Anevent camera,also known as aneuromorphic camera,[1]silicon retina[2]ordynamic vision sensor,[3]is animaging sensorthat responds to local changes in brightness. Event cameras do not capture images using ashutterasconventional (frame) camerasdo. Instead, each pixel inside an event camera operates independently and asynchronously, reporting changes in brightness as they occur, and staying silent otherwise.
Functional description
editEvent camera pixels independently respond to changes in brightness as they occur.[4]Each pixel stores a reference brightness level, and continuously compares it to the current brightness level. If the difference in brightness exceeds a threshold, that pixel resets its reference level and generates an event: a discrete packet that contains the pixel address and timestamp. Events may also contain the polarity (increase or decrease) of a brightness change, or an instantaneous measurement of the illumination level,[5]depending on the specific sensor model. Thus, event cameras output an asynchronous stream of events triggered by changes in scene illumination.
Event cameras typically report timestamps with a microsecond temporal resolution, 120 dB dynamic range, and lessunder/overexposureandmotion blur[4][6]than frame cameras. This allows them to track object and camera movement (optical flow) more accurately. They yield grey-scale information. Initially (2014), resolution was limited to 100 pixels. A later entry reached 640x480 resolution in 2019. Because individual pixels fire independently, event cameras appear suitable for integration with asynchronous computing architectures such asneuromorphic computing.Pixel independence allows these cameras to cope with scenes with brightly and dimly lit regions without having to average across them.[7]It is important to note that while the camera reports events with microsecond resolution, the actual temporal resolution (or, alternatively, the bandwidth for sensing) is in the order of tens of microseconds to a few miliseconds - depending on signal contrast, lighting conditions and sensor design.[8]
Sensor | Dynamic
range (dB) |
Equivalent
framerate (fps) |
Spatial
resolution (MP) |
Power
consumption (mW) |
---|---|---|---|---|
Human eye | 30–40 | 200-300* | - | 10[9] |
High-end DSLR camera (Nikon D850) | 44.6[10] | 120 | 2–8 | - |
Ultrahigh-speed camera (Phantom v2640)[11] | 64 | 12,500 | 0.3–4 | - |
Event camera[12] | 120 | 50,000 - 300,000** | 0.1–1 | 30 |
* Indicates human perception temporal resolution, including cognitive processing time. **Refers to change recognition rates, and varies according to signal and sensor model.
Types
editTemporal contrast sensors (such as DVS[4](Dynamic Vision Sensor), or sDVS[13](sensitive-DVS)) produce events that indicate polarity (increase or decrease in brightness), while temporal image sensors[5]indicate the instantaneousintensitywith each event. The DAVIS[14](Dynamic and Active-pixel Vision Sensor) contains a global shutteractive pixel sensor(APS) in addition to the dynamic vision sensor (DVS) that shares the same photosensor array.Thus, it has the ability to produce image frames alongside events. Many event cameras additionally carry aninertial measurement unit(IMU).
Retinomorphic sensors
editAnother class of event sensors are so-calledretinomorphicsensors. While the term retinomorphic has been used to describe event sensors generally,[15][16]in 2020 it was adopted as the name for a specific sensor design based on a resistor and photosensitivecapacitorin series.[17]These capacitors are distinct from photocapacitors, which are used to storesolar energy,[18]and are instead designed to change capacitance under illumination. They charge/discharge slightly when the capacitance is changed, but otherwise remain in equilibrium. When a photosensitive capacitor is placed in series with aresistor,and an input voltage is applied across the circuit, the result is a sensor that outputs a voltage when the light intensity changes, but otherwise does not.
Unlike other event sensors (typically a photodiode and some other circuit elements), these sensors produce the signal inherently. They can hence be considered a single device that produces the same result as a small circuit in other event cameras. Retinomorphic sensors have to-date only been studied in a research environment.[19][20][21][22]
Algorithms
editImage reconstruction
editImage reconstruction from events has the potential to create images and video with high dynamic range, high temporal resolution and reduced motion blur. Image reconstruction can be achieved using temporal smoothing, e.g.high-passor complementary filter.[23]Alternative methods includeoptimization[24]and gradient estimation[25]followed byPoisson integration.
Spatial convolutions
editThe concept of spatial event-driven convolution was postulated in 1999[26](before the DVS), but later generalized during EU project CAVIAR[27](during which the DVS was invented) by projecting event-by-event an arbitraryconvolution kernelaround the event coordinate in an array of integrate-and-fire pixels.[28]Extension to multi-kernel event-driven convolutions[29]allows for event-driven deepconvolutional neural networks.[30]
Motion detection and tracking
editSegmentationanddetection of moving objectsviewed by an event camera can seem to be a trivial task, as it is done by the sensor on-chip. However, these tasks are difficult, because events carry little information[31]and do not contain useful visual features like texture and color.[32]These tasks become further challenging given a moving camera,[31]because events are triggered everywhere on the image plane, produced by moving objects and the static scene (whose apparent motion is induced by the camera’s ego-motion). Some of the recent approaches to solving this problem include the incorporation of motion-compensation models[33][34]and traditionalclustering algorithms.[35][36][32][37]
Potential applications
editPotential applications include most tasks classically fitting conventional camera, but with emphasis on machine vision tasks (such as object recognition, autonomous vehicles, and robotics.[21]). The US military is considering infrared and other event cameras because of their lower power consumption and reduced heat generation.[7]
Considering the advantages the event camera possesses, compared to conventional image sensors, it is considered fitting for applications requiring low power consumption, low latency, and difficulty to stabilize camera line of sight. These applications include the aforementioned autonomous systems, but also space imaging, security, defense and industrial monitoring. It is notable that while research into color sensing with event cameras is underway,[38]it is not yet convenient for use with applications requiring color sensing.
See also
editReferences
edit- ^Li, Hongmin; Liu, Hanchao; Ji, Xiangyang; Li, Guoqi; Shi, Luping (2017)."CIFAR10-DVS: An Event-Stream Dataset for Object Classification".Frontiers in Neuroscience.11:309.doi:10.3389/fnins.2017.00309.ISSN1662-453X.PMC5447775.PMID28611582.
- ^Sarmadi, Hamid; Muñoz-Salinas, Rafael; Olivares-Mendez, Miguel A.; Medina-Carnicer, Rafael (2021)."Detection of Binary Square Fiducial Markers Using an Event Camera".IEEE Access.9:27813–27826.arXiv:2012.06516.Bibcode:2021IEEEA...927813S.doi:10.1109/ACCESS.2021.3058423.ISSN2169-3536.S2CID228375825.
- ^Liu, Min; Delbruck, Tobi (May 2017). "Block-matching optical flow for dynamic vision sensors: Algorithm and FPGA implementation".2017 IEEE International Symposium on Circuits and Systems (ISCAS).pp. 1–4.arXiv:1706.05415.doi:10.1109/ISCAS.2017.8050295.ISBN978-1-4673-6853-7.S2CID2283149.Retrieved27 June2021.
- ^abcLichtsteiner, P.; Posch, C.; Delbruck, T. (February 2008)."A 128×128 120 dB 15μs Latency Asynchronous Temporal Contrast Vision Sensor"(PDF).IEEE Journal of Solid-State Circuits.43(2): 566–576.Bibcode:2008IJSSC..43..566L.doi:10.1109/JSSC.2007.914337.ISSN0018-9200.S2CID6119048.Archived fromthe original(PDF)on 2021-05-03.Retrieved2019-12-06.
- ^abPosch, C.; Matolin, D.; Wohlgenannt, R. (January 2011). "A QVGA 143 dB Dynamic Range Frame-Free PWM Image Sensor With Lossless Pixel-Level Video Compression and Time-Domain CDS".IEEE Journal of Solid-State Circuits.46(1): 259–275.Bibcode:2011IJSSC..46..259P.doi:10.1109/JSSC.2010.2085952.ISSN0018-9200.S2CID21317717.
- ^Longinotti, Luca."Product Specifications".iniVation.Archived fromthe originalon 2019-04-02.Retrieved2019-04-21.
- ^ab"A new type of camera".The Economist.2022-01-29.ISSN0013-0613.Retrieved2022-02-02.
- ^Hu, Yuhuang; Liu, Shih-Chii; Delbruck, Tobi (2021-04-19). "v2e: From Video Frames to Realistic DVS Events".arXiv:2006.07722[cs.CV].
- ^Skorka, Orit (2011-07-01). "Toward a digital camera to rival the human eye".Journal of Electronic Imaging.20(3): 033009–033009–18.Bibcode:2011JEI....20c3009S.doi:10.1117/1.3611015.ISSN1017-9909.S2CID9340738.
- ^DxO."Nikon D850: Tests and Reviews | DxOMark".www.dxomark.com.Retrieved2019-04-22.
- ^"Phantom v2640".www.phantomhighspeed.com.Retrieved2019-04-22.
- ^Longinotti, Luca."Product Specifications".iniVation.Archived fromthe originalon 2019-04-02.Retrieved2019-04-22.
- ^Serrano-Gotarredona, T.; Linares-Barranco, B. (March 2013)."A 128x128 1.5% Contrast Sensitivity 0.9% FPN 3μs Latency 4mW Asynchronous Frame-Free Dynamic Vision Sensor Using Transimpedance Amplifiers"(PDF).IEEE Journal of Solid-State Circuits.48(3): 827–838.Bibcode:2013IJSSC..48..827S.doi:10.1109/JSSC.2012.2230553.ISSN0018-9200.S2CID6686013.
- ^Brandli, C.; Berner, R.; Yang, M.; Liu, S.; Delbruck, T. (October 2014)."A 240 × 180 130 dB 3 µs Latency Global Shutter Spatiotemporal Vision Sensor".IEEE Journal of Solid-State Circuits.49(10): 2333–2341.Bibcode:2014IJSSC..49.2333B.doi:10.1109/JSSC.2014.2342715.ISSN0018-9200.
- ^Boahen, K. (1996)."Retinomorphic vision systems".Proceedings of Fifth International Conference on Microelectronics for Neural Networks.pp. 2–14.doi:10.1109/MNNFS.1996.493766.ISBN0-8186-7373-7.S2CID62609792.
- ^Posch, Christoph; Serrano-Gotarredona, Teresa; Linares-Barranco, Bernabe; Delbruck, Tobi (2014)."Retinomorphic Event-Based Vision Sensors: Bioinspired Cameras With Spiking Output".Proceedings of the IEEE.102(10): 1470–1484.doi:10.1109/JPROC.2014.2346153.hdl:11441/102353.ISSN1558-2256.S2CID11513955.
- ^Trujillo Herrera, Cinthya; Labram, John G. (2020-12-07)."A perovskite retinomorphic sensor".Applied Physics Letters.117(23): 233501.Bibcode:2020ApPhL.117w3501T.doi:10.1063/5.0030097.ISSN0003-6951.S2CID230546095.
- ^Miyasaka, Tsutomu; Murakami, Takurou N. (2004-10-25)."The photocapacitor: An efficient self-charging capacitor for direct storage of solar energy".Applied Physics Letters.85(17): 3932–3934.Bibcode:2004ApPhL..85.3932M.doi:10.1063/1.1810630.ISSN0003-6951.
- ^"Perovskite sensor sees more like the human eye".Physics World.2021-01-18.Retrieved2021-10-28.
- ^"Simple Eyelike Sensors Could Make AI Systems More Efficient".Inside Science.8 December 2020.Retrieved2021-10-28.
- ^abHambling, David."AI vision could be improved with sensors that mimic human eyes".New Scientist.Retrieved2021-10-28.
- ^"An eye for an AI: Optic device mimics human retina".BBC Science Focus Magazine.Retrieved2021-10-28.
- ^abScheerlinck, Cedric; Barnes, Nick; Mahony, Robert (2019). "Continuous-Time Intensity Estimation Using Event Cameras".Computer Vision – ACCV 2018.Lecture Notes in Computer Science. Vol. 11365. Springer International Publishing. pp. 308–324.arXiv:1811.00386.doi:10.1007/978-3-030-20873-8_20.ISBN9783030208738.S2CID53182986.
- ^Pan, Liyuan; Scheerlinck, Cedric; Yu, Xin; Hartley, Richard; Liu, Miaomiao; Dai, Yuchao (June 2019). "Bringing a Blurry Frame Alive at High Frame-Rate With an Event Camera".2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Long Beach, CA, USA: IEEE. pp. 6813–6822.arXiv:1811.10180.doi:10.1109/CVPR.2019.00698.ISBN978-1-7281-3293-8.S2CID53749928.
- ^Scheerlinck, Cedric; Barnes, Nick; Mahony, Robert (April 2019). "Asynchronous Spatial Image Convolutions for Event Cameras".IEEE Robotics and Automation Letters.4(2): 816–822.arXiv:1812.00438.doi:10.1109/LRA.2019.2893427.ISSN2377-3766.S2CID59619729.
- ^Serrano-Gotarredona, T.; Andreou, A.; Linares-Barranco, B. (Sep 1999). "AER Image Filtering Architecture for Vision Processing Systems".IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications.46(9): 1064–1071.doi:10.1109/81.788808.hdl:11441/76405.ISSN1057-7122.
- ^Serrano-Gotarredona, R.; et, al (Sep 2009). "CAVIAR: A 45k-Neuron, 5M-Synapse, 12G-connects/sec AER Hardware Sensory-Processing-Learning-Actuating System for High Speed Visual Object Recognition and Tracking".IEEE Transactions on Neural Networks.20(9): 1417–1438.doi:10.1109/TNN.2009.2023653.hdl:10261/86527.ISSN1045-9227.PMID19635693.S2CID6537174.
- ^Serrano-Gotarredona, R.; Serrano-Gotarredona, T.; Acosta-Jimenez, A.; Linares-Barranco, B. (Dec 2006). "A Neuromorphic Cortical-Layer Microchip for Spike-Based Event Processing Vision Systems".IEEE Transactions on Circuits and Systems I: Regular Papers.53(12): 2548–2566.doi:10.1109/TCSI.2006.883843.hdl:10261/7823.ISSN1549-8328.S2CID8287877.
- ^Camuñas-Mesa, L.; et, al (Feb 2012). "An Event-Driven Multi-Kernel Convolution Processor Module for Event-Driven Vision Sensors".IEEE Journal of Solid-State Circuits.47(2): 504–517.Bibcode:2012IJSSC..47..504C.doi:10.1109/JSSC.2011.2167409.hdl:11441/93004.ISSN0018-9200.S2CID23238741.
- ^Pérez-Carrasco, J.A.; Zhao, B.; Serrano, C.; Acha, B.; Serrano-Gotarredona, T.; Chen, S.; Linares-Barranco, B. (November 2013)."Mapping from Frame-Driven to Frame-Free Event-Driven Vision Systems by Low-Rate Rate-Coding and Coincidence Processing. Application to Feed-Forward ConvNets".IEEE Transactions on Pattern Analysis and Machine Intelligence.35(11): 2706–2719.doi:10.1109/TPAMI.2013.71.hdl:11441/79657.ISSN0162-8828.PMID24051730.S2CID170040.
- ^abGallego, Guillermo; Delbruck, Tobi; Orchard, Garrick Michael; Bartolozzi, Chiara; Taba, Brian; Censi, Andrea; Leutenegger, Stefan; Davison, Andrew; Conradt, Jorg; Daniilidis, Kostas; Scaramuzza, Davide (2020)."Event-based Vision: A Survey".IEEE Transactions on Pattern Analysis and Machine Intelligence.PP(1): 154–180.arXiv:1904.08405.doi:10.1109/TPAMI.2020.3008413.ISSN1939-3539.PMID32750812.S2CID234740723.
- ^abMondal, Anindya; R, Shashant; Giraldo, Jhony H.; Bouwmans, Thierry; Chowdhury, Ananda S. (2021)."Moving Object Detection for Event-based Vision using Graph Spectral Clustering".2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW).pp. 876–884.arXiv:2109.14979.doi:10.1109/ICCVW54120.2021.00103.ISBN978-1-6654-0191-3.S2CID238227007– via IEEE Xplore.
- ^Mitrokhin, Anton; Fermuller, Cornelia; Parameshwara, Chethan; Aloimonos, Yiannis (October 2018)."Event-Based Moving Object Detection and Tracking".2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).Madrid: IEEE. pp. 1–9.arXiv:1803.04523.doi:10.1109/IROS.2018.8593805.ISBN978-1-5386-8094-0.S2CID3845250.
- ^Stoffregen, Timo; Gallego, Guillermo; Drummond, Tom; Kleeman, Lindsay; Scaramuzza, Davide (2019)."Event-Based Motion Segmentation by Motion Compensation".2019 IEEE/CVF International Conference on Computer Vision (ICCV).pp. 7244–7253.arXiv:1904.01293.doi:10.1109/ICCV.2019.00734.ISBN978-1-7281-4803-8.S2CID91183976.
- ^Piątkowska, Ewa; Belbachir, Ahmed Nabil; Schraml, Stephan; Gelautz, Margrit (June 2012)."Spatiotemporal multiple persons tracking using Dynamic Vision Sensor".2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.pp. 35–40.doi:10.1109/CVPRW.2012.6238892.ISBN978-1-4673-1612-5.S2CID310741.
- ^Chen, Guang; Cao, Hu; Aafaque, Muhammad; Chen, Jieneng; Ye, Canbo; Röhrbein, Florian; Conradt, Jörg; Chen, Kai; Bing, Zhenshan; Liu, Xingbo; Hinz, Gereon (2018-12-02)."Neuromorphic Vision Based Multivehicle Detection and Tracking for Intelligent Transportation System".Journal of Advanced Transportation.2018:e4815383.doi:10.1155/2018/4815383.ISSN0197-6729.
- ^Mondal, Anindya; Das, Mayukhmali (2021-11-08). "Moving Object Detection for Event-based Vision using k-means Clustering".2021 IEEE 8th Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON).pp. 1–6.arXiv:2109.01879.doi:10.1109/UPCON52273.2021.9667636.ISBN978-1-6654-0962-9.S2CID237420620.
- ^"CED: Color Event Camera Dataset".rpg.ifi.uzh.ch.Retrieved2024-04-08.