Aforestis anecosystemcharacterized by a densecommunityoftrees.[1]Hundreds of definitions of forest are used throughout the world, incorporating factors such as tree density, tree height, land use, legal standing, and ecological function.[2][3][4]The United Nations'Food and Agriculture Organization(FAO) defines a forest as, "Land spanning more than 0.5 hectares with trees higher than 5 meters and acanopycover of more than 10 percent, or trees able to reach these thresholdsin situ.It does not include land that is predominantly under agricultural or urban use. "[5]Using this definition,Global Forest Resources Assessment2020(FRA 2020) found that forests covered 4.06 billion hectares (10.0 billion acres; 40.6 million square kilometres; 15.7 million square miles), or approximately 31 percent of the world's land area in 2020.[6]

TheAmazon rainforestalongside theSolimões River,a tropical rainforest. These forests are the most biodiverse and productive ecosystems in the world.

Forests are the largest terrestrialecosystemsof Earth by area, and are found around the globe.[7]45 percent of forest land is in thetropical latitudes.The next largest share of forests are found insubarctic climates,followed bytemperate,andsubtropicalzones.[8]

Forests account for 75% of thegross primary productionof the Earth'sbiosphere,and contain 80% of the Earth's plantbiomass.Net primary productionis estimated at 21.9gigatonnesof biomass per year fortropical forests,8.1 fortemperate forests,and 2.6 forboreal forests.[7]

Forests form distinctly differentbiomesat different latitudes and elevations, and with different precipitation andevapotranspirationrates.[9]These biomes include boreal forests in subarctic climates,tropical moist forestsandtropical dry forestsaround theEquator,andtemperate forestsat themiddle latitudes.Forests form in areas of the Earth with high rainfall, while drier conditions produce a transition tosavanna.However, in areas with intermediate rainfall levels, forest transitions to savanna rapidly when the percentage of land that is covered by trees drops below 40 to 45 percent.[10]Research conducted in theAmazon rainforestshows that trees can alter rainfall rates across a region, releasing water from their leaves in anticipation of seasonal rains to trigger the wet season early. Because of this, seasonal rainfall in the Amazon begins two to three months earlier than the climate would otherwise allow.[11][12]Deforestationin the Amazon and anthropogenicclimate changehold the potential to interfere with this process, causing the forest to pass a threshold where it transitions into savanna.[13]

Deforestationthreatens many forest ecosystems. Deforestation occurs when humans remove trees from a forested area by cutting or burning, either to harvesttimberor to make way for farming. Most deforestation today occurs in tropical forests. The vast majority of this deforestation is because of the production of four commodities:wood,beef,soy,andpalm oil.[14]Over the past 2,000 years, the area of land covered by forest inEuropehas been reduced from 80% to 34%. Large areas of forest have also been cleared inChinaand in the easternUnited States,[15]in which only 0.1% of land was left undisturbed.[16]Almost half of Earth's forest area (49 percent) is relatively intact, while 9 percent is found in fragments with little or no connectivity. Tropical rainforests and boreal coniferous forests are the least fragmented, whereas subtropical dry forests and temperate oceanic forests are among the most fragmented. Roughly 80 percent of the world's forest area is found in patches larger than 1 million hectares (2.5 million acres). The remaining 20 percent is located in more than 34 million patches around the world – the vast majority less than 1,000 hectares (2,500 acres) in size.[8]

Human society and forests can affect one another positively or negatively.[17]Forests provideecosystem servicesto humans and serve as tourist attractions. Forests can also affect people's health. Human activities, including unsustainable use of forest resources, can negatively affect forest ecosystems.[18]

Definitions

Forest in theScottish Highlands

Although the wordforestis commonly used, there is no universally recognised precise definition, with more than 800 definitions of forest used around the world.[4]Although a forest is usually defined by the presence of trees, under many definitions an area completely lacking trees may still be considered a forest if it grew trees in the past, will grow trees in the future,[19]or was legally designated as a forest regardless of vegetation type.[20][21]

There are three broad categories of definitions of forest in use: administrative,land use,and land cover.[20]Administrative definitions are legal designations, and may not reflect the type of vegetation that grows upon the land; an area can be legally designated "forest" even if no trees grow on it.[20]Land-use definitions are based on the primary purpose the land is used for. Under a land-use definition, any area used primarily for harvesting timber, including areas that have been cleared by harvesting, disease, fire, or for the construction of roads and infrastructure, are still defined as forests, even if they contain no trees. Land-cover definitions define forests based upon the density of trees, area of tree canopy cover, or area of the land occupied by the cross-section of tree trunks (basal area) meeting a particular threshold.[20]This type of definition depends upon the presence of trees sufficient to meet the threshold, or at least of immature trees that are expected to meet the threshold once they mature.[20]

Under land-cover definitions, there is considerable variation on where the cutoff points are between a forest,woodland,andsavanna.Under some definitions, to be considered a forest requires very high levels of tree canopy cover, from 60% to 100%,[22]which excludes woodlands and savannas, which have a lowercanopy cover.Other definitions consider savannas to be a type of forest, and include all areas with tree canopies over 10%.[19]

Some areas covered with trees are legally defined as agricultural areas, for exampleNorway spruceplantations, under Austrian forest law, when the trees are being grown as Christmas trees and are below a certain height.

Etymology

Since the 13th century, theNiepołomice ForestinPolandhas had special use and protection. In this view from space, different coloration can indicate different functions.[23]

The wordforestderives from theOld Frenchforest(alsoforès), denoting "forest, vast expanse covered by trees";forestwas first introduced into English as the word denoting wild land set aside for hunting[24]without necessarily having trees on the land.[25]Possibly a borrowing, probably viaFrankishorOld High German,of theMedieval Latinforesta,denoting "open wood",Carolingianscribes first usedforestain the capitularies ofCharlemagne,specifically to denote the royal hunting grounds of the king. The word was not endemic to the Romance languages, e.g., native words forforestin the Romance languages derived from theLatinsilva,which denoted "forest" and "wood(land)" (cf.the Englishsylvaandsylvan;the Italian, Spanish, and Portugueseselva;the Romaniansilvă;the Old Frenchselve). Cognates of forest in Romance languages—e.g., the Italianforesta,Spanish and Portuguesefloresta,etc.—are all ultimately derivations of the French word.

A forest nearVinitsa,North Macedonia

The precise origin of Medieval Latinforestais obscure. Some authorities claim the word derives from theLate Latinphraseforestam silvam,denoting "the outer wood"; others claim the word is a latinisation of the Frankish *forhist,denoting "forest, wooded country", and was assimilated toforestam silvam,pursuant to the common practice of Frankish scribes. The Old High Germanforstdenoting "forest";Middle Low Germanvorstdenoting "forest";Old Englishfyrhþdenoting "forest, woodland, game preserve, hunting ground" (Englishfrith); andOld Norsefýri,denoting "coniferous forest"; all of which derive from theProto-Germanic*furhísa-,*furhíþija-,denoting "a fir-wood,coniferousforest ", from theProto-Indo-European*perkwu-,denoting "aconiferousor mountain forest, wooded height "all attest to the Frankish *forhist.

Uses offorestin English to denote any uninhabited and unenclosed area are presently considered archaic.[26]TheNorman rulers of Englandintroduced the word as a legal term, as seen in Latin texts such asMagna Carta,to denote uncultivated land that was legally designated for hunting by feudalnobility(seeRoyal Forest).[26][27]

These hunting forests did not necessarily contain any trees. Because that often included significant areas of woodland, "forest" eventually came to connote woodland in general, regardless of tree density.[citation needed]By the beginning of the fourteenth century, English texts used the word in all three of its senses: common, legal, and archaic.[26]Other English words used to denote "an area with a high density of trees" arefirth,frith,holt,weald,wold,wood,andwoodland.Unlikeforest,these are all derived from Old English and were not borrowed from another language. Some present classifications reservewoodlandfor denoting a locale with more open space between trees, and distinguish kinds of woodlands asopen forestsandclosed forests,premised on theircrown covers.[28]Finally,sylva(pluralsylvaeor, less classically,sylvas) is a peculiar English spelling of the Latinsilva,denoting a "woodland", and has precedent in English, including its plural forms. While its use as asynonymofforest,and as aLatinateword denoting a woodland, may be admitted; in a specific technical sense it is restricted to denoting thespeciesof trees that comprise the woodlands of a region, as in its sense in the subject ofsilviculture.[29]The resorting tosylvain English indicates more precisely the denotation that the use offorestintends.

Evolutionary history

The first known forests on Earth arose in theMiddle Devonian(approximately 390million years ago), with the evolution ofcladoxylopsidplants likeCalamophyton.[30]Appeared in theLate Devonian,Archaeopteriswas both tree-like and fern-like plant, growing to 20 metres (66 ft) in height or more.[31]It quickly spread throughout the world, from the equator to subpolar latitudes.[31]It is the first species known to cast shade due to its fronds and by forming soil from its roots.Archaeopteriswas deciduous, dropping its fronds onto the forest floor, the shade, soil, and forest duff from the dropped fronds creating the early forest.[31]The shed organic matter altered the freshwater environment, slowing its flow and providing food. This promoted freshwater fish.[31]

Ecology

Temperate rainforestin Tasmania'sHellyer Gorge

Forests account for 75% of thegross primary productivityof the Earth'sbiosphere,and contain 80% of the Earth's plant biomass.[7]Biomassper unit area is high compared to other vegetation communities. Much of this biomass occurs below ground in the root systems and as partially decomposed plantdetritus.The woody component of a forest containslignin,which is relatively slow todecomposecompared with other organic materials such ascelluloseor carbohydrate. The world's forests contain about 606 gigatonnes of living biomass (above- and below-ground) and 59 gigatonnes of dead wood. The total biomass has decreased slightly since 1990, but biomass per unit area has increased.[32]

Forest ecosystems broadly differ based onclimate;latitudes 10° north and south of theequatorare mostly covered intropical rainforest,and the latitudes between53°Nand67°Nhaveboreal forest.As a general rule, forests dominated byangiosperms(broadleaf forests) are more species-rich than those dominated bygymnosperms(conifer,montane,orneedleleaf forests), although exceptions exist. The trees that form the principal structural and defining component of a forest may be of a great variety of species (as intropical rainforestsandtemperate deciduous forests), or relatively few species over large areas (e.g.,taigaand aridmontaneconiferous forests). The biodiversity of forests also encompassesshrubs,herbaceous plants,mosses,ferns,lichens,fungi,and a variety ofanimals.

Trees rising up to 35 meters (115 ft) in height add a vertical dimension to the area of land that can support plant and animal species, opening up numerousecological nichesforarborealanimal species,epiphytes,and various species that thrive under the regulated microclimate created under the canopy.[33]Forests have intricate three-dimensional structures that increase in complexity with lower levels of disturbance and greater variety of tree species.[34]

The biodiversity of forests varies considerably according to factors such as forest type, geography, climate, and soils – in addition to human use.[35]Most forest habitats in temperate regions support relatively few animal and plant species, and species that tend to have large geographical distributions, while the montane forests of Africa, South America, Southeast Asia, and lowland forests of Australia, coastal Brazil, the Caribbean islands, Central America, and insular Southeast Asia have many species with small geographical distributions.[35]Areas with dense human populations and intense agricultural land use, such as Europe, parts of Bangladesh, China, India, and North America, are less intact in terms of their biodiversity.[35]Northern Africa, southern Australia, coastal Brazil, Madagascar, and South Africa are also identified as areas with striking losses in biodiversity intactness.[35]

Components

Even, denseold-growth standof beech trees (Fagus sylvatica) prepared to be regenerated by their saplings in theunderstory,in theBrusselspart of theSonian Forest.

A forest consists of many components that can be broadly divided into two categories: biotic (living) and abiotic (non-living). The living parts includetrees,shrubs,vines,grassesand other herbaceous (non-woody) plants,mosses,algae,fungi,insects,mammals,birds,reptiles,amphibians,and microorganisms living on the plants and animals and in the soil, connected bymycorrhizal networks.[36]

Layers

Spiny forest at Ifaty,Madagascar,featuring variousAdansonia(baobab) species,Alluaudia procera(Madagascar ocotillo) and other vegetation

The main layers of all forest types are theforest floor,the understory, and the canopy. The emergent layer, above the canopy, exists in tropical rainforests. Each layer has a different set of plants and animals, depending upon the availability of sunlight, moisture, and food.

  • TheForest flooris covered in dead plant material such as fallen leaves and decomposing logs, whichdetritivoresbreak down into new soil. The layer of decaying leaves that covers the soil is necessary for many insects to overwinter and for amphibians, birds, and other animals to shelter and forage for food.Leaf litteralso keeps the soil moist, stops erosion, and protects roots against extreme heat and cold.[37]Thefungalmyceliumthat helps form themycorrhizal networktransmits nutrients from decaying material to trees and other plants. Theforest floorsupports a variety of plants, ferns, grasses, and tree seedlings, as well as animals such asants,amphibians,spiders,andmillipedes.
  • Understoryis made up of bushes, shrubs, and young trees that are adapted to living in the shade of the canopy.
  • Canopyis formed by the mass of intertwined branches, twigs, and leaves of mature trees. The crowns of the dominant trees receive most of the sunlight. This is the most productive part of the trees, where maximum food is produced. The canopy forms a shady, protective "umbrella" over the rest of the forest.
  • Emergent layerexists in a tropical rain forest and is composed of a few scattered trees that tower over the canopy.[38]

In botany and countries like Germany and Poland, a different classification of forest vegetation is often used: tree, shrub, herb, and moss layers (seestratification (vegetation)).

Types

Proportion and distribution of global forest area by climatic domain, 2020[39]

Forests are classified differently and to different degrees of specificity. One such classification is in terms of thebiomesin which they exist, combined with leaf longevity of the dominant species (whether they areevergreenordeciduous). Another distinction is whether the forests are composed predominantly of broadleaf trees,coniferous(needle-leaved) trees, or mixed.

The number of trees in the world, according to a 2015 estimate, is 3 trillion, of which 1.4 trillion are in the tropics or sub-tropics, 0.6 trillion in the temperate zones, and 0.7 trillion in the coniferous boreal forests. The 2015 estimate is about eight times higher than previous estimates, and is based on tree densitiesmeasuredon over 400,000 plots. It remains subject to a wide margin of error, not least because the samples are mainly from Europe and North America.[40]

Forests can also be classified according to the amount of human alteration.Old-growth forestcontains mainly natural patterns of biodiversity in establishedseralpatterns, and they contain mainly species native to the region and habitat. In contrast,secondary forestis forest regrowing following timber harvest and may contain species originally from other regions or habitats.[41]

Different global forest classification systems have been proposed, but none has gained universal acceptance.[42]UNEP-WCMC's forest category classification system is a simplification of other, more complex systems (e.g.UNESCO's forest and woodland 'subformations'). This system divides the world's forests into 26 major types, which reflect climatic zones as well as the principal types of trees. These 26 major types can be reclassified into 6 broader categories: temperate needleleaf, temperate broadleaf and mixed, tropical moist, tropical dry, sparse trees and parkland, and forest plantations.[42]Each category is described in a separate section below.

Temperate needleleaf

Temperate needleleaf forests mostly occupy the higher latitudes of theNorthern Hemisphere,as well as some warm temperate areas, especially on nutrient-poor or otherwise unfavourablesoils.These forests are composed entirely, or nearly so, of coniferous species (Coniferophyta). In the Northern Hemisphere,pinesPinus,sprucesPicea,larchesLarix,firsAbies,Douglas firsPseudotsuga,and hemlocksTsugamake up the canopy; but other taxa are also important. In theSouthern Hemisphere,most coniferous trees (members ofAraucariaceaeandPodocarpaceae) occur mixed with broadleaf species, and are classed as broadleaf-and-mixed forests.[42]

Temperate broadleaf and mixed

Broadleaf forest inBhutan

Temperate broadleaf and mixed forestsinclude a substantial component of trees of theAnthophytagroup. They are generally characteristic of the warmer temperate latitudes, but extend to cool temperate ones, particularly in the southern hemisphere. They include such forest types as the mixed deciduous forests of the United States and their counterparts in China and Japan; the broadleaf evergreenrainforestsof Japan,Chile,andTasmania;thesclerophyllousforests of Australia, central Chile, theMediterranean,and California; and the southern beechNothofagusforests of Chile and New Zealand.[42]

Tropical moist

There are many different types oftropical moist forests,with lowland evergreen broad-leaftropical rainforests:for examplevárzeaandigapóforests and the terra firme forests of theAmazon Basin;thepeat swamp forests;dipterocarpforests ofSoutheast Asia;and thehigh forestsof theCongo Basin.Seasonal tropical forests,perhaps the best description for the colloquial term "jungle",typically range from the rainforest zone 10 degrees north or south of theequator,to theTropic of CancerandTropic of Capricorn.Forests located on mountains are also included in this category, divided largely into upper and lowermontaneformations, on the basis of the variation of physiognomy corresponding to changes in altitude.[43]

Tropical dry

Tropical dry forestsare characteristic of areas in the tropics affected by seasonal drought. The seasonality of rainfall is usually reflected in the deciduousness of the forest canopy, with most trees being leafless for several months of the year. Under some conditions, such as less fertile soils or less predictable drought regimes, the proportion of evergreen species increases and the forests are characterised as "sclerophyllous".Thorn forest,a dense forest of low stature with a high frequency of thorny or spiny species, is found where drought is prolonged, and especially where grazing animals are plentiful. On very poor soils, and especially where fire or herbivory are recurrent phenomena,savannasdevelop.[42]

Sparse trees and savanna

Sparse trees andsavannaare forests with sparse tree-canopycover. They occur principally in areas of transition from forested to non-forested landscapes. The two major zones in which theseecosystemsoccur are in theborealregion and in the seasonally dry tropics. At high latitudes, north of the main zone of boreal forestland, growing conditions are not adequate to maintain a continuously closedforest cover,so tree cover is both sparse and discontinuous. This vegetation is variously called opentaiga,openlichenwoodland, and forest tundra. A savanna is a mixedwoodlandgrasslandecosystemcharacterized by the trees being sufficiently widely spaced so that the canopy does not close. The open canopy allows sufficient light to reach the ground to support an unbrokenherbaceouslayer that consists primarily of grasses. Savannas maintain an open canopy despite a high tree density.[42]

Plantations

Forest plantations are generally intended for the production of timber andpulpwood.Commonly mono-specific, planted with even spacing between the trees, and intensively managed, these forests are generally important as habitat for nativebiodiversity.Some are managed in ways that enhance their biodiversity protection functions and can provide ecosystem services such as nutrient capital maintenance,watershedand soil structure protection and carbon storage.[41][42]

Area

Share of land that is covered by forest

The annual net loss of forest area has decreased since 1990, but the world is not on track to meet the target of the United Nations Strategic Plan for Forests to increase forest area by 3 percent by 2030.[35]

Share of forest area in total land area, top countries (2021)

Whiledeforestationis taking place in some areas, new forests are being established through natural expansion or deliberate efforts in other areas. As a result, the net loss of forest area is less than the rate of deforestation; and it, too, is decreasing: from 7.8 million hectares (19 million acres) per year in the 1990s to 4.7 million hectares (12 million acres) per year during 2010–2020.[35]In absolute terms, the global forest area decreased by 178 million hectares (440 million acres; 1,780,000 square kilometres; 690,000 square miles) between 1990 and 2020, which is an area about the size of Libya.[35]

Societal significance

Redwood tree in northern California redwood forest, where manyredwoodtrees are managed for preservation and longevity, rather than being harvested for wood production
Burned forestonThasos

Ecosystem services

Forests provide a diversity ofecosystem servicesincluding:

  • Convertingcarbon dioxideintooxygenand biomass. A full-grown tree produces about 100 kilograms (220 lb) of net oxygen per year.[44]
  • Acting as acarbon sink.Therefore, they are necessary tomitigate climate change.[45]
  • Aiding in regulatingclimate.For example, research from 2017 shows that forests induce rainfall. If the forest is cut, it can lead todrought,[46]and in the tropics tooccupational heat stressof outdoor workers.[47]
  • Purifyingwater.
  • Mitigating natural hazards such asfloods.
  • Serving as a genetic reserve.
  • Serving as a source oflumberand asrecreationalareas.
  • Serving as a source of woodlands and trees for millions of people dependent almost entirely on forests for subsistence for their essential fuelwood, food, and fodder needs.[48]

The main ecosystem services can be summarized in the next table:[49]

Main ecosystem services of the 3 main types of forest
Type of forest Carbon stored Biodiversity Other
PrimaryBoreal Forests 1,042 billion tonnes of carbon, more than currently found in the atmosphere, 2 times more than allhuman caused emissionssince the year 1870. Biodiversity services given by Canada forest alone are estimated as 703 billion dollars per year. Important for almost half of thebirdsin North America. Contain 60% of worldsurface freshwater.
PrimaryTemperate Forests 119 billion tonnes (like all CO2 emitted by humans in 2005–2017) Old growth foresthas very high biodiversity. Some species linkterrestrial ecosystemstomarine. Some trees can live 1,000 years providing many services to humans. Help to protect people fromfloodsanddroughts.
PrimaryTropical Forests 471 billion tonnes (more than all CO2 emissions from fossil fuel industry from the year 1750) Contain about two thirds of allspeciesof terrestrialanimalsandplants. Creates clouds,rainfall.

Some researchers state that forests do not only provide benefits, but can in certain cases also incur costs to humans.[50][51]Forests may impose an economic burden,[52][53]diminish the enjoyment of natural areas,[54]reduce the food-producing capacity of grazing land[55]and cultivated land,[56]reduce biodiversity,[57][58]reduce available water for humans and wildlife,[59][60]harbour dangerous or destructive wildlife,[50][61]and act as reservoirs of human and livestock disease.[62][63]

An important consideration regarding carbon sequestration is that forests can turn from a carbon sink to a carbon source if plant diversity, density or forest area decreases, as has been observed in different tropical forests[64][65][66]The typical tropical forest may become a carbon source by the 2060s.[67]An assessment of European forests found early signs of carbon sink saturation, after decades of increasing strength.[68]TheIntergovernmental Panel on Climate Change (IPCC)concluded that a combination of measures aimed at increasing forest carbon stocks, andsustainable timber offtake will generate the largest carbon sequestration benefit.[69]

Forest-dependent people

The term forest-dependent people is used to describe any of a wide variety of livelihoods that are dependent on access to forests, products harvested from forests, or ecosystem services provided by forests, including those of Indigenous peoples dependent on forests.[70]InIndia,approximately 22 percent of the population belongs to forest-dependent communities, which live in close proximity to forests and practiceagroforestryas a principal part of their livelihood.[71]People ofGhanawho rely ontimberandbushmeatharvested from forests and Indigenous peoples of the Amazon rainforest are also examples of forest-dependent people.[70]Though forest-dependence by more common definitions is statistically associated with poverty andrurallivelihoods, elements of forest-dependence exist in communities with a wide range of characteristics. Generally, richer households derive more cash value from forest resources, whereas among poorer households, forest resources are more important for home consumption and increase community resilience.[72]

Indigenous peoples

Forests are fundamental to the culture and livelihood of indigenous people groups that live in and depend on forests,[73]many of which have been removed from and denied access to the lands on which they lived as part of globalcolonialism.Indigenous lands contain 36% or more of intact forest worldwide, host more biodiversity, and experience less deforestation.[74][75][76]Indigenous activists have argued that degradation of forests and indigenous peoples' marginalization and land dispossession are interconnected.[77][78]Other concerns among indigenous peoples include lack of Indigenous involvement in forest management and loss of knowledge related for the forest ecosystem.[79]Since 2002, the amount of land that is legally owned by or designated for indigenous peoples has broadly increased, but land acquisition in lower-income countries by multinational corporations, often with little or no consultation of indigenous peoples, has also increased.[80]Research in the Amazon rainforest suggests that indigenous methods of agroforestry form reservoirs of biodiversity.[81]In the U.S. state ofWisconsin,forests managed by indigenous people have more plant diversity, fewer invasive species, higher tree regeneration rates, and higher volume of trees.[82]

Management

World production of selected forest products

Forest managementhas changed considerably over the last few centuries, with rapid changes from the 1980s onward, culminating in a practice now referred to assustainable forest management.Forest ecologists concentrate on forest patterns and processes, usually with the aim of elucidating cause-and-effect relationships.Foresterswho practice sustainable forest management focus on the integration of ecological, social, and economic values, often inconsultation with local communities and other stakeholders.

Priest Riverwinding through Whitetail Butte with lots offorestryto the east—these lot patterns have existed since the mid-19th century. The white patches reflect areas with younger, smaller trees, where winter snow cover shows up brightly to the astronauts. Dark green-brown squares are parcels

Humans have generally decreased the amount of forest worldwide. Anthropogenic factors that can affect forests include logging,urban sprawl,human-causedforest fires,acid rain,invasive species,and theslash and burnpractices of swidden agriculture orshifting cultivation.The loss and re-growth of forests lead to a distinction between two broad types of forest: primary orold-growth forestandsecondary forest.There are also many natural factors that can cause changes in forests over time, includingforest fires,insects,diseases,weather, competition between species, etc. In 1997, theWorld Resources Instituterecorded that only 20% of the world's original forests remained in large intact tracts of undisturbed forest.[83]More than 75% of these intact forests lie in three countries: the boreal forests of Russia and Canada, and the rainforest of Brazil.

According toFood and Agriculture Organization's (FAO)Global Forest Resources Assessment 2020,an estimated 420 million hectares (1.0 billion acres) of forest have been lost worldwide through deforestation since 1990, but the rate offorest losshas declined substantially. In the most recent five-year period (2015–2020), the annual rate of deforestation was estimated at 10 million hectares (25 million acres), down from 12 million hectares (30 million acres) annually in 2010–2015.[32]

The forest transition

The transition of a region from forest loss to net gain in forested land is referred to as the forest transition. This change occurs through a few main pathways, including increase in commercial tree plantations, adoption ofagroforestrytechniques by small farmers, or spontaneous regeneration when former agricultural land is abandoned. It can be motivated by the economic benefits of forests, the ecosystem services forests provide, or cultural changes where people increasingly appreciate forests for their spiritual, aesthetic, or otherwise intrinsic value.[84]According to theSpecial Report on Global Warming of 1.5 °Cof theIntergovernmental Panel on Climate Change,to avoid temperature rise by more than 1.5 degrees above pre-industrial levels, there will need to be an increase in global forest cover equal to the land area of Canada (10 million square kilometres (3.9 million square miles)) by 2050.[45]

China instituted a ban on logging, beginning in 1998, due to the erosion and flooding that it caused.[85]In addition, ambitious tree-planting programmes in countries such as China, India, the United States, and Vietnam – combined with natural expansion of forests in some regions – have added more than 7 million hectares (17 million acres) of new forests annually. As a result, the net loss of forest area was reduced to 5.2 million hectares (13 million acres) per year between 2000 and 2010, down from 8.3 million hectares (21 million acres) annually in the 1990s. In 2015, a study forNature Climate Changeshowed that the trend has recently been reversed, leading to an "overall gain" in global biomass and forests. This gain is due especially toreforestationin China and Russia.[86]New forests are not equivalent to old growth forests in terms of species diversity, resilience, and carbon capture. On 7 September 2015, the FAO released a new study stating that over the last 25 years the globaldeforestationrate has decreased by 50% due to improvedmanagement of forestsand greater government protection.[87][88]

Proportion of forest in protected areas, by region, 2020[32]

There is an estimated 726 million hectares (1.79 billion acres) of forest in protected areas worldwide. Of the six major world regions, South America has the highest share of forests in protected areas, at 31 percent. The area of such areas globally has increased by 191 million hectares (470 million acres) since 1990, but the rate of annual increase slowed in 2010–2020.[32]

Smaller areas ofwoodlandin cities may be managed asurban forestry,sometimes within public parks. These are often created for human benefits;Attention Restoration Theoryargues that spending time in nature reduces stress and improves health, whileforest schoolsandkindergartenshelp young people to develop social as well as scientific skills in forests. These typically need to be close to where the children live.

Canada

Garibaldi Provincial Park,British Columbia

Canada has about 4 million square kilometres (1.5 million square miles) of forest land. More than 90% of forest land is publicly owned and about 50% of the total forest area is allocated for harvesting. These allocated areas are managed using the principles of sustainable forest management, which include extensive consultation with local stakeholders. About eight percent of Canada's forest is legally protected from resource development.[89][90]Much more forest land—about 40 percent of the total forest land base—is subject to varying degrees of protection through processes such as integratedland use planningor defined management areas, such as certified forests.[90]

By December 2006, over 1.2 million square kilometres (460,000 square miles) of forest land in Canada (about half the global total) had been certified as being sustainably managed.[91]Clearcutting,first used in the latter half of the 20th century, is less expensive, but devastating to the environment; and companies are required by law to ensure that harvested areas are adequately regenerated. Most Canadian provinces have regulations limiting the size of new clear-cuts, although some older ones grew to 110 square kilometres (42 sq mi) over several years.

TheCanadian Forest Serviceis the government department which looks after Forests in Canada.

Latvia

LatvianPineForest inĶegums Municipality

Latvia has about 3.27 million hectares (8.1 million acres; 12,600 square miles) of forest land, which equates to about 50.5% of Latvia's total area of 64,590 square kilometres (24,938 sq mi) 1.51 million hectares (3.7 million acres) of forest land (46% of total forest land) is publicly owned and 1.75 million hectares (4.3 million acres) of forest land (54% of the total) is in private hands. Latvia's forests have been steadily increasing over the years, which is in contrast to many other nations, mostly due to the forestation of land not used for agriculture. In 1935, there were only 1.757 million hectares (4.34 million acres) of forest; today this has increased by more than 150%. Birch is the most common tree at 28.2%, followed by pine (26.9%), spruce (18.3%), grey alder (9.7%), aspen (8.0%), black alder (5.7%), oak/ash (1.2%), with other hardwood trees making up the rest (2.0%).[92][93]

United States

In the United States, most forests have historically been affected by humans to some degree, though in recent years improvedforestrypractices have helped regulate or moderate large-scale impacts. TheUnited States Forest Serviceestimated a net loss of about 2 million hectares (4.9 million acres) between 1997 and 2020; this estimate includes conversion of forest land to other uses, including urban and suburban development, as well as afforestation and natural reversion of abandoned crop and pasture land to forest. In many areas of the United States, the area of forest is stable or increasing, particularly in many northern states. The opposite problem from flooding has plagued national forests, with loggers complaining that a lack of thinning and proper forest management has resulted in large forest fires.[94][95]

See also

Sources

This article incorporates text from afree contentwork. Licensed under CC BY-SA 3.0 (license statement/permission). Text taken fromGlobal Forest Resources Assessment 2020 Key findings​,FAO, FAO.

This article incorporates text from afree contentwork. Licensed under CC BY-SA 3.0 (license statement/permission). Text taken fromThe State of the World's Forests 2020. In brief – Forests, biodiversity and people​,FAO & UNEP, FAO & UNEP.

References

  1. ^"Forest".Dictionary.com.Archivedfrom the original on 19 October 2014.Retrieved16 November2014.
  2. ^Schuck, Andreas; Päivinen, Risto; Hytönend, Tuomo; Pajari, Brita (2002)."Compilation of Forestry Terms and Definitions"(PDF).Joensuu, Finland:European Forest Institute.Archived(PDF)from the original on 5 June 2015.Retrieved16 November2014.
  3. ^"Definitions: Indicative definitions taken from the Report of the ad hoc technical expert group on forest biological diversity".Convention on Biological Diversity.30 November 2006.Archivedfrom the original on 19 December 2014.Retrieved16 November2014.
  4. ^ab"Forest definition and extent"(PDF).United Nations Environment Programme. 27 January 2010. Archived fromthe original(PDF)on 26 July 2010.Retrieved16 November2014.
  5. ^Global Forest Resources Assessment 2020 – Terms and definitions(PDF).Rome:Food and Agriculture Organization.2018.Archived(PDF)from the original on 9 August 2019.
  6. ^The State of the World's Forests 2020. In brief – Forests, biodiversity and people.Rome:FAO& UNEP. 2020.doi:10.4060/ca8985en.ISBN978-92-5-132707-4.S2CID241416114.
  7. ^abcPan, Yude; Birdsey, Richard A.; Phillips, Oliver L.; Jackson, Robert B. (2013)."The Structure, Distribution, and Biomass of the World's Forests"(PDF).Annu. Rev. Ecol. Evol. Syst.44:593–62.doi:10.1146/annurev-ecolsys-110512-135914.Archived(PDF)from the original on 7 August 2016.
  8. ^abThe State of the World's Forests 2020. In brief – Forests, biodiversity and people.Rome, Italy:FAO& UNEP. 2020.doi:10.4060/ca8985en.ISBN978-92-5-132707-4.S2CID241416114.
  9. ^Holdridge, L.R.Life zone ecology(PDF).San Jose, Costa Rica: Tropical Science Center.Archived(PDF)from the original on 5 October 2016.
  10. ^Edwards, Lin."Forest and savanna can switch quickly".Phys.org.
  11. ^Rasmussen, Carol."New study shows the Amazon makes its own rainy season".nasa.gov.
  12. ^Loomis, Ilima."Trees in the Amazon make their own rain".
  13. ^Kimbrough, Liz (16 September 2022)."More droughts are coming, and the Amazon can't keep up: Study".Mongabay.
  14. ^Derouin, Sarah (6 January 2022)."Deforestation: facts, causes & effects".Live Science.
  15. ^"Deforestation".National Geographic.
  16. ^"Eastern Deciduous Forest (U.S. National Park Service)".nps.gov.
  17. ^Vogt, Kristina A, ed. (2007). "Global Societies and Forest Legacies Creating Today's Forest Landscapes".Forests and Society: Sustainability and Life Cycles of Forests in Human Landscapes.CABI. pp. 30–59.ISBN978-1-84593-098-1.
  18. ^"Deforestation and Its Effect on the Planet".National GeographicEnvironment.7 February 2019. Archived fromthe originalon 19 February 2021.Retrieved21 July2021.
  19. ^abMacDicken, Kenneth (15 March 2013)."Forest Resources Assessment Working Paper 180"(PDF).Rome:Food and Agriculture Organizationof the United Nations Forestry Department.Archived(PDF)from the original on 24 September 2015.Retrieved16 November2014.
  20. ^abcdeWatson, Robert T.; Verardo, David J.; Noble, Ian R.; Bolin, Bert; Ravindranath, N.H.; Dokken, David J., eds. (2000)."Land Use, Land-Use Change and Forestry".Intergovernmental Panel on Climate Change.Archivedfrom the original on 29 November 2014.Retrieved16 November2014.
  21. ^Menzies, Nicholas; Grinspoon, Elisabeth (22 October 2007)."Facts on Forests and Forestry".ForestFacts.org, a subsidiary of GreenFacts.org.Archivedfrom the original on 8 May 2015.Retrieved16 November2014.
  22. ^"Introduction: Definition of a Forest".MuseumLink Illinois.Archivedfrom the original on 29 October 2014.Retrieved16 November2014.
  23. ^"A Polish Royal Forest".NASA Earth Observatory.29 November 2013.Archivedfrom the original on 4 January 2014.
  24. ^"Broadsheet: The News Letter for Broadland Tree Wardens"(PDF).April 2011. Archived fromthe original(PDF)on 29 November 2014.Retrieved16 November2014.
  25. ^Ritter, E. (2011). Dauksta, D. (ed.).New Perspectives on People and Forests.World Forests. Vol. 9. Springer.ISBN978-94-007-1149-5.
  26. ^abc"forest, noun".Oxford English Dictionaryonline edition.Oxford University Press.Archivedfrom the original on 11 January 2008.Retrieved22 May2009.
  27. ^"forest, noun".The American Heritage Dictionary of the English Language(3 ed.). Boston:Houghton MifflinCompany. 1996.ISBN978-0-395-44895-3.
  28. ^"What is a Forest?".Australian Government/Department of Agriculture, Fisheries, and Forestry/Rural Areas.28 March 2007. Archived fromthe originalon 9 October 2009.Retrieved25 November2010.
  29. ^Confer John Evelyn, FRS,Sylva, or A Discourse of Forest-Trees and the Propagation of Timber in His Majesty's Dominions(1664); and the title of and usepassimin Edward Step, FLS,Wayside and Woodland Trees: A Pocket Guide to the British Sylva(Frederick Warne and Company Limited, London and New York, [many editions]).
  30. ^Davies, Neil S., McMahon, William J. and Berry, Christopher M. (2024)."Earth's earliest forest: fossilized trees and vegetation-induced sedimentary structures from the Middle Devonian (Eifelian) Hangman Sandstone Formation, Somerset and Devon, SW England"(PDF).Journal of the Geological Society.doi:10.1144/jgs2023-204.Archived(PDF)from the original on 9 March 2024.{{cite journal}}:CS1 maint: multiple names: authors list (link)
  31. ^abcd"The First Forests".Devonian Times.Archived fromthe originalon 10 May 2016.Retrieved9 March2024.
  32. ^abcdGlobal Forest Resources Assessment 2020 – Key findings.Rome:Food and Agriculture Organization.2020.doi:10.4060/ca8753en.ISBN978-92-5-132581-0.S2CID130116768.
  33. ^Cannon, Charles; Schlesinger, William H. (2 August 2021)."Arboreal Dimensions of Biodiversity".
  34. ^"Forests of the world in 3-D: Research team analyses complexity of forest structure".phys.org.University of Gottingen.
  35. ^abcdefgThe State of the World's Forests 2020. Forests, biodiversity and people – In brief.Rome:FAO& UNEP. 2020.doi:10.4060/ca8985en.ISBN978-92-5-132707-4.S2CID241416114.
  36. ^Davies, Dave (4 May 2021)."Trees Talk To Each Other. 'Mother Tree' Ecologist Hears Lessons For People, Too".Fresh Air.NPR.
  37. ^Franklin, Brooke."This Fall, Leave the Leaves!".usda.gov.
  38. ^The Living World.D.A.V. College Managing Committee.
  39. ^Global Forest Resources Assessment 2020 – Key findings.Rome: FAO. 2020.doi:10.4060/ca8753en.ISBN978-92-5-132581-0.S2CID130116768.
  40. ^Amos, Jonathan (3 September 2015)."Earth's trees number 'three trillion'".BBC.Archivedfrom the original on 3 September 2015.Retrieved3 September2015.
  41. ^abChazdon, Robin L.(2008)."Beyond deforestation: restoring forests and ecosystem services on degraded lands"(PDF).Science.320(5882): 1458–60.Bibcode:2008Sci...320.1458C.doi:10.1126/science.1155365.PMID18556551.S2CID206511664.Archived(PDF)from the original on 21 October 2016.
  42. ^abcdefgJenkins, Martin D.; Groombridge, Brian (2002).World Atlas of Biodiversity: Earth's Living Resources in the 21st Century.World Conservation Monitoring Centre,United Nations Environment Programme.ISBN978-0-520-23668-4.
  43. ^Chape, S; Spalding, M; Jenkins, M (2008).The world's protected areas: status, values and prospects in the 21st century.Univ de Castilla La Mancha.ISBN978-0-520-24660-7.
  44. ^Luis Villazon."How many trees does it take to produce oxygen for one person?".Science Focus.Retrieved12 August2019.
  45. ^abGlobal Warming of 1.5 °C – an IPCC special report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty Summary for Policymakers(PDF).Intergovernmental Panel on Climate Change. 6 October 2018. p. 22. Archived fromthe original(PDF)on 18 October 2018.Retrieved11 October2021.
  46. ^S. Write, Jonathon; Fu, Rong; R. Worden, John; Chakraborty, Sudip; E. Clinton, Nicholas; Risi, Camille;Sun, Ying;Yin, Lei (20 July 2017)."Rainforest-initiated wet season onset over the southern Amazon".Proceedings of the National Academy of Sciences of the United States of America.114(Forests, Rainfall): 8481–86.Bibcode:2017PNAS..114.8481W.doi:10.1073/pnas.1621516114.PMC5558997.PMID28729375.
  47. ^Quaglia, Sofia (17 December 2021)."Deforestation making outdoor work unsafe for millions, says study".The Guardian.Retrieved16 February2022.
  48. ^The State of the World's Forests 2020 – Forests, biodiversity and people.Rome: FAO & UNEP. 2020.doi:10.4060/ca8642en.ISBN978-92-5-132419-6.S2CID241858489.
  49. ^"Primary Forests: Boreal, Temperate, Tropical".Woodwell Climate Research Center.Woodwell Climate Research Center, INTACT, Griffits University, GEOS institute, Frankfurt Zoological Society, Australian Rainforest Conservation Society. 17 December 2020.Retrieved22 August2023.
  50. ^abNasi, R; Wunder, S; Campos A, JJ (11 March 2002)."Forest ecosystem services: can they pay our way out of deforestation?"(PDF).UNFF II.Costa Rica.Archived(PDF)from the original on 4 December 2014.
  51. ^Emerton, Lucy (1999).Mount Kenya: The Economics of Community Conservation(PDF)(Community Conservation research Working Paper). Evaluating Eden Series. University of Manchester Institute of Development Policy and Management.Archived(PDF)from the original on 4 December 2014.
  52. ^Lette, Henk; de Boo, Henneleen (2002).Economic Valuation of Forests and Nature A support tool for effective decision-making(Report). Theme Studies Series 6 Forests. Ede, The Netherlands: Forestry and Biodiversity Support Group, International Agricultural Centre (IAC), Wageningen National Reference Centre for Agriculture, Nature Management and Fisheries (EC-LNV).Retrieved16 February2022.
  53. ^Bishop, Joshua T., ed. (1999).Valuing Forests A Review of Methods and Applications in Developing Countries(PDF).London: Environmental Economics Programme, International Institute for Environment and Development (IIED).Archived(PDF)from the original on 23 November 2015.
  54. ^Gray, Emma F.; Bond, William J. (2013)."Will woody plant encroachment impact the visitor experience and economy of conservation areas?".Koedoe.55(1).doi:10.4102/koedoe.v55i1.1106.hdl:11427/24844.ISSN0075-6458.
  55. ^Scholes, R.J.; Archer, S.R. (1997)."Tree-Grass Interactions in Savannas"(PDF).Annual Review of Ecology and Systematics.28:517–44.doi:10.1146/annurev.ecolsys.28.1.517.Archived fromthe original(PDF)on 4 December 2014.
  56. ^Pimentel, David; Pimentel, Marcia H. (2007).Food, Energy, and Society.CRC Press.
  57. ^Ratajczak, Zakary; Nippert, Jesse B.; Collins, Scott L. (2012)."Woody encroachment decreases diversity across North American grasslands and savannas"(PDF).Ecology.93(4): 697–703.Bibcode:2012Ecol...93..697R.doi:10.1890/11-1199.1.PMID22690619.Archived(PDF)from the original on 7 March 2015.
  58. ^Parr, Catherine L.; Gray, Emma F.; Bond, William J. (2012)."Cascading biodiversity and functional consequences of a global change–induced biome switch".Diversity and Distributions.18(5): 493–503.Bibcode:2012DivDi..18..493P.doi:10.1111/j.1472-4642.2012.00882.x.S2CID84089636.Archived(PDF)from the original on 31 January 2017.
  59. ^Wilcox, B.P.; Kreuter, U.P. (2003).Woody plant: streamflow interactions as a basis for land management decisions in drylands.Proceedings VIIth International Rangelands Congress. pp. 989–96.
  60. ^Scott, D.F. (1999)."Managing riparian vegetation to sustain streamflow: results of paired catchment experiments in South Africa"(PDF).Canadian Journal of Forest Research.29(7): 1149–51.doi:10.1139/x99-042.Archived(PDF)from the original on 5 December 2014.
  61. ^Davidson, A; Elliston, L; Kokic, P; Lawson, K (2005)."Native vegetation: cost of preservation in Australia"(PDF).Australian Commodities.12(3): 543–48.Archived(PDF)from the original on 1 February 2018.
  62. ^Wilcox, B.A.; Ellis, B."Forests and emerging infectious diseases of humans".Food and Agriculture Organization of the United Nations.Archivedfrom the original on 29 November 2014.Retrieved16 November2014.
  63. ^Margaletic, J (2003). "Small rodents in the forest ecosystem as infectious disease reservoirs".Acta Med Croatica(in Croatian).57(5): 421–26.PMID15011471.
  64. ^Baccini, A.; Walker, W.; Carvalho, L.; Farina, M.; Sulla-Menashe, D.; Houghton, R. A. (13 October 2017)."Tropical forests are a net carbon source based on aboveground measurements of gain and loss".Science.358(6360): 230–234.Bibcode:2017Sci...358..230B.doi:10.1126/science.aam5962.ISSN0036-8075.PMID28971966.
  65. ^Spawn, Seth A.; Sullivan, Clare C.; Lark, Tyler J.; Gibbs, Holly K. (6 April 2020)."Harmonized global maps of above and belowground biomass carbon density in the year 2010".Scientific Data.7(1): 112.Bibcode:2020NatSD...7..112S.doi:10.1038/s41597-020-0444-4.ISSN2052-4463.PMC7136222.PMID32249772.
  66. ^"Tropical forests have flipped from sponges to sources of carbon dioxide".28 September 2017.Retrieved5 January2024.
  67. ^Harvey, Fiona(4 March 2020)."Tropical forests losing their ability to absorb carbon, study finds".The Guardian.ISSN0261-3077.Retrieved5 January2024.
  68. ^Nabuurs, Gert-Jan; Lindner, Marcus; Verkerk, Pieter J.; Gunia, Katja; Deda, Paola; Michalak, Roman; Grassi, Giacomo (September 2013)."First signs of carbon sink saturation in European forest biomass".Nature Climate Change.3(9): 792–796.Bibcode:2013NatCC...3..792N.doi:10.1038/nclimate1853.ISSN1758-6798.
  69. ^Intergovernmental Panel on Climate Change, ed. (2007),"Forestry",Climate Change 2007 - Mitigation of Climate Change: Working Group III contribution to the Fourth Assessment Report of the IPCC,Cambridge: Cambridge University Press, pp. 541–584,doi:10.1017/CBO9780511546013.013,ISBN978-1-107-79970-7,retrieved5 January2024
  70. ^abNewton, Peter; Miller, Daniel C.; Byenkya, Mugabi Augustine Ateenyi; Agrawal, Arun (2016)."Who are forest-dependent people? A taxo nomy to aid livelihood and land use decision-making in forested regions".Land Use Policy.57:388–395.doi:10.1016/j.landusepol.2016.05.032.
  71. ^Prateek, Gautam; Punia, Sumendera."India's forest-dependent communities will benefit from policies recognising their integrated agri-forestry livelihood".DownToEarth.
  72. ^"Understanding human dependence on forests: An overview of IUCN's efforts and findings, and their implications".IUCN.2 November 2016.
  73. ^"Interview: Deforestation Threatens Indonesia's Indigenous Peoples".Human Rights Watch.22 September 2019.
  74. ^Cannon, John (16 January 2020)."Indigenous lands hold 36% or more of remaining intact forest landscapes".Mongabay.
  75. ^Carrington, Damian (25 March 2021)."Indigenous peoples by far the best guardians of forests – UN report".The Guardian.
  76. ^Chemnick, Jean."Amazon Deforestation Falls Where Land Is under Indigenous Control".Scientific American.
  77. ^"Indigenous Peoples Excluded from Political Power, Ejected from Lands, Faced Corporations Bent on Destroying Life-Giving Forests, Permanent Forum Told".United Nations Meetings Coverage and Press Releases.
  78. ^Doolittle, Amy (2010)."The Politics of Indigeneity: Indigenous Strategies for Inclusion in Climate Change Negotiations".Conservation & Society.8(4): 256.doi:10.4103/0972-4923.78142.hdl:10535/8315.
  79. ^Carson, Savanna L.; Kentatchime, Fabrice; Nana, Eric Djomo; Njabo, Kevin Y.; Cole, Brian L.; Godwin, Hilary A. (2018). "Indigenous Peoples' Concerns About Loss of Forest Knowledge: Implications for Forest Management".Conservation & Society.16(4).
  80. ^Savedoff, William (2018)."Indigenous peoples and tropical forests".Competing or Complementary Strategies?: Protecting Indigenous Rights and Paying to Conserve Forests:4–10.
  81. ^Sanabria, Catalina; Achury, Rafael (2022)."Amazonian indigenous territories as reservoirs of biodiversity - Territorios indígenas amazónicos como reservorio de biodiversidad: The army ants of Santa Sofia (Amazonas – Colombia)".Caldasia.44(2).doi:10.15446/caldasia.v44n2.92330.
  82. ^Waller, Donald M.; Reo, Nicholas J. (2018)."First stewards: ecological outcomes of forest and wildlife stewardship by indigenous peoples of Wisconsin, USA".Ecology and Society.23(1).doi:10.5751/ES-09865-230145.
  83. ^World Resources Institute (1997).The Last Frontier Forests: Ecosystems and Economies on the EdgeArchived13 August 2017 at theWayback Machine.
  84. ^Wilson, Sarah Jane; Schelhas, John; Grau, Ricardo; Nanni, A Sofia; Sloan, Sean (2017). "Forest ecosystem-service transitions: the ecological dimensions of the forest transition".Ecology and Society.22(4).doi:10.5751/ES-09615-220438.hdl:11336/67453.
  85. ^"Ban on Logging Saves Forests".People's Daily.25 October 2001.Archivedfrom the original on 29 June 2011.Retrieved16 February2022.
  86. ^Liu, Yi Y.; van Dijk, Albert I.J.M.; de Jeu, Richard A.M.; Canadell, Josep G.; McCabe, Matthew F.; Evans, Jason P.; Wang, Guojie (30 March 2015). "Recent reversal in loss of global terrestrial biomass".Nature Climate Change.5(5): 470.Bibcode:2015NatCC...5..470L.doi:10.1038/nclimate2581.
  87. ^"World deforestation slows down as more forests are better managed".fao.org.Food and Agriculture Organization of the United Nation.Archivedfrom the original on 12 October 2015.Retrieved2 October2015.
  88. ^MacDicken, K.; Jonsson, Ö.; Piña, L.; Maulo, S.; Adikari, Y.; Garzuglia, M.; Lindquist, E.; Reams, G.; D'Annunzio, R. (2015)."Global Forest Resources Assessment 2015"(PDF).fao.org.Food and Agriculture Organization of the United Nations.Archived(PDF)from the original on 3 October 2015.
  89. ^"Canada".Global Forest Watch Canada.Archivedfrom the original on 4 December 2014.Retrieved28 November2014.
  90. ^ab"Canada's Forests".Natural Resources Canada. 14 October 2014.Archivedfrom the original on 20 November 2014.Retrieved28 November2014.
  91. ^"Statistics".Certification status – Canada & the globe.Canadian Sustainable Forestry Certification Coalition.Retrieved28 November2014.
  92. ^"Forestry in 2015 (only in Latvian) | Latvijas statistika".www.csb.gov.lv.Archivedfrom the original on 22 December 2017.Retrieved21 December2017.
  93. ^"Buklets" Meža nozare Latvijā "".www.zm.gov.lv.Archivedfrom the original on 22 December 2017.Retrieved21 December2017.
  94. ^"Wildfires Ignite Forest Management Debate".Wildrockiesalliance.org. Archived fromthe originalon 9 May 2013.Retrieved3 July2013.
  95. ^Brock, Emily K. (2015).Money Trees: The Douglas Fir and American Forestry, 1900–1944.Oregon State University Press.