Mycis a family ofregulator genesandproto-oncogenesthatcodefortranscription factors.TheMycfamily consists of three related human genes:c-myc(MYC),l-myc(MYCL), andn-myc(MYCN).c-myc(also sometimes referred to asMYC) was the first gene to be discovered in this family, due tohomology with the viral genev-myc.

MYC proto-oncogene, bHLH transcription factor
Identifiers
SymbolMYC
Alt. symbolsc-Myc, v-myc
NCBI gene4609
HGNC7553
OMIM190080
RefSeqNM_001354870.1
UniProtP01106
Other data
LocusChr. 8q24.21
WikidataQ20969939
Search for
StructuresSwiss-model
DomainsInterPro
MYCL proto-oncogene, bHLH transcription factor
Identifiers
SymbolMYCL
Alt. symbolsLMYC, MYCL1, bHLHe38, L-Myc, v-myc
NCBI gene4610
HGNC7555
OMIM164850
RefSeqNM_005376
UniProtP12524
Other data
LocusChr. 1p34.2
WikidataQ18029714
Search for
StructuresSwiss-model
DomainsInterPro
MYCN proto-oncogene, bHLH transcription factor
Identifiers
SymbolMYCN
NCBI gene4613
HGNC7559
OMIM164840
RefSeqNM_005378
UniProtV
Other data
LocusChr. 2p24.3
WikidataQ14906753
Search for
StructuresSwiss-model
DomainsInterPro

Incancer,c-mycis oftenconstitutively(persistently) expressed. This leads to the increased expression of many genes, some of which are involved incell proliferation,contributing to the formation of cancer.[1]A common humantranslocationinvolvingc-mycis critical to the development of most cases ofBurkitt lymphoma.[2]Constitutive upregulation ofMycgenes have also been observed in carcinoma of the cervix, colon, breast, lung and stomach.[1]

Myc is thus viewed as a promising target for anti-cancer drugs.[3]Unfortunately, Myc possesses several features that have rendered it difficult to drug to date, such that any anti-cancer drugs aimed at inhibiting Myc may continue to require perturbing the protein indirectly, such as by targeting themRNAfor the protein rather than via asmall moleculethat targets the protein itself.[4][5]

c-Myc also plays an important role instem cellbiology and was one of the originalYamanaka factorsused toreprogramsomatic cellsintoinduced pluripotent stem cells.[6]

In thehuman genome,C-mycis located onchromosome 8and is believed to regulate expression of 15% of all genes[7]through binding on enhancer box sequences (E-boxes).

In addition to its role as a classical transcription factor,N-mycmay recruithistone acetyltransferases(HATs). This allows it to regulate global chromatin structure via histone acetylation.[8]

Discovery

edit

TheMycfamily was first established after discovery ofhomologybetween an oncogene carried by the Avianvirus,Myelocytomatosis (v-myc;P10395) and a human gene over-expressed in various cancers,cellular Myc (c-Myc).[citation needed]Later, discovery of further homologous genes in humans led to the addition ofn-Mycandl-Mycto the family of genes.[9]

The most frequently discussed example ofc-Mycas a proto-oncogene is its implication inBurkitt's lymphoma.In Burkitt's lymphoma, cancer cells showchromosomal translocations,most commonly betweenchromosome 8andchromosome 14[t(8;14)]. This causesc-Mycto be placed downstream of the highly active immunoglobulin (Ig) promoter region, leading to overexpression ofMyc.

Structure

edit

The protein products ofMycfamily genes all belong to the Myc family of transcription factors, which containbHLH(basic helix-loop-helix) and LZ (leucine zipper) structural motifs. The bHLH motif allows Myc proteins to bind withDNA,while the leucine zipper TF-binding motif allows dimerization withMax,another bHLH transcription factor.

MycmRNAcontains anIRES(internal ribosome entry site) that allows the RNA to be translated into protein when5' cap-dependent translation is inhibited, such as during viral infection.

Function

edit

Myc proteins aretranscription factorsthat activate expression of many pro-proliferative genes through binding enhancer box sequences (E-boxes) and recruitinghistone acetyltransferases(HATs). Myc is thought to function by upregulating transcript elongation of actively transcribed genes through the recruitment oftranscriptional elongationfactors.[10]It can also act as a transcriptional repressor. By binding Miz-1 transcription factor and displacing thep300co-activator,it inhibits expression of Miz-1 target genes. In addition, myc has a direct role in the control of DNA replication.[11]This activity could contribute to DNA amplification in cancer cells.[12]

Myc is activated upon variousmitogenic signalssuch as serum stimulation or byWnt,ShhandEGF(via theMAPK/ERK pathway).[13] By modifying the expression of its target genes, Myc activation results in numerous biological effects. The first to be discovered was its capability to drivecell proliferation(upregulates cyclins, downregulates p21), but it also plays a very important role in regulatingcell growth(upregulates ribosomal RNA and proteins),apoptosis(downregulatesBcl-2), differentiation, andstem cellself-renewal. Nucleotide metabolism genes are upregulated by Myc,[14]which are necessary for Myc induced proliferation[15]or cell growth.[16]

There have been several studies that have clearly indicated Myc's role in cell competition.[17]

A major effect of c-myc isB cellproliferation, and gain of MYC has been associated with B cell malignancies and their increased aggressiveness, including histological transformation.[18]In B cells, Myc acts as a classical oncogene by regulating a number of pro-proliferative and anti-apoptotic pathways, this also includes tuning of BCR signaling and CD40 signaling in regulation of microRNAs (miR-29, miR-150, miR-17-92).[19]

c-Myc inducesMTDH(AEG-1) gene expression and in turn itself requires AEG-1 oncogene for its expression.

Myc-nick

edit
Myc-Nick

Myc-nick is a cytoplasmic form of Myc produced by a partial proteolytic cleavage of full-length c-Myc and N-Myc.[20]Myc cleavage is mediated by thecalpainfamily of calcium-dependent cytosolic proteases.

The cleavage of Myc by calpains is a constitutive process but is enhanced under conditions that require rapid downregulation of Myc levels, such as during terminal differentiation. Upon cleavage, theC-terminusof Myc (containing theDNA binding domain) is degraded, while Myc-nick, theN-terminalsegment 298-residue segment remains in thecytoplasm.Myc-nick contains binding domains forhistone acetyltransferasesand forubiquitin ligases.

The functions of Myc-nick are currently under investigation, but this new Myc family member was found to regulate cell morphology, at least in part, by interacting withacetyl transferasesto promote the acetylation ofα-tubulin.Ectopic expressionof Myc-nick accelerates the differentiation of committedmyoblastsinto muscle cells.

Clinical significance

edit

A large body of evidence shows that Myc genes and proteins are highly relevant for treating tumors.[9]Except for early response genes, Myc universally upregulates gene expression. Furthermore, the upregulation is nonlinear. Genes for which expression is already significantly upregulated in the absence of Myc are strongly boosted in the presence of Myc, whereas genes for which expression is low in the absence Myc get only a small boost when Myc is present.[6]

Inactivation of SUMO-activating enzyme (SAE1/SAE2) in the presence of Myc hyperactivation results in mitotic catastrophe and cell death in cancer cells. Hence inhibitors ofSUMOylationmay be a possible treatment for cancer.[21]

Amplification of the MYC gene was found in a significant number of epithelialovarian cancercases.[22]In TCGA datasets, the amplification of Myc occurs in several cancer types, including breast, colorectal, pancreatic, gastric, and uterine cancers.[23]

In the experimental transformation process of normal cells into cancer cells, the MYC gene can cooperate with the RAS gene.[24][25]

Expression of Myc is highly dependent onBRD4function in some cancers.[26][27]BET inhibitorshave been used to successfully block Myc function in pre-clinical cancer models and are currently being evaluated in clinical trials.[28]

MYC expression is controlled by a wide variety of noncoding RNAs, includingmiRNA,lncRNA,andcircRNA.Some of these RNAs have been shown to be specific for certain types of human tissues and tumors.[29]Changes in the expression of such RNAs can potentially be used to develop targeted tumor therapy.

MYC rearrangements

edit

MYCchromosomal rearrangements(MYC-R) occur in 10% to 15% ofdiffuse large B-cell lymphoma(DLBCLs), an aggressiveNon-Hodgkin Lymphoma(NHL). Patients withMYC-R have inferior outcomes and can be classified as single-hit, when they only haveMYC-R; as double hit when the rearrangement is accompanied by a translocation ofBCL2orBCL6;and as triple hit whenMYC-R includes bothBCL2andBCL6.Double and triple hit lymphoma have been recently classified as high-grade B-cell lymphoma (HGBCL) and it is associated with a poor prognosis.[30]

MYC-R in DLBCL/HGBCL is believed to arise through the aberrant activity of activation-induced cytidine deaminase (AICDA), which facilitates somatic hypermutation (SHM) and class-switch recombination (CSR).[31]Although AICDA primarily targets IG loci for SHM and CSR, its off-target mutagenic effects can impact lymphoma-associated oncogenes likeMYC,potentially leading to oncogenic rearrangements. The breakpoints inMYCrearrangements show considerable variability within theMYCregion. These breakpoints may occur within the so-called “genic cluster,” a region spanning approximately 1.5 kb upstream of the transcription start site, as well as the first exon and intron ofMYC.[32]

Fluorescencein situhybridization(FISH) has become a routine practice in many clinical laboratories for lymphoma characterization. A break-apart (BAP) FISH probe is commonly utilized for the detection ofMYC-R due to the variability of breakpoints in theMYClocus and the diversity of rearrangement partners, including immunoglobulin (IG) and non-IG partners (i.e.BCL2/BCL6). TheMYCBAP probe includes a red and a green probe which hybridize 5’ and 3’ to theMYCgen, respectively. In an intactMYClocus, these probes yield a fusion signal. WhenMYC-R occur, two types of signals can be observed:

  • Balanced patterns: These patterns present separate red and green signals.
  • Unbalanced patterns: When isolated red or green signals in the absence of the corresponding green or red signal is observed. UnbalancedMYC-R are frequently associated with increasedMYCexpression.

There is a large variability in the interpretation of unbalancedMYCBAP results among the scientists, which can impact diagnostic classification and therapeutic management of the patients.[33][34]

Animal models

edit

InDrosophilaMyc is encoded by the diminutive locus, (which was known to geneticists prior to 1935).[35]Classical diminutive alleles resulted in a viable animal with small body size. Drosophila has subsequently been used to implicate Myc in cell competition,[36]endoreplication,[37]and cell growth.[38]

During the discovery of Myc gene, it was realized that chromosomes that reciprocally translocate to chromosome 8 containedimmunoglobulingenes at the break-point. To study the mechanism of tumorigenesis in Burkitt lymphoma by mimicking expression pattern of Myc in these cancer cells, transgenic mouse models were developed. Myc gene placed under the control ofIgMheavy chain enhancer in transgenic mice gives rise to mainly lymphomas. Later on, in order to study effects of Myc in other types of cancer, transgenic mice that overexpress Myc in different tissues (liver, breast) were also made. In all these mouse models overexpression of Myc causes tumorigenesis, illustrating the potency of Myc oncogene. In a study with mice, reduced expression of Myc was shown to induce longevity, with significantly extended median and maximum lifespans in both sexes and a reduced mortality rate across all ages, better health, cancer progression was slower, better metabolism and they had smaller bodies. Also, Less TOR, AKT, S6K and other changes in energy and metabolic pathways (such as AMPK, more oxygen consumption, more body movements, etc.). The study by John M. Sedivy and others used Cre-Loxp -recombinase to knockout one copy of Myc and this resulted in a "Haplo-insufficient" genotype noted as Myc+/-. The phenotypes seen oppose the effects of normal aging and are shared with many other long-lived mouse models such as CR (calorie restriction) ames dwarf, rapamycin, metformin and resveratrol. One study found that Myc andp53genes were key to the survival ofchronic myeloid leukaemia(CML) cells. Targeting Myc and p53 proteins with drugs gave positive results on mice with CML.[39][40]

Relationship to stem cells

edit

Mycgenes play a number of normal roles in stem cells including pluripotent stem cells. In neural stem cells, N-Myc promotes a rapidly proliferative stem cell and precursor-like state in the developing brain, while inhibiting differentiation.[41]In hematopoietic stem cells, Myc controls the balance between self-renewal and differentiation.[42]In particular, long-term hematopoietic stem cells (LT-HSCs) express low levels of c-Myc, ensuring self-renewal. Enforced expression of c-Myc in LT-HSCs promotes differentiation at the expense of self-renewal, resulting in stem cell exhaustion.[42]In pathological states and specifically in acute myeloid leukemia, oxidant stress can trigger higher levels of Myc expression that affects the behavior of leukemia stem cells.[43]

c-Mycplays a major role in the generation ofinduced pluripotent stem cells(iPSCs). It is one of the original factors discovered by Yamanaka et al. to encourage cells to return to a 'stem-like' state alongside transcription factorsOct4,Sox2andKlf4.It has since been shown that it is possible to generate iPSCs withoutc-Myc.[44]

Interactions

edit

Myc has been shown tointeractwith:

Overview of signal transduction pathways involved inapoptosis.

See also

edit

References

edit
  1. ^ab"Myc".NCBI.
  2. ^Finver SN, Nishikura K, Finger LR, Haluska FG, Finan J, Nowell PC, Croce CM (May 1988)."Sequence analysis of theMyconcogene involved in the t(8;14)(q24;q11) chromosome translocation in a human leukemia T-cell line indicates that putative regulatory regions are not altered ".Proceedings of the National Academy of Sciences of the United States of America.85(9):3052–6.Bibcode:1988PNAS...85.3052F.doi:10.1073/pnas.85.9.3052.PMC280141.PMID2834731.
  3. ^Begley S (2013-01-09)."DNA pioneer James Watson takes aim at cancer establishments".Reuters.
  4. ^Carabet LA, Rennie PS, Cherkasov A (December 2018)."Therapeutic Inhibition of Myc in Cancer. Structural Bases and Computer-Aided Drug Discovery Approaches".International Journal of Molecular Sciences.20(1): 120.doi:10.3390/ijms20010120.PMC6337544.PMID30597997.
  5. ^Dang CV, Reddy EP, Shokat KM,Soucek L(August 2017)."Drugging the 'undruggable' cancer targets".Nature Reviews. Cancer.17(8):502–508.doi:10.1038/nrc.2017.36.PMC5945194.PMID28643779.
  6. ^abNie Z, Hu G, Wei G, Cui K, Yamane A, Resch W, Wang R, Green DR, Tessarollo L, Casellas R, Zhao K, Levens D (September 2012)."c-Myc is a universal amplifier of expressed genes in lymphocytes and embryonic stem cells".Cell.151(1):68–79.doi:10.1016/j.cell.2012.08.033.PMC3471363.PMID23021216.
  7. ^Gearhart J, Pashos EE, Prasad MK (October 2007). "Pluripotency redux--advances in stem-cell research".The New England Journal of Medicine.357(15):1469–72.doi:10.1056/NEJMp078126.PMID17928593.
  8. ^Cotterman R, Jin VX, Krig SR, Lemen JM, Wey A, Farnham PJ, Knoepfler PS (December 2008)."N-Myc regulates a widespread euchromatic program in the human genome partially independent of its role as a classical transcription factor".Cancer Research.68(23):9654–62.doi:10.1158/0008-5472.CAN-08-1961.PMC2637654.PMID19047142.
  9. ^abWolf E, Eilers M (2020)."Targeting MYC Proteins for Tumor Therapy".Annual Review of Cancer Biology.4:61–75.doi:10.1146/annurev-cancerbio-030518-055826.
  10. ^Rahl PB, Young RA (January 2014)."MYC and transcription elongation".Cold Spring Harbor Perspectives in Medicine.4(1): a020990.doi:10.1101/cshperspect.a020990.PMC3869279.PMID24384817.
  11. ^Dominguez-Sola D, Ying CY, Grandori C, Ruggiero L, Chen B, Li M, Galloway DA, Gu W, Gautier J, Dalla-Favera R (July 2007). "Non-transcriptional control of DNA replication by c-Myc".Nature.448(7152):445–51.Bibcode:2007Natur.448..445D.doi:10.1038/nature05953.PMID17597761.S2CID4422771.
  12. ^Denis N, Kitzis A, Kruh J, Dautry F, Corcos D (August 1991). "Stimulation of methotrexate resistance and dihydrofolate reductase gene amplification by c-myc".Oncogene.6(8):1453–7.PMID1886715.
  13. ^Campisi J, Gray HE, Pardee AB, Dean M, Sonenshein GE (1984). "Cell-cycle control of c-myc but not c-ras expression is lost following chemical transformation".Cell.36(2):241–7.doi:10.1016/0092-8674(84)90217-4.PMID6692471.S2CID29661004.
  14. ^Liu YC, Li F, Handler J, Huang CR, Xiang Y, Neretti N, Sedivy JM, Zeller KI, Dang CV (July 2008)."Global regulation of nucleotide biosynthetic genes by c-Myc".PLOS ONE.3(7): e2722.Bibcode:2008PLoSO...3.2722L.doi:10.1371/journal.pone.0002722.PMC2444028.PMID18628958.
  15. ^Mannava S, Grachtchouk V, Wheeler LJ, Im M, Zhuang D, Slavina EG, Mathews CK, Shewach DS, Nikiforov MA (August 2008)."Direct role of nucleotide metabolism in C-MYC-dependent proliferation of melanoma cells".Cell Cycle.7(15):2392–400.doi:10.4161/cc.6390.PMC3744895.PMID18677108.
  16. ^Aughey GN, Grice SJ, Liu JL (February 2016)."The Interplay between Myc and CTP Synthase in Drosophila".PLOS Genetics.12(2): e1005867.doi:10.1371/journal.pgen.1005867.PMC4759343.PMID26889675.
  17. ^Clavería C, Giovinazzo G, Sierra R, Torres M (August 2013). "Myc-driven endogenous cell competition in the early mammalian embryo".Nature.500(7460):39–44.Bibcode:2013Natur.500...39C.doi:10.1038/nature12389.PMID23842495.S2CID4414411.
  18. ^de Alboran IM, O'Hagan RC, Gärtner F, Malynn B, Davidson L, Rickert R, Rajewsky K, DePinho RA, Alt FW (January 2001)."Analysis of C-MYC function in normal cells via conditional gene-targeted mutation".Immunity.14(1):45–55.doi:10.1016/S1074-7613(01)00088-7.PMID11163229.
  19. ^Mendell JT (April 2008)."miRiad roles for the miR-17-92 cluster in development and disease".Cell.133(2):217–22.doi:10.1016/j.cell.2008.04.001.PMC2732113.PMID18423194.
  20. ^Conacci-Sorrell M, Ngouenet C, Eisenman RN (August 2010)."Myc-nick: a cytoplasmic cleavage product of Myc that promotes alpha-tubulin acetylation and cell differentiation".Cell.142(3):480–93.doi:10.1016/j.cell.2010.06.037.PMC2923036.PMID20691906.
  21. ^Kessler JD, Kahle KT, Sun T, Meerbrey KL, Schlabach MR, Schmitt EM, Skinner SO, Xu Q, Li MZ, Hartman ZC, Rao M, Yu P, Dominguez-Vidana R, Liang AC, Solimini NL, Bernardi RJ, Yu B, Hsu T, Golding I, Luo J, Osborne CK, Creighton CJ,Hilsenbeck SG,Schiff R, Shaw CA, Elledge SJ, Westbrook TF (January 2012)."A SUMOylation-dependent transcriptional subprogram is required for Myc-driven tumorigenesis".Science.335(6066):348–53.Bibcode:2012Sci...335..348K.doi:10.1126/science.1212728.PMC4059214.PMID22157079.
  22. ^Ross JS, Ali SM, Wang K, Palmer G, Yelensky R, Lipson D, Miller VA, Zajchowski D, Shawver LK, Stephens PJ (September 2013)."Comprehensive genomic profiling of epithelial ovarian cancer by next generation sequencing-based diagnostic assay reveals new routes to targeted therapies".Gynecologic Oncology.130(3):554–9.doi:10.1016/j.ygyno.2013.06.019.PMID23791828.
  23. ^Chen Y, McGee J, Chen X, Doman TN, Gong X, Zhang Y, Hamm N, Ma X, Higgs RE, Bhagwat SV, Buchanan S, Peng SB, Staschke KA, Yadav V, Yue Y, Kouros-Mehr H (2014)."Identification of druggable cancer driver genes amplified across TCGA datasets".PLOS ONE.9(5): e98293.Bibcode:2014PLoSO...998293C.doi:10.1371/journal.pone.0098293.PMC4038530.PMID24874471.
  24. ^Land H, Parada LF, Weinberg RA (1983). "Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes".Nature.304(5927):596–602.Bibcode:1983Natur.304..596L.doi:10.1038/304596a0.PMID6308472.S2CID2338865.
  25. ^Radner H, el-Shabrawi Y, Eibl RH, Brüstle O, Kenner L, Kleihues P, Wiestler OD (1993). "Tumor induction by ras and myc oncogenes in fetal and neonatal brain: modulating effects of developmental stage and retroviral dose".Acta Neuropathologica.86(5):456–65.doi:10.1007/bf00228580.PMID8310796.S2CID2972931.
  26. ^Fowler T, Ghatak P, Price DH, Conaway R, Conaway J, Chiang CM, Bradner JE, Shilatifard A, Roy AL (2014)."Regulation of MYC expression and differential JQ1 sensitivity in cancer cells".PLOS ONE.9(1): e87003.Bibcode:2014PLoSO...987003F.doi:10.1371/journal.pone.0087003.PMC3900694.PMID24466310.
  27. ^Shi J, Vakoc CR (June 2014)."The mechanisms behind the therapeutic activity of BET bromodomain inhibition".Molecular Cell.54(5):728–36.doi:10.1016/j.molcel.2014.05.016.PMC4236231.PMID24905006.
  28. ^Delmore JE, Issa GC, Lemieux ME, Rahl PB, Shi J, Jacobs HM, Kastritis E, Gilpatrick T, Paranal RM, Qi J, Chesi M, Schinzel AC, McKeown MR, Heffernan TP, Vakoc CR, Bergsagel PL, Ghobrial IM, Richardson PG, Young RA, Hahn WC, Anderson KC, Kung AL, Bradner JE, Mitsiades CS (September 2011)."BET bromodomain inhibition as a therapeutic strategy to target c-Myc".Cell.146(6):904–17.doi:10.1016/j.cell.2011.08.017.PMC3187920.PMID21889194.
  29. ^Stasevich EM, Murashko MM, Zinevich LS, Demin DE, Schwartz AM (July 2021)."The Role of Non-Coding RNAs in the Regulation of the Proto-Oncogene MYC in Different Types of Cancer".Biomedicines.9(8): 921.doi:10.3390/biomedicines9080921.PMC8389562.PMID34440124.
  30. ^Eertink JJ, Zwezerijnen GJ, Wiegers SE, Pieplenbosch S, Chamuleau ME, Lugtenburg PJ, de Jong D, Ylstra B, Mendeville M, Dührsen U, Hanoun C, Hüttmann A, Richter J, Klapper W, Jauw YW, Hoekstra OS, de Vet HC, Boellaard R, Zijlstra JM (24 January 2023)."Baseline radiomics features and MYC rearrangement status predict progression in aggressive B-cell lymphoma".Blood Advances.7(2):214–223.doi:10.1182/bloodadvances.2022008629.PMC9841040.PMID36306337.
  31. ^Lieber MR (June 2016)."Mechanisms of human lymphoid chromosomal translocations".Nature Reviews Cancer.16(6):387–398.doi:10.1038/nrc.2016.40.PMC5336345.PMID27220482.
  32. ^Chong LC, Ben-Neriah S, Slack GW, Freeman C, Ennishi D, Mottok A, Collinge B, Abrisqueta P, Farinha P, Boyle M, Meissner B, Kridel R, Gerrie AS, Villa D, Savage KJ, Sehn LH, Siebert R, Morin RD, Gascoyne RD, Marra MA, Connors JM, Mungall AJ, Steidl C, Scott DW (22 October 2018)."High-resolution architecture and partner genes of MYC rearrangements in lymphoma with DLBCL morphology".Blood Advances.2(20):2755–2765.doi:10.1182/bloodadvances.2018023572.PMC6199666.PMID30348671.
  33. ^Rosenwald A, Bens S, Advani R, Barrans S, Copie-Bergman C, Elsensohn MH, Natkunam Y, Calaminici M, Sander B, Baia M, Smith A, Painter D, Pham L, Zhao S, Ziepert M, Jordanova ES, Molina TJ, Kersten MJ, Kimby E, Klapper W, Raemaekers J, Schmitz N, Jardin F, Stevens WB, Hoster E, Hagenbeek A, Gribben JG, Siebert R, Gascoyne RD, Scott DW, Gaulard P, Salles G, Burton C, de Jong D, Sehn LH, Maucort-Boulch D (10 December 2019). "Prognostic Significance of MYC Rearrangement and Translocation Partner in Diffuse Large B-Cell Lymphoma: A Study by the Lunenburg Lymphoma Biomarker Consortium".Journal of Clinical Oncology.37(35):3359–3368.doi:10.1200/JCO.19.00743.PMID31498031.
  34. ^Gagnon MF, Penheiter AR, Harris F, Sadeghian D, Johnson SH, Karagouga G, McCune A, Zepeda-Mendoza C, Greipp PT, Xu X, Ketterling RP, McPhail ED, King RL, Peterson JF, Vasmatzis G, Baughn LB (19 December 2023)."Unraveling the genomic underpinnings of unbalanced MYC break-apart FISH results using whole genome sequencing analysis".Blood Cancer Journal.13(1): 190.doi:10.1038/s41408-023-00967-8.PMC10730864.PMID38114462.
  35. ^Slizynska H (May 1938)."Salivary Chromosome Analysis of the White-Facet Region of Drosophila Melanogaster".Genetics.23(3):291–9.doi:10.1093/genetics/23.3.291.PMC1209013.PMID17246888.
  36. ^de la Cova C, Abril M, Bellosta P, Gallant P, Johnston LA (April 2004)."Drosophila myc regulates organ size by inducing cell competition".Cell.117(1):107–16.doi:10.1016/S0092-8674(04)00214-4.PMID15066286.S2CID18357397.
  37. ^Maines JZ, Stevens LM, Tong X, Stein D (February 2004). "Drosophila dMyc is required for ovary cell growth and endoreplication".Development.131(4):775–86.doi:10.1242/dev.00932.PMID14724122.S2CID721144.
  38. ^Johnston LA, Prober DA, Edgar BA, Eisenman RN, Gallant P (September 1999)."Drosophila myc regulates cellular growth during development"(PDF).Cell.98(6):779–90.doi:10.1016/S0092-8674(00)81512-3.PMC10176494.PMID10499795.S2CID5215149.Archived fromthe original(PDF)on 2022-04-03.Retrieved2020-03-20.
  39. ^Abraham SA, Hopcroft LE, Carrick E, Drotar ME, Dunn K, Williamson AJ, et al. (June 2016)."Dual targeting of p53 and c-MYC selectively eliminates leukaemic stem cells".Nature.534(7607):341–6.Bibcode:2016Natur.534..341A.doi:10.1038/nature18288.PMC4913876.PMID27281222.
  40. ^"Scientists identify drugs to target 'Achilles heel' of Chronic Myeloid Leukaemia cells".myScience.2016-06-08. Archived fromthe originalon 2018-07-27.Retrieved2016-06-09.
  41. ^Knoepfler PS, Cheng PF, Eisenman RN (October 2002)."N-myc is essential during neurogenesis for the rapid expansion of progenitor cell populations and the inhibition of neuronal differentiation".Genes & Development.16(20):2699–712.doi:10.1101/gad.1021202.PMC187459.PMID12381668.
  42. ^abWilson A, Murphy MJ, Oskarsson T, Kaloulis K, Bettess MD, Oser GM, et al. (November 2004)."c-Myc controls the balance between hematopoietic stem cell self-renewal and differentiation".Genes & Development.18(22):2747–63.doi:10.1101/gad.313104.PMC528895.PMID15545632.
  43. ^Vlahopoulos S, Pan L, Varisli L, Dancik GM, Karantanos T, Boldogh I (Dec 2023)."OGG1 as an Epigenetic Reader Affects NFκB: What This Means for Cancer".Cancers.16(1): 148.doi:10.3390/cancers16010148.PMC10778025.PMID38201575.
  44. ^Takahashi K, Yamanaka S (March 2016). "A decade of transcription factor-mediated reprogramming to pluripotency".Nature Reviews. Molecular Cell Biology.17(3):183–93.doi:10.1038/nrm.2016.8.PMID26883003.S2CID7593915.
  45. ^abcdPark J, Wood MA, Cole MD (March 2002)."BAF53 forms distinct nuclear complexes and functions as a critical c-Myc-interacting nuclear cofactor for oncogenic transformation".Molecular and Cellular Biology.22(5):1307–16.doi:10.1128/mcb.22.5.1307-1316.2002.PMC134713.PMID11839798.
  46. ^abLi H, Lee TH, Avraham H (June 2002)."A novel tricomplex of BRCA1, Nmi, and c-Myc inhibits c-Myc-induced human telomerase reverse transcriptase gene (hTERT) promoter activity in breast cancer".The Journal of Biological Chemistry.277(23):20965–73.doi:10.1074/jbc.M112231200.PMID11916966.
  47. ^Xiong J, Fan S, Meng Q, Schramm L, Wang C, Bouzahza B, Zhou J, Zafonte B, Goldberg ID, Haddad BR, Pestell RG, Rosen EM (December 2003)."BRCA1 inhibition of telomerase activity in cultured cells".Molecular and Cellular Biology.23(23):8668–90.doi:10.1128/mcb.23.23.8668-8690.2003.PMC262673.PMID14612409.
  48. ^Zhou C, Liu J (March 2003). "Inhibition of human telomerase reverse transcriptase gene expression by BRCA1 in human ovarian cancer cells".Biochemical and Biophysical Research Communications.303(1):130–6.doi:10.1016/s0006-291x(03)00318-8.PMID12646176.
  49. ^Wang Q, Zhang H, Kajino K, Greene MI (October 1998). "BRCA1 binds c-Myc and inhibits its transcriptional and transforming activity in cells".Oncogene.17(15):1939–48.doi:10.1038/sj.onc.1202403.PMID9788437.S2CID30771256.
  50. ^abJin Z, Gao F, Flagg T, Deng X (September 2004)."Tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone promotes functional cooperation of Bcl2 and c-Myc through phosphorylation in regulating cell survival and proliferation".The Journal of Biological Chemistry.279(38):40209–19.doi:10.1074/jbc.M404056200.PMID15210690.
  51. ^Kanazawa S, Soucek L, Evan G, Okamoto T, Peterlin BM (August 2003). "c-Myc recruits P-TEFb for transcription, cellular proliferation and apoptosis".Oncogene.22(36):5707–11.doi:10.1038/sj.onc.1206800.PMID12944920.S2CID29519364.
  52. ^Dingar D, Kalkat M, Chan PK, Srikumar T, Bailey SD, Tu WB, Coyaud E, Ponzielli R, Kolyar M, Jurisica I, Huang A, Lupien M, Penn LZ, Raught B (April 2015). "BioID identifies novel c-MYC interacting partners in cultured cells and xenograft tumors".Journal of Proteomics.118(12):95–111.doi:10.1016/j.jprot.2014.09.029.PMID25452129.
  53. ^Brenner C, Deplus R, Didelot C, Loriot A, Viré E, De Smet C, Gutierrez A, Danovi D, Bernard D, Boon T, Pelicci PG, Amati B, Kouzarides T, de Launoit Y, Di Croce L, Fuks F (January 2005)."Myc represses transcription through recruitment of DNA methyltransferase corepressor".The EMBO Journal.24(2):336–46.doi:10.1038/sj.emboj.7600509.PMC545804.PMID15616584.
  54. ^abFuchs M, Gerber J, Drapkin R, Sif S, Ikura T, Ogryzko V, Lane WS, Nakatani Y, Livingston DM (August 2001)."The p400 complex is an essential E1A transformation target".Cell.106(3):297–307.doi:10.1016/s0092-8674(01)00450-0.PMID11509179.S2CID15634637.
  55. ^Roy AL, Carruthers C, Gutjahr T, Roeder RG (September 1993). "Direct role for Myc in transcription initiation mediated by interactions with TFII-I".Nature.365(6444):359–61.Bibcode:1993Natur.365..359R.doi:10.1038/365359a0.PMID8377829.S2CID4354157.
  56. ^Frank SR, Parisi T, Taubert S, Fernandez P, Fuchs M, Chan HM, Livingston DM, Amati B (June 2003)."MYC recruits the TIP60 histone acetyltransferase complex to chromatin".EMBO Reports.4(6):575–80.doi:10.1038/sj.embor.embor861.PMC1319201.PMID12776177.
  57. ^Chang TC, Yu D, Lee YS, Wentzel EA, Arking DE, West KM, Dang CV, Thomas-Tikhonenko A, Mendell JT (January 2008)."Widespread microRNA repression by Myc contributes to tumorigenesis".Nature Genetics.40(1):43–50.doi:10.1038/ng.2007.30.PMC2628762.PMID18066065.
  58. ^Koscianska E, Baev V, Skreka K, Oikonomaki K, Rusinov V, Tabler M, Kalantidis K (2007)."Prediction and preliminary validation of oncogene regulation by miRNAs".BMC Molecular Biology.8:79.doi:10.1186/1471-2199-8-79.PMC2096627.PMID17877811.
  59. ^Ioannidis P, Mahaira LG, Perez SA, Gritzapis AD, Sotiropoulou PA, Kavalakis GJ, Antsaklis AI, Baxevanis CN, Papamichail M (May 2005)."CRD-BP/IMP1 expression characterizes cord blood CD34+ stem cells and affects c-myc and IGF-II expression in MCF-7 cancer cells".The Journal of Biological Chemistry.280(20):20086–93.doi:10.1074/jbc.M410036200.PMID15769738.
  60. ^Gupta S, Davis RJ (October 1994)."MAP kinase binds to the NH2-terminal activation domain of c-Myc".FEBS Letters.353(3):281–5.Bibcode:1994FEBSL.353..281G.doi:10.1016/0014-5793(94)01052-8.PMID7957875.S2CID45404088.
  61. ^Tournier C, Whitmarsh AJ, Cavanagh J, Barrett T, Davis RJ (July 1997)."Mitogen-activated protein kinase kinase 7 is an activator of the c-Jun NH2-terminal kinase".Proceedings of the National Academy of Sciences of the United States of America.94(14):7337–42.Bibcode:1997PNAS...94.7337T.doi:10.1073/pnas.94.14.7337.PMC23822.PMID9207092.
  62. ^Noguchi K, Kitanaka C, Yamana H, Kokubu A, Mochizuki T, Kuchino Y (November 1999)."Regulation of c-Myc through phosphorylation at Ser-62 and Ser-71 by c-Jun N-terminal kinase".The Journal of Biological Chemistry.274(46):32580–7.doi:10.1074/jbc.274.46.32580.PMID10551811.
  63. ^abEwing RM, Chu P, Elisma F, Li H, Taylor P, Climie S, McBroom-Cerajewski L, Robinson MD, O'Connor L, Li M, Taylor R, Dharsee M, Ho Y, Heilbut A, Moore L, Zhang S, Ornatsky O, Bukhman YV, Ethier M, Sheng Y, Vasilescu J, Abu-Farha M, Lambert JP, Duewel HS, Stewart II, Kuehl B, Hogue K, Colwill K, Gladwish K, Muskat B, Kinach R, Adams SL, Moran MF, Morin GB, Topaloglou T, Figeys D (2007)."Large-scale mapping of human protein-protein interactions by mass spectrometry".Molecular Systems Biology.3:89.doi:10.1038/msb4100134.PMC1847948.PMID17353931.
  64. ^abMcMahon SB, Wood MA, Cole MD (January 2000)."The essential cofactor TRRAP recruits the histone acetyltransferase hGCN5 to c-Myc".Molecular and Cellular Biology.20(2):556–62.doi:10.1128/mcb.20.2.556-562.2000.PMC85131.PMID10611234.
  65. ^abMcMahon SB, Van Buskirk HA, Dugan KA, Copeland TD, Cole MD (August 1998)."The novel ATM-related protein TRRAP is an essential cofactor for the c-Myc and E2F oncoproteins".Cell.94(3):363–74.doi:10.1016/s0092-8674(00)81479-8.PMID9708738.S2CID17693834.
  66. ^abCheng SW, Davies KP, Yung E, Beltran RJ, Yu J, Kalpana GV (May 1999). "c-MYC interacts with INI1/hSNF5 and requires the SWI/SNF complex for transactivation function".Nature Genetics.22(1):102–5.doi:10.1038/8811.PMID10319872.S2CID12945791.
  67. ^abMac Partlin M, Homer E, Robinson H, McCormick CJ, Crouch DH, Durant ST, Matheson EC, Hall AG, Gillespie DA, Brown R (February 2003)."Interactions of the DNA mismatch repair proteins MLH1 and MSH2 with c-MYC and MAX".Oncogene.22(6):819–25.doi:10.1038/sj.onc.1206252.PMID12584560.
  68. ^Blackwood EM, Eisenman RN (March 1991). "Max: a helix-loop-helix zipper protein that forms a sequence-specific DNA-binding complex with Myc".Science.251(4998):1211–7.Bibcode:1991Sci...251.1211B.doi:10.1126/science.2006410.PMID2006410.
  69. ^Lee CM, Onésime D, Reddy CD, Dhanasekaran N, Reddy EP (October 2002)."JLP: A scaffolding protein that tethers JNK/p38MAPK signaling modules and transcription factors".Proceedings of the National Academy of Sciences of the United States of America.99(22):14189–94.Bibcode:2002PNAS...9914189L.doi:10.1073/pnas.232310199.PMC137859.PMID12391307.
  70. ^Billin AN, Eilers AL, Queva C, Ayer DE (December 1999)."Mlx, a novel Max-like BHLHZip protein that interacts with the Max network of transcription factors".The Journal of Biological Chemistry.274(51):36344–50.doi:10.1074/jbc.274.51.36344.PMID10593926.
  71. ^Gupta K, Anand G, Yin X, Grove L, Prochownik EV (March 1998). "Mmip1: a novel leucine zipper protein that reverses the suppressive effects of Mad family members on c-myc".Oncogene.16(9):1149–59.doi:10.1038/sj.onc.1201634.PMID9528857.S2CID30576019.
  72. ^Meroni G, Reymond A, Alcalay M, Borsani G, Tanigami A, Tonlorenzi R, Lo Nigro C, Messali S, Zollo M, Ledbetter DH, Brent R, Ballabio A, Carrozzo R (May 1997)."Rox, a novel bHLHZip protein expressed in quiescent cells that heterodimerizes with Max, binds a non-canonical E box and acts as a transcriptional repressor".The EMBO Journal.16(10):2892–906.doi:10.1093/emboj/16.10.2892.PMC1169897.PMID9184233.
  73. ^Nair SK, Burley SK (January 2003)."X-ray structures of Myc-Max and Mad-Max recognizing DNA. Molecular bases of regulation by proto-oncogenic transcription factors".Cell.112(2):193–205.doi:10.1016/s0092-8674(02)01284-9.PMID12553908.S2CID16142388.
  74. ^FitzGerald MJ, Arsura M, Bellas RE, Yang W, Wu M, Chin L, Mann KK, DePinho RA, Sonenshein GE (April 1999)."Differential effects of the widely expressed dMax splice variant of Max on E-box vs initiator element-mediated regulation by c-Myc".Oncogene.18(15):2489–98.doi:10.1038/sj.onc.1202611.PMID10229200.
  75. ^Meroni G, Cairo S, Merla G, Messali S, Brent R, Ballabio A, Reymond A (July 2000). "Mlx, a new Max-like bHLHZip family member: the center stage of a novel transcription factors regulatory pathway?".Oncogene.19(29):3266–77.doi:10.1038/sj.onc.1203634.PMID10918583.S2CID17891130.
  76. ^Guo Q, Xie J, Dang CV, Liu ET, Bishop JM (August 1998)."Identification of a large Myc-binding protein that contains RCC1-like repeats".Proceedings of the National Academy of Sciences of the United States of America.95(16):9172–7.Bibcode:1998PNAS...95.9172G.doi:10.1073/pnas.95.16.9172.PMC21311.PMID9689053.
  77. ^Taira T, Maëda J, Onishi T, Kitaura H, Yoshida S, Kato H, Ikeda M, Tamai K, Iguchi-Ariga SM, Ariga H (August 1998)."AMY-1, a novel C-MYC binding protein that stimulates transcription activity of C-MYC".Genes to Cells.3(8):549–65.doi:10.1046/j.1365-2443.1998.00206.x.PMID9797456.S2CID41886122.
  78. ^Izumi H, Molander C, Penn LZ, Ishisaki A, Kohno K, Funa K (April 2001). "Mechanism for the transcriptional repression by c-Myc on PDGF beta-receptor".Journal of Cell Science.114(Pt 8):1533–44.doi:10.1242/jcs.114.8.1533.PMID11282029.
  79. ^Taira T, Sawai M, Ikeda M, Tamai K, Iguchi-Ariga SM, Ariga H (August 1999)."Cell cycle-dependent switch of up-and down-regulation of human hsp70 gene expression by interaction between c-Myc and CBF/NF-Y".The Journal of Biological Chemistry.274(34):24270–9.doi:10.1074/jbc.274.34.24270.PMID10446203.
  80. ^Uramoto H, Izumi H, Ise T, Tada M, Uchiumi T, Kuwano M, Yasumoto K, Funa K, Kohno K (August 2002)."p73 Interacts with c-Myc to regulate Y-box-binding protein-1 expression".The Journal of Biological Chemistry.277(35):31694–702.doi:10.1074/jbc.M200266200.PMID12080043.
  81. ^abcdefLiu X, Tesfai J, Evrard YA, Dent SY, Martinez E (May 2003)."c-Myc transformation domain recruits the human STAGA complex and requires TRRAP and GCN5 acetylase activity for transcription activation".The Journal of Biological Chemistry.278(22):20405–12.doi:10.1074/jbc.M211795200.PMC4031917.PMID12660246.
  82. ^Mori K, Maeda Y, Kitaura H, Taira T, Iguchi-Ariga SM, Ariga H (November 1998)."MM-1, a novel c-Myc-associating protein that represses transcriptional activity of c-Myc".The Journal of Biological Chemistry.273(45):29794–800.doi:10.1074/jbc.273.45.29794.PMID9792694.
  83. ^Fujioka Y, Taira T, Maeda Y, Tanaka S, Nishihara H, Iguchi-Ariga SM, Nagashima K, Ariga H (November 2001)."MM-1, a c-Myc-binding protein, is a candidate for a tumor suppressor in leukemia/lymphoma and tongue cancer".The Journal of Biological Chemistry.276(48):45137–44.doi:10.1074/jbc.M106127200.PMID11567024.
  84. ^abFeng XH, Liang YY, Liang M, Zhai W, Lin X (January 2002)."Direct interaction of c-Myc with Smad2 and Smad3 to inhibit TGF-beta-mediated induction of the CDK inhibitor p15(Ink4B)".Molecular Cell.9(1):133–43.doi:10.1016/s1097-2765(01)00430-0.PMID11804592.
  85. ^Otsuki Y, Tanaka M, Kamo T, Kitanaka C, Kuchino Y, Sugimura H (February 2003)."Guanine nucleotide exchange factor, Tiam1, directly binds to c-Myc and interferes with c-Myc-mediated apoptosis in rat-1 fibroblasts".The Journal of Biological Chemistry.278(7):5132–40.doi:10.1074/jbc.M206733200.PMID12446731.
  86. ^Gaubatz S, Imhof A, Dosch R, Werner O, Mitchell P, Buettner R, Eilers M (April 1995)."Transcriptional activation by Myc is under negative control by the transcription factor AP-2".The EMBO Journal.14(7):1508–19.doi:10.1002/j.1460-2075.1995.tb07137.x.PMC398238.PMID7729426.
  87. ^Thomas LR, Wang Q, Grieb BC, Phan J, Foshage AM, Sun Q, Olejniczak ET, Clark T, Dey S, Lorey S, Alicie B, Howard GC, Cawthon B, Ess KC, Eischen CM, Zhao Z, Fesik SW, Tansey WP (May 2015)."Interaction with WDR5 promotes target gene recognition and tumorigenesis by MYC".Molecular Cell.58(3):440–52.doi:10.1016/j.molcel.2015.02.028.PMC4427524.PMID25818646.
  88. ^Shrivastava A, Saleque S, Kalpana GV, Artandi S, Goff SP, Calame K (December 1993). "Inhibition of transcriptional regulator Yin-Yang-1 by association with c-Myc".Science.262(5141):1889–92.Bibcode:1993Sci...262.1889S.doi:10.1126/science.8266081.PMID8266081.
  89. ^Staller P, Peukert K, Kiermaier A, Seoane J, Lukas J, Karsunky H, Möröy T, Bartek J, Massagué J, Hänel F, Eilers M (April 2001). "Repression of p15INK4b expression by Myc through association with Miz-1".Nature Cell Biology.3(4):392–9.doi:10.1038/35070076.PMID11283613.S2CID12696178.
  90. ^Peukert K, Staller P, Schneider A, Carmichael G, Hänel F, Eilers M (September 1997)."An alternative pathway for gene regulation by Myc".The EMBO Journal.16(18):5672–86.doi:10.1093/emboj/16.18.5672.PMC1170199.PMID9312026.
  91. ^"PSICQUIC View".ebi.ac.uk.Retrieved2019-05-02.

Further reading

edit
edit