This articleneeds additional citations forverification.(April 2023) |
Incomputer architecture,64-bitintegers,memory addresses,or otherdataunits[a]are those that are 64bitswide. Also, 64-bitcentral processing units(CPU) andarithmetic logic units(ALU) are those that are based onprocessor registers,address buses,ordata busesof that size. Acomputerthat uses such a processor is a 64-bit computer.
From the software perspective, 64-bit computing means the use ofmachine codewith 64-bitvirtual memoryaddresses. However, not all 64-bit instruction sets support full 64-bit virtual memory addresses;x86-64andAArch64for example, support only 48 bits of virtual address, with the remaining 16 bits of the virtual address required to be all zeros (000...) or all ones (111...), and several 64-bit instruction sets support fewer than 64 bits of physical memory address.
The term64-bitalso describes a generation of computers in which 64-bit processors are the norm. 64 bits is awordsize that defines certain classes of computer architecture, buses, memory, and CPUs and, by extension, the software that runs on them. 64-bit CPUs have been used insupercomputerssince the 1970s (Cray-1,1975) and inreduced instruction set computers(RISC) basedworkstationsandserverssince the early 1990s. In 2003, 64-bit CPUs were introduced to the mainstreamPCmarket in the form of x86-64 processors and thePowerPC G5.
A 64-bit register can hold any of 264(over 18quintillionor 1.8×1019) different values. The range ofintegervalues that can be stored in 64 bits depends on theinteger representationused. With the two most common representations, the range is 0 through 18,446,744,073,709,551,615 (equal to 264− 1) for representation as an (unsigned)binary number,and −9,223,372,036,854,775,808 (−263) through 9,223,372,036,854,775,807 (263− 1) for representation astwo's complement.Hence, a processor with 64-bit memory addresses can directly access 264bytes (16exabytesor EB) ofbyte-addressablememory.
With no further qualification, a64-bit computer architecturegenerally has integer and addressingregistersthat are 64 bits wide, allowing direct support for 64-bit data types and addresses. However, a CPU might have externaldata busesoraddress buseswith different sizes from the registers, even larger (the 32-bitPentiumhad a 64-bit data bus, for instance).[1]
Architectural implications
editProcessor registers are typically divided into several groups:integer,floating-point,single instruction, multiple data(SIMD),control,and often special registers for address arithmetic which may have various uses and names such asaddress,index,orbase registers.However, in modern designs, these functions are often performed by more general purposeintegerregisters. In most processors, only integer or address-registers can be used to address data in memory; the other types of registers cannot. The size of these registers therefore normally limits the amount of directly addressable memory, even if there are registers, such as floating-point registers, that are wider.
Most high performance 32-bit and 64-bit processors (some notable exceptions are older or embeddedARM architecture(ARM) and 32-bitMIPS architecture(MIPS) CPUs) have integrated floating point hardware, which is often, but not always, based on 64-bit units of data. For example, although thex86/x87architecture has instructions able to load and store 64-bit (and 32-bit) floating-point values in memory, the internal floating-point data and register format is 80 bits wide, while the general-purpose registers are 32 bits wide. In contrast, the 64-bitAlphafamily uses a 64-bit floating-point data and register format, and 64-bit integer registers.
History
editMany computerinstruction setsare designed so that a single integer register can store thememory addressto any location in the computer's physical orvirtual memory.Therefore, the total number of addresses to memory is often determined by the width of these registers. TheIBMSystem/360of the 1960s was an early 32-bit computer; it had 32-bit integer registers, although it only used the low order 24 bits of a word for addresses, resulting in a 16MiB(16 × 10242bytes) address space. 32-bitsuperminicomputers,such as theDECVAX,became common in the 1970s, and 32-bit microprocessors, such as theMotorola 68000 familyand the32-bit members of the x86 familystarting with theIntel 80386,appeared in the mid-1980s, making 32 bits something of ade factoconsensus as a convenient register size.
A 32-bitaddress registermeant that 232addresses, or 4GBofrandom-access memory(RAM), could be referenced. When these architectures were devised, 4 GB of memory was so far beyond the typical amounts (4 MiB) in installations, that this was considered to be enoughheadroomfor addressing. 4.29 billion addresses were considered an appropriate size to work with for another important reason: 4.29 billion integers are enough to assign unique references to most entities in applications likedatabases.
Somesupercomputerarchitectures of the 1970s and 1980s, such as theCray-1,[2]used registers up to 64 bits wide, and supported 64-bit integer arithmetic, although they did not support 64-bit addressing. In the mid-1980s,Intel i860[3]development began culminating in a 1989 release; the i860 had 32-bit integer registers and 32-bit addressing, so it was not a fully 64-bit processor, although its graphics unit supported 64-bit integer arithmetic.[4]However, 32 bits remained the norm until the early 1990s, when the continual reductions in the cost of memory led to installations with amounts of RAM approaching 4 GB, and the use of virtual memory spaces exceeding the 4 GB ceiling became desirable for handling certain types of problems. In response, MIPS and DEC developed 64-bit microprocessor architectures, initially for high-endworkstationandservermachines. By the mid-1990s,HAL Computer Systems,Sun Microsystems,IBM,Silicon Graphics,andHewlett-Packardhad developed 64-bit architectures for their workstation and server systems. A notable exception to this trend weremainframesfrom IBM, which then used 32-bit data and 31-bit address sizes; the IBM mainframes did not include 64-bit processors until 2000. During the 1990s, several low-cost 64-bit microprocessors were used in consumer electronics and embedded applications. Notably, theNintendo 64[5]and thePlayStation 2had 64-bit microprocessors before their introduction in personal computers. High-end printers, network equipment, and industrial computers also used 64-bit microprocessors, such as theQuantum Effect DevicesR5000.[6]64-bit computing started to trickle down to the personal computer desktop from 2003 onward, when some models inApple's Macintosh lines switched toPowerPC 970processors (termedG5by Apple), andAdvanced Micro Devices(AMD) released its first 64-bitx86-64processor. Physical memory eventually caught up with 32 bit limits. In 2023, laptop computers were commonly equipped with 16GB and servers up to 64 GB of memory, greatly exceeding the 4 GB address capacity of 32 bits.
64-bit data timeline
edit- 1961
- IBM delivers theIBM 7030 Stretchsupercomputer,which uses 64-bit data words and 32- or 64-bit instruction words.
- 1974
- Control Data Corporationlaunches theCDC Star-100vector supercomputer, which uses a 64-bit word architecture (prior CDC systems were based on a 60-bit architecture).
- International Computers Limitedlaunches theICL 2900 Serieswith 32-bit, 64-bit, and 128-bittwo's complementintegers; 64-bit and 128-bit floating point; 32-bit, 64-bit, and 128-bit packed decimal and a 128-bit accumulator register. The architecture has survived through a succession of ICL and Fujitsu machines. The latest is the Fujitsu Supernova, which emulates the original environment on 64-bit Intel processors.
- 1976
- Cray Researchdelivers the firstCray-1supercomputer, which is based on a 64-bit word architecture and will form the basis for later Cray vector supercomputers.
- 1983
- Elxsilaunches the Elxsi 6400 parallelminisupercomputer.The Elxsi architecture has 64-bit data registers but a 32-bit address space.
- 1989
- Intelintroduces theIntel i860reduced instruction set computer(RISC) processor. Marketed as a "64-Bit Microprocessor", it had essentially a 32-bit architecture, enhanced with a 3D graphics unit capable of 64-bit integer operations.[7]
- 1993
- Atariintroduces theAtari Jaguarvideo game console,which includes some 64-bit wide data paths in its architecture.[8]
64-bit address timeline
edit- 1991
- MIPS Computer Systemsproduces the first 64-bit microprocessor, theR4000,which implements theMIPS IIIarchitecture, the third revision of itsMIPS architecture.[9]The CPU is used inSGIgraphics workstations starting with theIRIS Crimson.Kendall Square Researchdeliver their first KSR1 supercomputer, based on a proprietary 64-bit RISC processor architecture runningOSF/1.
- 1992
- Digital Equipment Corporation(DEC) introduces the pure 64-bitAlphaarchitecture which was born from thePRISMproject.[10]
- 1994
- Intelannounces plans for the 64-bitIA-64architecture (jointly developed withHewlett-Packard) as a successor to its 32-bitIA-32processors. A 1998 to 1999 launch date was targeted.
- 1995
- Sunlaunches a 64-bitSPARCprocessor, theUltraSPARC.[11]Fujitsu-ownedHAL Computer Systemslaunches workstations based on a 64-bit CPU, HAL's independently designed first-generationSPARC64.IBM releases the A10 and A30 microprocessors, the first 64-bit PowerPC AS processors.[12]IBM also releases a 64-bit AS/400 system upgrade, which can convert the operating system, database and applications.
- 1996
- Nintendointroduces theNintendo 64video game console, built around a low-cost variant of the MIPS R4000. HP releases the first implementation of its 64-bitPA-RISC 2.0architecture, thePA-8000.[13]
- 1998
- IBM releases thePOWER3line of full-64-bit PowerPC/POWERprocessors.[14]
- 1999
- Intel releases theinstruction setfor theIA-64architecture.AMDpublicly discloses its set of 64-bit extensions to IA-32, calledx86-64(later branded AMD64).
- 2000
- IBM ships its first 64-bitz/Architecturemainframe,thezSeriesz900. z/Architecture is a 64-bit version of the 32-bitESA/390architecture, a descendant of the 32-bitSystem/360architecture.
- 2001
- Intel ships its IA-64 processor line, after repeated delays in getting to market. Now brandedItaniumand targeting high-end servers, sales fail to meet expectations.
- 2003
- AMD introduces itsOpteronandAthlon 64processor lines, based on itsAMD64architecture which is the first x86-based 64-bit processor architecture.Applealso ships the 64-bit "G5"PowerPC 970CPU produced by IBM. Intel maintains that its Itanium chips would remain its only 64-bit processors.
- 2004
- Intel, reacting to the market success of AMD, admits it has been developing a clone of the AMD64 extensions named IA-32e (later renamed EM64T, then yet again renamed to Intel 64). Intel ships updated versions of itsXeonandPentium 4processor families supporting the new 64-bit instruction set.
- VIA Technologiesannounces theIsaiah64-bit processor.[15]
- 2006
- Sony, IBM, and Toshiba begin manufacturing the 64-bitCell processorfor use in thePlayStation 3,servers, workstations, and other appliances. Intel releasedCore 2 Duoas the first mainstream x86-64 processor for its mobile, desktop, and workstation line. Prior 64-bit extension processor lines were not widely available in the consumer retail market (most of 64-bit Pentium 4/D were OEM), 64-bit Pentium 4, Pentium D, and Celeron were not into mass production until late 2006 due to poor yield issue (most of good yield wafers were targeted at server and mainframe while mainstream still remain 130 nm 32-bit processor line until 2006) and soon became low end after Core 2 debuted. AMD released their first 64-bit mobile processor and manufactured in 90 nm.
- 2011
- ARM Holdingsannounces ARMv8-A, the first 64-bit version of theARM architecture family.[16]
- 2012
- ARM Holdings announced their Cortex-A53 and Cortex-A57 cores, their first cores based on their 64-bit architecture, on 30 October 2012.[17][18]
- 2013
- Apple announces theiPhone 5S,with the world's first 64-bit processor in a smartphone, which uses theirA7ARMv8-A-based system-on-a-chip alongside theiPad AirandiPad Mini 2which are the world's first 64-bit processor in a tablet.
- 2014
- Google announces theNexus 9tablet, the first Android device to run on the 64-bit Tegra K1 chip.
- 2015
- Apple announces theiPod Touch (6th generation),the first iPod Touch to use the 64-bit processorA8ARMv8-A-based system-on-a-chip alongside theApple TV (4th generation)which is the world's first 64-bit processor in an Apple TV.
- 2018
- Apple announces theApple Watch Series 4,the first Apple Watch to use the 64-bit processorS4ARMv8-A-based system-on-a-chip.
- 2020
- Synopsis announce the ARCv3 ISA, the first 64-bit version of theARC ISA.[19]
64-bit operating system timeline
edit- 1985
- CrayreleasesUNICOS,the first 64-bit implementation of theUnixoperating system.[20]
- 1993
- DEC releases the 64-bitDEC OSF/1 AXPUnix-likeoperating system (later renamed Tru64 UNIX) for its systems based on theAlphaarchitecture.
- 1994
- Support for theR8000processor is added bySilicon Graphicsto theIRIXoperating systemin release 6.0.
- 1995
- DEC releasesOpenVMS7.0, the first full 64-bit version of OpenVMS for Alpha. First 64-bitLinux distributionfor the Alpha architecture is released.[21]
- 1996
- Support for the R4x00 processors in 64-bit mode is added bySilicon Graphicsto theIRIXoperating systemin release 6.2.
- 1998
- Sun releasesSolaris7, with full 64-bitUltraSPARCsupport.
- 2000
- IBM releasesz/OS,a 64-bit operating system descended fromMVS,for the newzSeries64-bit mainframes; 64-bitLinux on z Systemsfollows the CPU release almost immediately.
- 2001
- Linux becomes the first OS kernel to fully supportx86-64(on a simulator, as no x86-64 processors had been released yet).[22]
- 2001
- Microsoft releasesWindows XP 64-Bit Editionfor theItanium's IA-64 architecture; it could run32-bit applicationsthrough an execution layer.[citation needed]
- 2003
- Apple releases itsMac OS X 10.3"Panther" operating system which adds support for native 64-bit integer arithmetic onPowerPC 970processors.[23]SeveralLinuxdistributionsrelease with support forAMD64.FreeBSDreleases with support for AMD64.
- 2005
- On January 4, Microsoft discontinues Windows XP 64-Bit Edition, as no PCs with IA-64 processors had been available since the previous September, and announces that it is developing x86-64 versions of Windows to replace it.[24]On January 31, Sun releasesSolaris 10with support for AMD64 and EM64T processors. On April 29, Apple releasesMac OS X 10.4"Tiger" which provides limited support for 64-bit command-line applications on machines with PowerPC 970 processors; later versions for Intel-based Macs supported 64-bit command-line applications on Macs with EM64T processors. On April 30, Microsoft releasesWindows XP Professional x64 EditionandWindows Server 2003x64 Edition for AMD64 and EM64T processors.[25]
- 2006
- Microsoft releasesWindows Vista,including a 64-bit version for AMD64/EM64T processors that retains 32-bit compatibility. In the 64-bit version, all Windows applications and components are 64-bit, although many also have their 32-bit versions included for compatibility withplug-ins.[citation needed]
- 2007
- Apple releasesMac OS X 10.5"Leopard", which fully supports 64-bit applications on machines with PowerPC 970 or EM64T processors.[citation needed]
- 2009
- Microsoft releasesWindows 7,which, like Windows Vista, includes a full 64-bit version for AMD64/Intel 64 processors; most new computers are loaded by default with a 64-bit version. Microsoft also releasesWindows Server 2008 R2,which is the first 64-bit only server operating system. Apple releasesMac OS X 10.6,"Snow Leopard", which ships with a 64-bit kernel for AMD64/Intel64 processors, although only certain recent models of Apple computers will run the 64-bit kernel by default. Most applications bundled with Mac OS X 10.6 are now also 64-bit.[23]
- 2011
- Apple releasesMac OS X 10.7,"Lion", which runs the 64-bit kernel by default on supported machines. Older machines that are unable to run the 64-bit kernel run the 32-bit kernel, but, as with earlier releases, can still run 64-bit applications; Lion does not support machines with 32-bit processors. Nearly all applications bundled with Mac OS X 10.7 are now also 64-bit, including iTunes.[citation needed]
- 2012
- Microsoft releasesWindows 8which supports UEFI Class 3 (UEFIwithout CSM) andSecure Boot.[26]
- 2013
- Apple releasesiOS 7,which, on machines with AArch64 processors, has a 64-bit kernel that supports 64-bit applications.[citation needed]
- 2014
- Google releasesAndroid Lollipop,the first version of theAndroidoperating system with support for 64-bit processors.[citation needed]
- 2017
- Apple releasesiOS 11,supporting only machines with AArch64 processors. It has a 64-bit kernel that only supports 64-bit applications. 32-bit applications are no longer compatible.[citation needed]
- 2018
- Apple releaseswatchOS 5,the first watchOS version to bring the 64-bit support.[citation needed]
- 2019
- Apple releasesmacOS 10.15"Catalina", dropping support for 32-bit Intel applications.[citation needed]
- 2021
- Microsoft releasesWindows 11on October 5, which only supports 64-bit systems, dropping support for IA-32 and AArch32 systems.[citation needed]
- 2022
- Google releases thePixel 7,which drops support for 32-bit applications. Apple releaseswatchOS 9,the first watchOS version to run exclusively on the Apple Watch models with 64-bit processors (including Apple Watch Series 4 or newer,Apple Watch SE (1st generation)or newer and the newly introducedApple Watch Ultra), dropping support forApple Watch Series 3as the final Apple Watch model with 32-bit processor.[citation needed]
- 2024
- Microsoft releasesWindows 11, version 24H2,which ARM versions of Windows drops support for 32-bit ARM applications.
Limits of processors
editThis sectionneeds additional citations forverification.(January 2010) |
In principle, a 64-bit microprocessor can address 16 EB (16 × 10246= 264= 18,446,744,073,709,551,616 bytes) of memory. However, not all instruction sets, and not all processors implementing those instruction sets, support a full 64-bit virtual or physical address space.
Thex86-64 architecture(as of 2016[update]) allows 48 bits for virtual memory and, for any given processor, up to 52 bits for physical memory.[27][28]These limits allow memory sizes of 256TB(256 × 10244bytes) and 4PB(4 × 10245bytes), respectively. A PC cannot currently contain 4petabytesof memory (due to the physical size of the memory chips), but AMD envisioned large servers, shared memory clusters, and other uses of physical address space that might approach this in the foreseeable future. Thus the 52-bit physical address provides ample room for expansion while not incurring the cost of implementing full 64-bit physical addresses. Similarly, the 48-bit virtual address space was designed to provide 65,536 (216) times the 32-bit limit of 4 GB (4 × 10243bytes), allowing room for later expansion and incurring no overhead of translating full 64-bit addresses.
ThePower ISA v3.0allows 64 bits for an effective address, mapped to a segmented address with between 65 and 78 bits allowed, for virtual memory, and, for any given processor, up to 60 bits for physical memory.[29]
The OracleSPARCArchitecture 2015 allows 64 bits for virtual memory and, for any given processor, between 40 and 56 bits for physical memory.[30]
TheARM AArch64 Virtual Memory System Architectureallows 48 bits for virtual memory and, for any given processor, from 32 to 48 bits for physical memory.[31]
TheDEC Alphaspecification requires minimum of 43 bits of virtual memory address space (8 TB) to be supported, and hardware need to check and trap if the remaining unsupported bits are zero (to support compatibility on future processors).Alpha 21064supported 43 bits of virtual memory address space (8 TB) and 34 bits of physical memory address space (16 GB).Alpha 21164supported 43 bits of virtual memory address space (8 TB) and 40 bits of physical memory address space (1 TB).Alpha 21264supported user-configurable 43 or 48 bits of virtual memory address space (8 TB or 256 TB) and 44 bits of physical memory address space (16 TB).
64-bit applications
edit32-bit vs 64-bit
editA change from a32-bitto a 64-bit architecture is a fundamental alteration, as mostoperating systemsmust be extensively modified to take advantage of the new architecture, because that software has to manage the actual memory addressing hardware.[32]Other software must also beportedto use the new abilities; older 32-bit software may be supported either by virtue of the 64-bit instruction set being a superset of the 32-bit instruction set, so that processors that support the 64-bit instruction set can also run code for the 32-bit instruction set, or through softwareemulation,or by the actual implementation of a 32-bit processor core within the 64-bit processor, as with some Itanium processors from Intel, which included anIA-32processor core to run 32-bitx86applications. The operating systems for those 64-bit architectures generally support both 32-bit and 64-bit applications.[33]
One significant exception to this is theIBM AS/400,software for which is compiled into a virtualinstruction set architecture(ISA) calledTechnology Independent Machine Interface(TIMI); TIMI code is then translated to native machine code by low-level software before being executed. The translation software is all that must be rewritten to move the full OS and all software to a new platform, as when IBM transitioned the native instruction set for AS/400 from the older 32/48-bitIMPIto the newer 64-bitPowerPC-AS,codenamedAmazon.The IMPI instruction set was quite different from even 32-bit PowerPC, so this transition was even bigger than moving a given instruction set from 32 to 64 bits.
On 64-bit hardware withx86-64architecture (AMD64), most 32-bit operating systems and applications can run with no compatibility issues. While the larger address space of 64-bit architectures makes working with large data sets in applications such asdigital video,scientific computing, and largedatabaseseasier, there has been considerable debate on whether they or their 32-bitcompatibility modeswill be faster than comparably priced 32-bit systems for other tasks.
A compiled Java program can run on a 32- or 64-bit Java virtual machine with no modification. The lengths and precision of all the built-in types, such aschar
,short
,int
,long
,float
,anddouble
,and the types that can be used as array indices, are specified by the standard and are not dependent on the underlying architecture. Java programs that run on a 64-bit Java virtual machine have access to a larger address space.[34]
Speed is not the only factor to consider in comparing 32-bit and 64-bit processors. Applications such as multi-tasking, stress testing, and clustering – forhigh-performance computing(HPC) – may be more suited to a 64-bit architecture when deployed appropriately. For this reason, 64-bit clusters have been widely deployed in large organizations, such as IBM, HP, and Microsoft.
Summary:
- A 64-bit processor performs best with 64-bit software.
- A 64-bit processor may havebackward compatibility,allowing it to run 32-bit application software for the 32-bit version of its instruction set, and may also support running 32-bit operating systems for the 32-bit version of its instruction set.
- A 32-bit processor is incompatible with 64-bit software.
Pros and cons
editA common misconception is that 64-bit architectures are no better than 32-bit architectures unless the computer has more than 4 GB ofrandom-access memory.[35]This is not entirely true:
- Some operating systems and certain hardware configurations limit the physical memory space to 3 GB onIA-32systems, due to much of the 3–4 GB region being reserved for hardware addressing; see3 GB barrier;64-bit architectures can address far more than 4 GB. However, IA-32 processors from thePentium Proonward allow a 36-bitphysicalmemory address space, usingPhysical Address Extension(PAE), which gives a 64 GB physical address range, of which up to 62 GB may be used by main memory; operating systems that support PAE may not be limited to 4 GB of physical memory, even on IA-32 processors. However, drivers and other kernel mode software, more so older versions, may be incompatible with PAE; this has been cited as the reason for 32-bit versions ofMicrosoft Windowsbeing limited to 4 GB of physical RAM[36](although the validity of this explanation has been disputed[37]).
- Some operating systems reserve portions ofprocessaddress spacefor OS use, effectively reducing the total address space available for mapping memory for user programs. For instance, 32-bit Windows reserves 1 or 2 GB (depending on the settings) of the total address space for the kernel, which leaves only 3 or 2 GB (respectively) of the address space available for user mode. This limit is much higher on 64-bit operating systems.
- Memory-mapped filesare becoming more difficult to implement in 32-bit architectures as files of over 4 GB become more common; such large files cannot be memory-mapped easily to 32-bit architectures, as only part of the file can be mapped into the address space at a time, and to access such a file by memory mapping, the parts mapped must be swapped into and out of the address space as needed. This is a problem, as memory mapping, if properly implemented by the OS, is one of the most efficient disk-to-memory methods.
- Some 64-bit programs, such as encoders, decoders and encryption software, can benefit greatly from 64-bit registers,[citation needed]while the performance of other programs, such as 3D graphics-oriented ones, remains unaffected when switching from a 32-bit to a 64-bit environment.[citation needed]
- Some 64-bit architectures, such asx86-64andAArch64,support more general-purpose registers than their 32-bit counterparts (although this is not due specifically to the word length). This leads to a significant speed increase for tight loops since the processor does not have to fetch data from the cache or main memory if the data can fit in the available registers.
- Example inC:
inta,b,c,d,e;
for(a=0;a<100;a++){
b=a;
c=b;
d=c;
e=d;
}
- This code first creates 5 values: a, b, c, d and e; and then puts them in a loop. During the loop, this code changes the value of b to the value of a, the value of c to the value of b, the value of d to the value of c and the value of e to the value of d. This has the same effect as changing all the values to a.
- If a processor can keep only two or three values or variables in registers, it would need to move some values between memory and registers to be able to process variables d and e also; this is a process that takes many CPU cycles. A processor that can hold all values and variables in registers can loop through them with no need to move data between registers and memory for each iteration. This behavior can easily be compared with virtual memory, although any effects are contingent on the compiler.
The main disadvantage of 64-bit architectures is that, relative to 32-bit architectures, the same data occupies more space in memory (due to longer pointers and possibly other types, and alignment padding). This increases the memory requirements of a given process and can have implications for efficient processor cache use. Maintaining a partial 32-bit model is one way to handle this, and is in general reasonably effective. For example, thez/OSoperating system takes this approach, requiring program code to reside in 31-bit address spaces (the high order bit is not used in address calculation on the underlying hardware platform) while data objects can optionally reside in 64-bit regions. Not all such applications require a large address space or manipulate 64-bit data items, so these applications do not benefit from these features.
Software availability
editx86-based 64-bit systems sometimes lack equivalents ofsoftwarethat is written for 32-bit architectures. The most severe problem in Microsoft Windows is incompatibledevice driversfor obsolete hardware. Most 32-bit application software can run on a 64-bit operating system in acompatibility mode,also termed anemulationmode, e.g., MicrosoftWoW64Technology for IA-64 and AMD64. The 64-bit Windows Native Mode[38]driver environment runs atop 64-bitNTDLL.DLL,which cannot call 32-bit Win32 subsystem code (often devices whose actual hardware function is emulated in user mode software, like Winprinters). Because 64-bit drivers for most devices were unavailable until early 2007 (Vista x64), using a 64-bit version of Windows was considered a challenge. However, the trend has since moved toward 64-bit computing, more so as memory prices dropped and the use of more than 4 GB of RAM increased. Most manufacturers started to provide both 32-bit and 64-bit drivers for new devices, so unavailability of 64-bit drivers ceased to be a problem. 64-bit drivers were not provided for many older devices, which could consequently not be used in 64-bit systems.
Driver compatibility was less of a problem with open-source drivers, as 32-bit ones could be modified for 64-bit use. Support for hardware made before early 2007, was problematic for open-source platforms,[citation needed]due to the relatively small number of users.
64-bit versions of Windows cannot run16-bit software.However, most 32-bit applications will work well. 64-bit users are forced to install avirtual machineof a 16- or 32-bit operating system to run 16-bit applications or use one of the alternatives forNTVDM.[39]
Mac OS X 10.4"Tiger" andMac OS X 10.5"Leopard" had only a 32-bit kernel, but they can run 64-bit user-mode code on 64-bit processors.Mac OS X 10.6"Snow Leopard" had both 32- and 64-bit kernels, and, on most Macs, used the 32-bit kernel even on 64-bit processors. This allowed those Macs to support 64-bit processes while still supporting 32-bit device drivers; although not 64-bit drivers and performance advantages that can come with them.Mac OS X 10.7"Lion" ran with a 64-bit kernel on more Macs, andOS X 10.8"Mountain Lion" and latermacOSreleases only have a 64-bit kernel. On systems with 64-bit processors, both the 32- and 64-bit macOS kernels can run 32-bit user-mode code, and all versions of macOS up to macOS Mojave (10.14) include 32-bit versions of libraries that 32-bit applications would use, so 32-bit user-mode software for macOS will run on those systems. The 32-bit versions of libraries have been removed by Apple in macOS Catalina (10.15).
Linuxand most otherUnix-likeoperating systems, and theCandC++toolchainsfor them, have supported 64-bit processors for many years. Many applications and libraries for those platforms areopen-source software,written in C and C++, so that if they are 64-bit-safe, they can be compiled into 64-bit versions. This source-based distribution model, with an emphasis on frequent releases, makes availability of application software for those operating systems less of an issue.
64-bit data models
editIn 32-bit programs,pointersand data types such as integers generally have the same length. This is not necessarily true on 64-bit machines.[40][41][42]Mixing data types in programming languages such asCand its descendants such asC++andObjective-Cmay thus work on 32-bit implementations but not on 64-bit implementations.
In many programming environments for C and C-derived languages on 64-bit machines,int
variables are still 32 bits wide, but long integers and pointers are 64 bits wide. These are described as having anLP64data model,which is an abbreviation of "Long, Pointer, 64".[43][44]Other models are theILP64data model in which all three data types are 64 bits wide,[45][44]and even theSILP64model whereshortintegers are also 64 bits wide.[46][47]However, in most cases the modifications required are relatively minor and straightforward, and many well-written programs can simply be recompiled for the new environment with no changes. Another alternative is theLLP64model, which maintains compatibility with 32-bit code by leaving bothint
andlong
as 32-bit.[48][44]LLrefers to thelong long integertype, which is at least 64 bits on all platforms, including 32-bit environments.
There are also systems with 64-bit processors using anILP32data model, with the addition of 64-bit long long integers; this is also used on many platforms with 32-bit processors. This model reduces code size and the size of data structures containing pointers, at the cost of a much smaller address space, a good choice for some embedded systems. For instruction sets such as x86 and ARM in which the 64-bit version of the instruction set has more registers than does the 32-bit version, it provides access to the additional registers without the space penalty. It is common in 64-bit RISC machines,[citation needed]explored in x86 asx32 ABI,and has recently been used in theApple Watch Series 4and 5.[49][50]
Data model |
short int |
int | long int |
long long |
Pointer, size_t |
Sample operating systems |
---|---|---|---|---|---|---|
ILP32 | 16 | 32 | 32 | 64 | 32 | x32 andarm64ilp32ABIs on Linux systems; MIPS N32 ABI. |
LLP64 | 16 | 32 | 32 | 64 | 64 | Microsoft Windows(x86-64, IA-64, and ARM64) usingVisual C++;andMinGW |
LP64 | 16 | 32 | 64 | 64 | 64 | MostUnixandUnix-likesystems, e.g.,Solaris,Linux,BSD,macOS.Windowswhen usingCygwin;z/OS |
ILP64 | 16 | 64 | 64 | 64 | 64 | HAL Computer Systemsport of Solaris to theSPARC64 |
SILP64 | 64 | 64 | 64 | 64 | 64 | ClassicUNICOS[46][47](versus UNICOS/mp, etc.) |
Many 64-bit platforms today use anLP64model (including Solaris,AIX,HP-UX,Linux, macOS, BSD, and IBM z/OS). Microsoft Windows uses anLLP64model. The disadvantage of the LP64 model is that storing along
into anint
truncates. On the other hand, converting a pointer to along
will "work" in LP64. In the LLP64 model, the reverse is true. These are not problems which affect fully standard-compliant code, but code is often written with implicit assumptions about the widths of data types. C code should prefer (u
)intptr_t
instead oflong
when casting pointers into integer objects.
A programming model is a choice made to suit a given compiler, and several can coexist on the same OS. However, the programming model chosen as the primary model for the OSapplication programming interface(API) typically dominates.
Another consideration is the data model used fordevice drivers.Drivers make up the majority of the operating system code in most modern operating systems[citation needed](although many may not be loaded when the operating system is running). Many drivers use pointers heavily to manipulate data, and in some cases have to load pointers of a certain size into the hardware they support fordirect memory access(DMA). As an example, a driver for a 32-bit PCI device asking the device to DMA data into upper areas of a 64-bit machine's memory could not satisfy requests from the operating system to load data from the device to memory above the 4gigabytebarrier, because the pointers for those addresses would not fit into the DMA registers of the device. This problem is solved by having the OS take the memory restrictions of the device into account when generating requests to drivers for DMA, or by using aninput–output memory management unit(IOMMU).
Current 64-bit architectures
editAs of August 2023[update],64-bit architectures for which processors are being manufactured include:
- The 64-bit extension created byAdvanced Micro Devices(AMD) to Intel'sx86architecture (later licensed by Intel); commonly termedx86-64,AMD64,orx64:
- AMD'sAMD64extensions (used inAthlon 64,Opteron,Sempron,Turion 64,Phenom,Athlon II,Phenom II,APU,FX,Ryzen,andEpycprocessors)
- Intel'sIntel 64extensions, used inIntel Core2/i3/i5/i7/i9, someAtom,and newerCeleron,Pentium,andXeonprocessors
- VIA Technologies' 64-bit extensions, used in theVIA Nanoprocessors
- IBM'sPowerPC/Power ISA:
- SPARCV9 architecture:
- Oracle's M8 and S7 processors
- Fujitsu's SPARC64 XII andSPARC64 XIfxprocessors
- IBM'sz/Architecture,a 64-bit version of theESA/390architecture, used in IBM'sIBM Zmainframes:
- MIPS Technologies'MIPS64architecture
- ARM Holdings'AArch64architecture
- Elbrusarchitecture:
- NEC SX architecture
- RISC-V
- ARC
Most architectures of 64 bits that are derived from the same architecture of 32 bits can execute code written for the 32-bit versions natively, with no performance penalty.[citation needed]This kind of support is commonly calledbi-arch supportor more generallymulti-arch support.
See also
editNotes
edit- ^such asfloating-pointnumbers.
References
edit- ^Pentium Processor User's Manual Volume 1: Pentium Processor Data Book(PDF).Intel.1993.
- ^"Cray-1 Computer System Hardware Reference Manual"(PDF).Cray Research.1977.RetrievedOctober 8,2013.
- ^Grimes, Jack; Kohn, Les; Bharadhwaj, Rajeev (July–August 1989)."The Intel i860 64-Bit Processor: A General-Purpose CPU with 3D Graphics Capabilities".IEEE Computer Graphics and Applications.9(4): 85–94.doi:10.1109/38.31467.S2CID38831149.Retrieved2010-11-19.
- ^"i860 Processor Family Programmer's Reference Manual"(PDF).Intel.1991.RetrievedSeptember 12,2019.
- ^"NEC Offers Two High Cost Performance 64-bit RISC Microprocessors"(Press release).NEC.1998-01-20.Retrieved2011-01-09.
Versions of the VR4300 processor are widely used in consumer and office automation applications, including the popular Nintendo 64™ video game and advanced laser printers such as the recently announced, award-winning Hewlett-Packard LaserJet 4000 printer family.
- ^MIPS R5000 Microprocessor Technical Backgrounder(PDF),MIPS Technologies, Inc,retrieved2024-08-19
- ^"i860 64-Bit Microprocessor".Intel. 1989.Retrieved30 November2010.
- ^"Atari Jaguar History".AtariAge.
- ^Joe Heinrich (1994).MIPS R4000 Microprocessor User's Manual(2nd ed.). MIPS Technologies, Inc.
- ^Richard L. Sites (1992). "Alpha AXP Architecture".Digital Technical Journal.4(4). Digital Equipment Corporation.
- ^Gwennap, Linley (3 October 1994). "UltraSparc Unleashes SPARC Performance".Microprocessor Report.8(13). MicroDesign Resources.
- ^Bishop, J. W.; et al. (July 1996). "PowerPC AS A10 64-bit RISC microprocessor".IBM Journal of Research and Development.40(4). IBM Corporation: 495–505.doi:10.1147/rd.404.0495.
- ^Gwennap, Linley (14 November 1994). "PA-8000 Combines Complexity and Speed".Microprocessor Report.8(15). MicroDesign Resources.
- ^F. P. O'Connell; S. W. White (November 2000). "POWER3: The next generation of PowerPC processors".IBM Journal of Research and Development.44(6). IBM Corporation: 873–884.doi:10.1147/rd.446.0873.
- ^"VIA Unveils Details of Next-Generation Isaiah Processor Core".VIA Technologies, Inc. Archived fromthe originalon 2007-10-11.Retrieved2007-07-18.
- ^"ARMv8 Technology Preview"(PDF).October 31, 2011. Archived fromthe original(PDF)on November 11, 2011.RetrievedNovember 15,2012.
- ^"ARM Launches Cortex-A50 Series, the World's Most Energy-Efficient 64-bit Processors"(Press release).ARM Holdings.Retrieved2012-10-31.
- ^"ARM Keynote: ARM Cortex-A53 and ARM Cortex-A57 64bit ARMv8 processors launched".ARMdevices.net.2012-10-31.
- ^"Synopsys Introduces New 64-bit ARC Processor IP".Archivedfrom the original on 31 March 2022.
- ^Stefan Berka."Unicos Operating System".www.operating-system.org.Archivedfrom the original on 26 November 2010.Retrieved2010-11-19.
- ^Jon "maddog" Hall(Jun 1, 2000)."My Life and Free Software".Linux Journal.
- ^Andi Kleen.Porting Linux to x86-64(PDF).Ottawa Linux Symposium 2001.
Status: The kernel, compiler, tool chain work. The kernel boots and work on simulator and is used for porting of userland and running programs
- ^abJohn Siracusa (September 2009)."Mac OS X 10.6 Snow Leopard: the Ars Technica review".Ars Technica.p. 5.Archivedfrom the original on 9 October 2009.Retrieved2009-09-06.
- ^Joris Evers (5 January 2005)."Microsoft nixes Windows XP for Itanium".Computerworld. Archived fromthe originalon 18 June 2013.Retrieved17 October2017.
- ^"Microsoft Raises the Speed Limit with the Availability of 64-Bit Editions of Windows Server 2003 and Windows XP Professional"(Press release). Microsoft. April 25, 2005.RetrievedSeptember 10,2015.
- ^"UEFI_on_Dell BizClient_Platforms"(PDF).
- ^"AMD64 Programmer's Manual Volume 2: System Programming"(PDF).Advanced Micro Devices. December 2016. p. 120.
- ^"Intel 64 and IA-32 Architectures Software Developer's Manual Volume 3A: System Programming Guide, Part 1"(PDF).Intel. September 2016. p. 4-2.
- ^"Power ISA Version 3.0".IBM.November 30, 2015. p. 983.
- ^"Oracle SPARC Architecture 2015 Draft D1.0.9".Oracle.p. 475.
- ^"ARM Architecture Reference Manual ARMv8, for ARMv8-A architecture profile".pp. D4-1723, D4-1724, D4-1731.
- ^Mashey, John (October 2006)."The Long Road to 64 Bits".ACM Queue.4(8): 85–94.doi:10.1145/1165754.1165766.
- ^"Windows 7: 64 bit vs 32 bit?".W7 Forums.Archivedfrom the original on 5 April 2009.Retrieved2009-04-05.
- ^"Frequently Asked Questions About the Java HotSpot VM".Sun Microsystems, Inc.Archivedfrom the original on 10 May 2007.Retrieved2007-05-03.
- ^"A description of the differences between 32-bit versions of Windows Vista and 64-bit versions of Windows Vista".Retrieved2011-10-14.
- ^Mark Russinovich (2008-07-21)."Pushing the Limits of Windows: Physical Memory".Retrieved2017-03-09.
- ^Chappell, Geoff (2009-01-27)."Licensed Memory in 32-Bit Windows Vista".geoffchappell.com.WP:SPS.Retrieved9 March2017.
- ^"Inside Native Applications".Technet.microsoft.com. 2006-11-01.Archivedfrom the original on 23 October 2010.Retrieved2010-11-19.
- ^Lincoln Spector (August 12, 2013)."Run an old program on a new PC".
- ^Peter Seebach (2006)."Exploring 64-bit development on POWER5: How portable is your code, really?".IBM.
- ^Henry Spencer."The Ten Commandments for C Programmers".
- ^"The Story of Thud and Blunder".Datacenterworks.com.Retrieved2010-11-19.
- ^"ILP32 and LP64 data models and data type sizes".z/OS XL C/C++ Programming Guide.
- ^abc"64-Bit Programming Models".Retrieved2020-06-05.
- ^"Using the ILP64 Interface vs. LP64 Interface".Intel.RetrievedJun 24,2020.
- ^ab"Cray C/C++ Reference Manual".August 1998. Table 9-1. Cray Research systems data type mapping. Archived fromthe originalon October 16, 2013.RetrievedOctober 15,2013.
- ^ab"Cray C and C++ Reference Manual (8.7) S-2179".RetrievedJun 24,2020.
- ^"Abstract Data Models - Windows applications".May 30, 2018.
- ^"ILP32 for AArch64 Whitepaper".ARM Limited. June 9, 2015.Archivedfrom the original on December 30, 2018.RetrievedOctober 9,2018.
- ^"Apple devices in 2018".woachk, security researcher. October 6, 2018.
External links
edit- 64-bit Transition Guide, Mac Developer Library
- Karpov, Andrey."A Collection of Examples of 64-bit Errors in Real Programs".
- Kilgard, Mark J."Is your X code ready for 64-bit?".Archived fromthe originalon June 3, 2001.RetrievedSeptember 26,2012.
- Lessons on development of 64-bit C/C++ applications
- 64-Bit Programming Models: Why LP64?
- AMD64 (EM64T) architecture