Inclassical mechanics,free fallis any motion of abodywheregravityis the onlyforceacting upon it. A freely falling object may not necessarily be falling down in thevertical direction.An object moving upwards might not normally be considered to be falling, but if it is subject to only the force of gravity, it is said to be in free fall. TheMoonis thus in free fall around theEarth,though itsorbital speedkeeps it invery far orbitfrom theEarth's surface.
In a roughly uniformgravitational fieldgravity acts on each part of a body approximately equally. When there are no other forces, such as thenormal forceexerted between a body (e.g. anastronautin orbit) and its surrounding objects, it will result in the sensation ofweightlessness,a condition that also occurs when the gravitational field is weak (such as when far away from any source of gravity).
The term "free fall" is often used more loosely than in the strict sense defined above. Thus, falling through anatmospherewithout a deployedparachute,or lifting device, is also often referred to asfree fall.Theaerodynamicdrag forces in such situations prevent them from producing full weightlessness, and thus a skydiver's "free fall" after reachingterminal velocityproduces the sensation of the body's weight being supported on a cushion of air.
In the context ofgeneral relativity,where gravitation is reduced to aspace-time curvature,a body in free fall has no force acting on it.
History
editIn the Western world prior to the 16th century, it was generally assumed that the speed of a falling body would be proportional to its weight—that is, a 10 kg object was expected to fall ten times faster than an otherwise identical 1 kg object through the same medium. The ancient Greek philosopherAristotle(384–322 BC) discussed falling objects inPhysics(Book VII), one of the oldest books onmechanics(seeAristotelian physics). Although, in the 6th century,John Philoponuschallenged this argument and said that, by observation, two balls of very different weights will fall at nearly the same speed.[1]
In 12th-century Iraq,Abu'l-Barakāt al-Baghdādīgave an explanation for thegravitational accelerationof falling bodies. According toShlomo Pines,al-Baghdādī's theory of motion was "the oldest negation of Aristotle's fundamental dynamic law [namely, that a constant force produces a uniform motion], [and is thus an] anticipation in a vague fashion of the fundamental law ofclassical mechanics[namely, that a force applied continuously produces acceleration]. "[2]
Galileo Galilei
editAccording to a tale that may be apocryphal, in 1589–1592 Galileodropped two objects of unequal mass from the Leaning Tower of Pisa.Given the speed at which such a fall would occur, it is doubtful that Galileo could have extracted much information from this experiment. Most of his observations of falling bodies were really of bodies rolling down ramps. This slowed things down enough to the point where he was able to measure the time intervals withwater clocksand his own pulse (stopwatches having not yet been invented). He repeated this "a full hundred times" until he had achieved "an accuracy such that the deviation between two observations never exceeded one-tenth of a pulse beat." In 1589–1592, Galileo wroteDe Motu Antiquiora,an unpublished manuscript on the motion of falling bodies.[citation needed]
Examples
editThis articlepossibly containsoriginal research.(July 2020) |
Examples of objects in free fall include:
- Aspacecraft(in space) with propulsion off (e.g. in a continuous orbit, or on a suborbital trajectory (ballistics) going up for some minutes, and then down).
- An object dropped at the top of adrop tube.
- An object thrown upward or a person jumping off the ground at low speed (i.e. as long as air resistance is negligible in comparison to weight).
Technically, an object is in free fall even when moving upwards or instantaneously at rest at the top of its motion. If gravity is the only influence acting, then the acceleration[3]is always downward and has the same magnitude for all bodies, commonly denoted.
Since all objects fall at the same rate in the absence of other forces, objects and people will experienceweightlessnessin these situations.
Examples of objects not in free-fall:
- Flying in an aircraft: there is also an additional force oflift.
- Standing on the ground: the gravitational force is counteracted by thenormal forcefrom the ground.
- Descending to the Earth using a parachute, which balances the force of gravity with an aerodynamic drag force (and with some parachutes, an additional lift force).
The example of a falling skydiver who has not yet deployed a parachute is not considered free fall from a physics perspective, since they experience adrag forcethat equals their weight once they have achievedterminal velocity(see below).
Near the surface of the Earth, an object in free fall in a vacuum will accelerate at approximately 9.8 m/s2,independent of itsmass.With air resistance acting on an object that has been dropped, the object will eventually reach a terminal velocity, which is around 53 m/s (190 km/h or 118 mph[4]) for a human skydiver. The terminal velocity depends on many factors including mass,drag coefficient,and relative surface area and will only be achieved if the fall is from sufficient altitude. A typical skydiver in a spread-eagle position will reach terminal velocity after about 12 seconds, during which time they will have fallen around 450 m (1,500 ft).[4]
Free fall was demonstrated on the Moon by astronautDavid Scotton August 2, 1971. He simultaneously released a hammer and a feather from the same height above the Moon's surface. The hammer and the feather both fell at the same rate and hit the surface at the same time. This demonstrated Galileo's discovery that, in the absence of air resistance, all objects experience the same acceleration due to gravity. On the Moon, however, thegravitational accelerationis approximately 1.63 m/s2,or only about1⁄6 that on Earth.
Free fall in Newtonian mechanics
editUniform gravitational field without air resistance
editThis is the "textbook" case of the vertical motion of an object falling a small distance close to the surface of a planet. It is a good approximation in air as long as the force of gravity on the object is much greater than the force of air resistance, or equivalently the object's velocity is always much less than the terminal velocity (see below).
where
- is the initial vertical component of the velocity (m/s).
- is the vertical component of the velocity at(m/s).
- is the initial altitude (m).
- is the altitude at(m).
- is time elapsed (s).
- is the acceleration due togravity(9.81 m/s2near the surface of the earth).
If the initial velocity is zero, then the distance fallen from the initial position will grow as the square of the elapsed time. Moreover, becausethe odd numbers sum to the perfect squares,the distance fallen in successive time intervals grows as the odd numbers. This description of the behavior of falling bodies was given by Galileo.[5]
Uniform gravitational field with air resistance
editThis case, which applies to skydivers, parachutists or any body of mass,,and cross-sectional area,,withReynolds numberwell above the critical Reynolds number, so that the air resistance is proportional to the square of the fall velocity,,has an equation of motion
whereis theair densityandis thedrag coefficient,assumed to be constant although in general it will depend on the Reynolds number.
Assuming an object falling from rest and no change in air density with altitude, the solution is:
where theterminal speedis given by
The object's speed versus time can be integrated over time to find the vertical position as a function of time:
Using the figure of 56 m/s for the terminal velocity of a human, one finds that after 10 seconds he will have fallen 348 metres and attained 94% of terminal velocity, and after 12 seconds he will have fallen 455 metres and will have attained 97% of terminal velocity. However, when the air density cannot be assumed to be constant, such as for objects falling from high altitude, the equation of motion becomes much more difficult to solve analytically and a numerical simulation of the motion is usually necessary. The figure shows the forces acting on meteoroids falling through the Earth's upper atmosphere.HALO jumps,includingJoe Kittinger's andFelix Baumgartner's record jumps, also belong in this category.[6]
Inverse-square law gravitational field
editIt can be said that two objects in space orbiting each other in the absence of other forces are in free fall around each other, e.g. that the Moon or an artificial satellite "falls around" the Earth, or a planet "falls around" the Sun. Assuming spherical objects means that the equation of motion is governed byNewton's law of universal gravitation,with solutions to thegravitational two-body problembeingelliptic orbitsobeyingKepler's laws of planetary motion.This connection between falling objects close to the Earth and orbiting objects is best illustrated by the thought experiment,Newton's cannonball.
The motion of two objects moving radially towards each other with noangular momentumcan be considered a special case of an elliptical orbit ofeccentricitye= 1(radial elliptic trajectory). This allows one to compute thefree-fall timefor two point objects on a radial path. The solution of this equation of motion yields time as a function of separation:
where
- is the time after the start of the fall
- is the distance between the centers of the bodies
- is the initial value of
- is thestandard gravitational parameter.
Substitutingwe get thefree-fall time
The separation can be expressed explicitly as a function of time[7]
whereis the quantile function of theBeta distribution,also known as theinverse functionof theregularized incomplete beta function.
This solution can also be represented exactly by the analytic power series
where
In general relativity
editIn general relativity, an object in free fall is subject to no force and is an inertial body moving along ageodesic.Far away from any sources of space-time curvature, wherespacetimeis flat, the Newtonian theory of free fall agrees with general relativity. Otherwise the two disagree; e.g., only general relativity can account for theprecessionof orbits, theorbital decayor inspiral of compact binaries due togravitational waves,and the relativity of direction (geodetic precessionandframe dragging).
The experimental observation that all objects in free fall accelerate at the same rate, as noted by Galileo and then embodied in Newton's theory as the equality of gravitational and inertial masses, and later confirmed to high accuracy by modern forms of theEötvös experiment,is the basis of theequivalence principle,from which basis Einstein's theory of general relativity initially took off.
See also
editReferences
edit- ^Cohen, Morris R.; Drabkin, I. E., eds. (1958).A Source Book in Greek Science.Cambridge, MA: Harvard University Press. p. 220.
- ^Pines, Shlomo (1970). "Abu'l-Barakāt al-Baghdādī, Hibat Allah".Dictionary of Scientific Biography.Vol. 1. New York: Charles Scribner's Sons. pp. 26–28.ISBN0-684-10114-9.
(cf.Abel B. Franco (October 2003). "Avempace, Projectile Motion, and Impetus Theory",Journal of the History of Ideas64(4), pp. 521–546 [528].) - ^"The Feynman Lectures on Physics Vol. I Ch. 8: Motion".
- ^ab"Free fall graph"(PDF).Green Harbor Publications. 2010.Retrieved14 March2016.
- ^Olenick, Richard P.; Apostol, Tom M.; Goodstein, David L. (2008).The Mechanical Universe: Introduction to Mechanics and Heat.Cambridge University Press. p. 18.ISBN978-0-521-71592-8.
- ^An analysis of such jumps is given inMohazzabi, P.; Shea, J. (1996)."High altitude free fall"(PDF).American Journal of Physics.64(10): 1242.Bibcode:1996AmJPh..64.1242M.doi:10.1119/1.18386.
- ^Obreschkow, Danail (7 June 2024)."From Cavitation to Astrophysics: Explicit Solution of the Spherical Collapse Equation".Phys. Rev. E.109(6): 065102.arXiv:2401.05445.Bibcode:2024PhRvE.109f5102O.doi:10.1103/PhysRevE.109.065102.PMID39021019.
- ^Foong, S K (2008)."From Moon-fall to motions under inverse square laws".European Journal of Physics.29(5): 987–1003.Bibcode:2008EJPh...29..987F.doi:10.1088/0143-0807/29/5/012.S2CID122494969.
- ^Mungan, Carl E. (2009)."Radial Motion of Two Mutually Attracting Particles"(PDF).The Physics Teacher.47(8): 502–507.Bibcode:2009PhTea..47..502M.doi:10.1119/1.3246467.
External links
edit- Freefall formula calculator
- The Way Things Fallan educational website