TheMormyridae,sometimes called"elephantfish"(more properlyfreshwater elephantfish), are a superfamily ofweakly electric fishin the orderOsteoglossiformesnative toAfrica.[1]It is by far the largest family in the order, with around 200 species. Members of the family can be popular, if challenging,aquariumspecies. These fish have a large brain size and unusually highintelligence.

Freshwater elephantfish
Gnathonemus petersii
Scientific classificationEdit this classification
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Class: Actinopterygii
Order: Osteoglossiformes
Family: Mormyridae
Genera

see text

They are not to be confused with the marine and brackish-watercallorhinchid elephantfish(family Callorhinchidae) of Southern Hemisphere oceans.

Description and biology

edit

The elephantfish are a diverse family, with a wide range of different sizes and shapes. The smallest are just 5 cm (2.0 in) in adult length, while the largest reach up to 1.5 m (4.9 ft). They do, however, have a number of unique features in common. Firstly, theircerebellumis greatly enlarged, enabling them to interpret complex bio-electrical signals,[2]and to the large size of the valve.[3][4]Secondly, an auditoryvesicle(a small bladder) is present inside thelabyrinthof the left and rightinner ears.This vesicle, together with a bag with anotolith(sacculum containing the otolith sagitta), itself communicating to thelagena(containing the otolith asteriscus), is in fact unique among vertebrates, completely independent of the otherorgans;it is neither connected to the labyrinth to which only one otolith bag (theutriculuscontaining the otolithlapillus) is attached, nor is it connected to theswim bladder(except inembryos) of which it has the same histologicalstructure,nor is it therefore related to thepharynx.[5]

Some species possess modifications of their mouthparts to facilitate electrolocating and feeding on smallinvertebratesburied in muddy substrates. The shape and structure of these leads to the popular name "elephant-nosed fish" for those species with particularly prominent mouth extensions. The extensions to the mouthparts usually consist of a fleshy elongation attached to the lower jaw. They are flexible, and equipped with touch, and possibly taste, sensors. The mouth is not protrusible, and the head (including the eyes), the dorsum, and belly are covered by a thin layer of skin that is perforated with small pores leading to electroreceptors.[citation needed]

The retina is called a "grouped retina", an eye structure seen in mormyrids and a few other fishes.[6]Instead of being smooth, their retina is composed of tiny cups, acting like parabolic mirrors. Because of the murky waters they inhabit, the cones in their eyes have adapted to see only red light. The cups are made of four layers of light-reflecting proteins, funneling red light to areas of cones, intensifying its brightness 10-fold, while the rods are hit by light from other wavelengths.[7]Only a singlegonadis present, located on the left side of their body.[8]The Mormyridae and the closely related genusGymnarchusare also unique in being the only vertebrates where the male sperm cell does not have aflagellum.[9]

Electric fields

edit
Mormyromast, a type of electroreceptor found only in mormyrid fishes

Elephantfish possesselectric organsthat generate weakelectric fields,and electroreceptors (ampullae of Lorenzini,knollenorgans,and Mormyromasts) that detect small variations in these electric fields caused by the presence of prey or other objects of differentconductivities.This allows them to sense their environment in turbid waters where vision is impaired by suspended matter.[10][11]

Electric fish can be classified into two types: pulse fish or wave fish. Pulse-type discharges are characterized by long intervals between electric discharges, whereas wave-type discharges occur when the interval between consecutive pulses is so brief that the discharges fuse together to form a wave.[12]Theelectric dischargeis produced from an electric organ that evolved frommuscle,as can also be seen ingymnotiformelectric fish, electric rays, and skates. Theconvergent evolutionbetween the South American gymnotiforms and the African Mormyridae is remarkable, with the electric organ being produced by the substitution of the sameamino acidin the same voltage-gated sodium channel despite the two groups of fish being on different continents and the evolution of the electric sense organ being separated in time by around 60 million years.[13]Convergent changes to other key transcription factors and regulatory pathways in both Gymnotiforms and Mormyridae also contributed to the evolution of the electric sense organ.[14]

Classification

edit

The roughly 221 species of elephantfish which are sometimes grouped into two subfamilies, theMormyrinaeandPetrocephalinae.The latter has only a single genus:

Phylogeny[15][16]
Mormyridae

Eschmeyer's Catalog of Fishesclassifies the family as follows[17] FamilyMormyridae

In culture

edit
Bronze figurine ofOxyrhynchusfish, Late Period-Ptolemaic Egypt

TheMedjedwas a sacred fish in Ancient Egypt. At the city of Per-Medjed, better known asOxyrhynchus,whose name means "sharp-nosed" after the fish, archaeologists have found fishes depicted as bronze figurines, mural paintings, or wooden coffins in the shape of fishes with downturned snouts, with horned sun-disc crowns like those of the goddessHathor.The depictions have been described as resembling members of the genusMormyrus.[19]

References

edit
  1. ^Froese, Rainer;Pauly, Daniel, eds. (2017)."Family Mormyridae".FishBase.
  2. ^Chapman, Lauren J.; Hulen, Kevin G. (2001). "Implications of hypoxia for the brain size and gill morphometry of mormyrid fishes".Journal of Zoology.254(4): 461–472.doi:10.1017/S0952836901000966.
  3. ^Glickstein, M.; Voogd, J. (2009). "Cerebellum: Evolution and Comparative Anatomy".Encyclopedia of Neuroscience:743–756.doi:10.1016/B978-008045046-9.00947-5.ISBN978-0-08-045046-9.
  4. ^Wullimann, Mario F.; Rooney, Donal J. (1990)."A direct cerebello-telencephalic projection in an electrosensory mormyrid fish"(PDF).Brain Research.520(1–2): 354–357.doi:10.1016/0006-8993(90)91730-5.PMID1698507.S2CID12951395.
  5. ^Orts, S. (1967): Contribution to the comparative anatomy and systematics of Mormyroïdes (RAOS Prize 1966) - Ann. Acad. Roy. Sc. d'Outre Mer, Classe des Sc. Nat. et Méd., Bruxelles, XVII, 3, 1-89, 30 figs, 3 tabs, 8 pls, 1967 (in French)
  6. ^Francke, Mike; Kreysing, Moritz; Mack, Andreas; et al. (2014). "Grouped retinae and tapetal cups in some Teleostian fish: Occurrence, structure, and function".Progress in Retinal and Eye Research.38:43–69.doi:10.1016/j.preteyeres.2013.10.001.PMID24157316.S2CID39081714.
  7. ^Elephant-Nosed Fish Has Funky Eyes, Too
  8. ^Communication Behavior and Sensory Mechanisms in Weakly Electric Fishes
  9. ^Miller, S.; Sullivan, J."Mormyridae Bonaparte, 1831".Mormyridae - African weakly electric fishes.Retrieved20 October2023.
  10. ^Bustami, H.P. (2007). Smart elephant fish navigates in darkness with electric fields.life-of-science.net
  11. ^The generation of these electric fields and their use in providing the fish with additional sensory input from the environment is the subject of considerable scientific research, as is research into communication between and within species
  12. ^Caputi, A. A. (1999). "The electric organ discharge of pulse gymnotiforms: the transformation of a simple impulse into a complex spatiotemporal electromotor pattern".Journal of Experimental Biology.202(# (Pt 10)): 1229–1241.doi:10.1242/jeb.202.10.1229.PMID10210664.
  13. ^Arnegard, M. E.; Zwickl, D. J.; Lu, Y.; Zakon, H. H. (2010-12-02)."Old gene duplication facilitates origin and diversification of an innovative communication system--twice".Proceedings of the National Academy of Sciences.107(51): 22172–22177.doi:10.1073/pnas.1011803107.PMC3009798.PMID21127261.
  14. ^Gallant, Jason R.; Traeger, Lindsay L.; Volkening, Jeremy D.; Moffett, Howell; Chen, Po-Hao; Novina, Carl D.; Phillips, George N.; Anand, Rene; Wells, Gregg B.; Pinch, Matthew; Güth, Robert (2014-06-27)."Genomic basis for the convergent evolution of electric organs".Science.344(6191): 1522–1525.Bibcode:2014Sci...344.1522G.doi:10.1126/science.1254432.PMC5541775.PMID24970089.
  15. ^Lavoué, S.; Sullivan, J. P.; Hopkins, C. D. (2003)."Phylogenetic utility of the first two introns of the S7 ribosomal protein gene in African electric fishes (Mormyroidea: Teleostei) and congruence with other molecular markers".Biological Journal of the Linnean Society.78(2): 273–292.doi:10.1046/j.1095-8312.2003.00170.x.
  16. ^Sullivan, J. P.; Lavoué, S.; Hopkins, C. D. (2000)."Molecular systematics of the African electric fishes (Mormyroidea: Teleostei) and a model for the evolution of their electric organs".Journal of Experimental Biology.203(Pt 4): 665–683.doi:10.1242/jeb.203.4.665.PMID10648209.
  17. ^Eschmeyer, William N.;Fricke, Ron & van der Laan, Richard (eds.)."Genera in the family Mormyridae".Catalog of Fishes.California Academy of Sciences.Retrieved3 November2024.
  18. ^Sullivan, J. P.; Lavoué, S.; Hopkins, C. D. (2016)."Cryptomyrus:a new genus of Mormyridae (Teleostei, Osteoglossomorpha) with two new species from Gabon, West-Central Africa ".ZooKeys(561): 117–150.Bibcode:2016ZooK..561..117S.doi:10.3897/zookeys.561.7137.PMC4768369.PMID27006619.
  19. ^Van Neer, Wim; Gonzalez, Jérôme (2019). "A Late Period fish deposit at Oxyrhynchus (el-Bahnasa, Egypt)". In Peters, Joris; McGlynn, George; Goebel, Veronika (eds.).Documenta Archaeobiologiae Animals: Cultural Identifiers In Ancient Societies?(PDF).Rahden, Westfalia, Germany: Verlag Marie Leidorf.ISBN978-3-89646-674-7.
edit