscher, Evelyn; Roghi, Guido; Preto, Nereo (15 April 2018)."The Permian (Kungurian, Cisuralian) palaeoenvironment and palaeoclimate of the Tregiovo Basin, Italy: Palaeobotanical, palynological and geochemical investigations".Palaeogeography, Palaeoclimatology, Palaeoecology.495:186–204.Bibcode:2018PPP...495..186F.doi:10.1016/j.palaeo.2018.01.012.Retrieved22 December2022.
  22. ^Mujal, Eudald; Fortuny, Josep; Marmi, Josep; Dinarès-Turell, Jaume; Bolet, Arnau; Oms, Oriol (January 2018)."Aridification across the Carboniferous–Permian transition in central equatorial Pangea: The Catalan Pyrenean succession (NE Iberian Peninsula)".Sedimentary Geology.363:48–68.Bibcode:2018SedG..363...48M.doi:10.1016/j.sedgeo.2017.11.005.S2CID133713470.Retrieved22 December2022.
  23. ^Matamales-Andreu, Rafal; Mujal, Eudald; Dinarès-Turell, Jaume; Kustatcher, Evelyn; Roghi, Guido; Oms, Oriol; Galobart, Àngel; Fortuny, Josep (May 2022)."Early–middle Permian ecosystems of equatorial Pangaea: Integrated multi-stratigraphic and palaeontological review of the Permian of Mallorca (Balearic Islands, western Mediterranean)".Earth-Science Reviews.228:103948.Bibcode:2022ESRv..22803948M.doi:10.1016/j.earscirev.2022.103948.S2CID246438404.Retrieved3 January2023.
  24. ^Sahney, Sarda; Benton, Michael J.; Falcon-Lang, Howard J. (December 2010)."Rainforest collapse triggered Carboniferous tetrapod diversification in Euramerica".Geology.38(12): 1079–1082.Bibcode:2010Geo....38.1079S.doi:10.1130/g31182.1.ISSN1943-2682.
  25. ^Brocklehurst, Neil; Day, Michael O.; Rubidge, Bruce S.; Fröbisch, Jörg (12 April 2017)."Olson's Extinction and the latitudinal biodiversity gradient of tetrapods in the Permian".Proceedings of the Royal Society B: Biological Sciences.284(1852): 20170231.doi:10.1098/rspb.2017.0231.ISSN0962-8452.PMC5394676.PMID28381616.
  26. ^Didier, Gilles; Laurin, Michel (June 2024)."Testing extinction events and temporal shifts in diversification and fossilization rates through the skyline Fossilized Birth-Death (FBD) model: The example of some mid-Permian synapsid extinctions".Cladistics.40(3): 282–306.doi:10.1111/cla.12577.ISSN0748-3007.
  27. ^Didier, Gilles; Laurin, Michel (9 December 2021)."Distributions of extinction times from fossil ages and tree topologies: the example of mid-Permian synapsid extinctions".PeerJ.9:e12577.doi:10.7717/peerj.12577.ISSN2167-8359.PMC8667717.PMID34966586.
  28. ^Huttenlocker, A. K., and E. Rega. 2012. The Paleobiology and Bone Microstructure of Pelycosaurian-grade Synapsids. Pp. 90–119 in A. Chinsamy (ed.) Forerunners of Mammals: Radiation, Histology, Biology. Indiana University Press.
  29. ^"NAPC Abstracts, Sto – Tw".berkeley.edu.
  30. ^Brocklehurst, Neil; Kammerer, Christian F.; Fröbisch, Jörg (23 June 2013)."The early evolution of synapsids, and the influence of sampling on their fossil record".Paleobiology.39(3): 470–490.Bibcode:2013Pbio...39..470B.doi:10.1666/12049.S2CID83738138.Retrieved2 April2023.