Inorganic chemistry,nitro compoundsareorganic compoundsthat contain one or morenitrofunctional groups(−NO2). The nitro group is one of the most commonexplosophores(functional group that makes a compound explosive) used globally. The nitro group is also stronglyelectron-withdrawing.Because of this property,C−Hbonds alpha (adjacent) to the nitro group can be acidic. For similar reasons, the presence of nitro groups in aromatic compounds retardselectrophilic aromatic substitutionbut facilitatesnucleophilic aromatic substitution.Nitro groups are rarely found in nature. They are almost invariably produced by nitration reactions starting withnitric acid.[1]

The structure of an organic nitro compound

Synthesis

edit

Preparation of aromatic nitro compounds

edit
Structural details ofnitrobenzene,distances in picometers.[2]

Aromatic nitro compounds are typically synthesized by nitration. Nitration is achieved using a mixture ofnitric acidandsulfuric acid,which produce thenitroniumion (NO+2), which is the electrophile:

+
H+

The nitration product produced on the largest scale, by far, isnitrobenzene.Many explosives are produced by nitration includingtrinitrophenol(picric acid),trinitrotoluene(TNT), andtrinitroresorcinol(styphnic acid).[3] Another but more specialized method for making aryl–NO2group starts from halogenated phenols, is theZinke nitration.

Preparation of aliphatic nitro compounds

edit

Aliphatic nitro compounds can be synthesized by various methods; notable examples include:

Ter Meer Reaction

edit

Innucleophilic aliphatic substitution,sodium nitrite(NaNO2) replaces analkyl halide.In the so-called Ter Meer reaction (1876) named afterEdmund ter Meer,[14]the reactant is a 1,1-halonitroalkane:

Thereaction mechanismis proposed in which in the first slow step aprotonis abstracted from nitroalkane1to acarbanion2followed byprotonationto an aci-nitro3and finallynucleophilic displacementof chlorine based on an experimentally observed hydrogenkinetic isotope effectof 3.3.[15]When the same reactant is reacted withpotassium hydroxidethe reaction product is the 1,2-dinitro dimer.[16]

Occurrence

edit

In nature

edit

Chloramphenicolis a rare example of anaturally occurringnitro compound. At least some naturally occurring nitro groups arose by the oxidation of amino groups.[17]2-Nitrophenolis an aggregationpheromoneofticks.

Examples of nitro compounds are rare in nature.3-Nitropropionic acidfound infungiand plants (Indigofera).Nitropentadeceneis a defense compound found intermites.Aristolochic acidsare found in the flowering plant familyAristolochiaceae.Nitrophenylethane is found inAniba canelilla.[18]Nitrophenylethane is also found in members of theAnnonaceae,LauraceaeandPapaveraceae.[19]

In pharmaceuticals

edit

Despite the occasional use in pharmaceuticals, the nitro group is associated withmutagenicityandgenotoxicityand therefore is often regarded as a liability in thedrug discoveryprocess.[20]

Reactions

edit

Nitro compounds participate in severalorganic reactions,the most important beingreduction of nitro compoundsto the corresponding amines:

RNO2+ 3 H2→ RNH2+ 2 H2O

Virtually allaromatic amines(e.g.aniline) are derived from nitroaromatics through suchcatalytic hydrogenation.A variation is formation of a dimethylaminoarene withpalladium on carbonandformaldehyde:[21]

Nitro compound hydrogenation

Theα-carbonof nitroalkanes is somewhat acidic. The pKavalues ofnitromethaneand2-nitropropaneare respectively 17.2 and 16.9 indimethyl sulfoxide(DMSO) solution, suggesting an aqueous pKaof around 11.[22]In other words, thesecarbon acidscan be deprotonated in aqueous solution. The conjugate base is called anitronate,and behaves similar to anenolate.In thenitroaldol reaction,itadds directlytoaldehydes,and, withenones,can serve as aMichael donor.Conversely, anitroalkenereacts with enols as a Michael acceptor.[23][24]Nitrosatinga nitronate gives anitrolic acid.[25]

Nitronates are also key intermediates in theNef reaction:when exposed to acids or oxidants, a nitronate hydrolyzes to acarbonylandazanone.[26]

Grignard reagentscombine with nitro compounds to give anitrone;but a Grignard reagent with an α hydrogen will then add again to the nitrone to give ahydroxylaminesalt.[27]

Dye syntheses

edit

TheLeimgruber–Batcho,BartoliandBaeyer–Emmerlingindole syntheses begin with aromatic nitro compounds.Indigocan be synthesized in a condensation reaction fromortho-nitrobenzaldehydeandacetonein strongly basic conditions in a reaction known as theBaeyer–Drewson indigo synthesis.

Biochemical reactions

edit

Manyflavin-dependentenzymesare capable of oxidizing aliphatic nitro compounds to less-toxic aldehydes and ketones.Nitroalkane oxidaseand 3-nitropropionate oxidase oxidize aliphatic nitro compounds exclusively, whereas other enzymes such asglucose oxidasehave other physiological substrates.[28]

Explosions

edit

Explosive decomposition of organo nitro compounds are redox reactions, wherein both the oxidant (nitro group) and the fuel (hydrocarbon substituent) are bound within the same molecule. The explosion process generates heat by forming highly stable products including molecularnitrogen(N2), carbon dioxide, and water. The explosive power of this redox reaction is enhanced because these stable products are gases at mild temperatures. Manycontact explosivescontain the nitro group.

See also

edit

References

edit
  1. ^Henry Feuer, ed. (1970).Nitro and Nitroso Groups: Part 2, Volume 2.PATAI'S Chemistry of Functional Groups. Vol. 2. John Wiley & Sons Ltd.doi:10.1002/9780470771174.ISBN978-0-470-77117-4.Saul Patai, ed. (1982).Nitro and Nitroso Groups: Supplement F: Part 2, Volume 2.PATAI'S Chemistry of Functional Groups. John Wiley & Sons Ltd.doi:10.1002/9780470771679.ISBN978-0-470-77167-9.Saul Patai, ed. (1982).Amino, Nitroso and Nitro Compounds and Their Derivatives: Supplement F: Part 1, Volume 1.PATAI'S Chemistry of Functional Groups. John Wiley & Sons Ltd.doi:10.1002/9780470771662.ISBN978-0-470-77166-2.
  2. ^Olga V. Dorofeeva; Yuriy V. Vishnevskiy; Natalja Vogt; Jürgen Vogt; Lyudmila V. Khristenko; Sergey V. Krasnoshchekov; Igor F. Shishkov; István Hargittai; Lev V. Vilkov (2007). "Molecular Structure and Conformation of Nitrobenzene Reinvestigated by Combined Analysis of Gas-Phase Electron Diffraction, Rotational Constants, and Theoretical Calculations".Structural Chemistry.18(6): 739–753.doi:10.1007/s11224-007-9186-6.S2CID98746905.
  3. ^Gerald, Booth. "Nitro Compounds, Aromatic".Ullmann's Encyclopedia of Industrial Chemistry.Weinheim: Wiley-VCH.doi:10.1002/14356007.a17_411.ISBN978-3527306732.
  4. ^Markofsky, Sheldon; Grace, W.G. (2000). "Nitro Compounds, Aliphatic".Ullmann's Encyclopedia of Industrial Chemistry.doi:10.1002/14356007.a17_401.ISBN978-3-527-30673-2.
  5. ^Kornblum, N.; Ungnade, H. E. (1963). "1-Nitroöctane".Organic Syntheses.4:724.doi:10.15227/orgsyn.038.0075.
  6. ^Walden, P. (1907)."Zur Darstellung aliphatischer Sulfocyanide, Cyanide und Nitrokörper".Berichte der Deutschen Chemischen Gesellschaft.40(3): 3214–3217.doi:10.1002/cber.19070400383.
  7. ^Whitmore, F. C.; Whitmore, Marion G. (1923). "Nitromethane".Organic Syntheses.1:401.doi:10.15227/orgsyn.003.0083.
  8. ^Olah, George A.; Ramaiah, Pichika; Chang-Soo, Lee; Prakash, Surya (1992). "Convenient Oxidation of Oximes to Nitro Compounds with Sodium Perborate in Glacial Acetic Acid".Synlett.1992(4): 337–339.doi:10.1055/s-1992-22006.
  9. ^Ehud, Keinan; Yehuda, Mazur (1977). "Dry ozonation of amines. Conversion of primary amines to nitro compounds".The Journal of Organic Chemistry.42(5): 844–847.doi:10.1021/jo00425a017.
  10. ^Chandrasekhar, S.; Shrinidhi, A. (2014)."Useful Extensions of the Henry Reaction: Expeditious Routes to Nitroalkanes and Nitroalkenes in Aqueous Media".Synthetic Communications.44(20): 3008–3018.doi:10.1080/00397911.2014.926373.S2CID98439096.
  11. ^Shrinidhi, A. (2015)."Microwave-assisted chemoselective reduction of conjugated nitroalkenes to nitroalkanes with aqueous tri-n-butyltin hydride".Cogent Chemistry.1(1): 1061412.doi:10.1080/23312009.2015.1061412.
  12. ^Wislicenus, Wilhelm; Endres, Anton (1902)."Ueber Nitrirung mittels Aethylnitrat [Nitrification by means of ethyl nitrate]".Berichte der Deutschen Chemischen Gesellschaft.35(2): 1755–1762.doi:10.1002/cber.190203502106.
  13. ^Weygand, Conrad (1972). Hilgetag, G.; Martini, A. (eds.).Weygand/Hilgetag Preparative Organic Chemistry(4th ed.). New York: John Wiley & Sons, Inc. p. 1007.ISBN978-0-471-93749-4.
  14. ^Edmund ter Meer(1876)."Ueber Dinitroverbindungen der Fettreihe".Justus Liebigs Annalen der Chemie.181(1): 1–22.doi:10.1002/jlac.18761810102.
  15. ^Hawthorne, M. Frederick (1956). "Aci-Nitroalkanes. I. The Mechanism of the ter Meer Reaction1".Journal of the American Chemical Society.78(19): 4980–4984.doi:10.1021/ja01600a048.
  16. ^3-Hexene, 3,4-dinitro-D. E. Bisgrove, J. F. Brown, Jr., and L. B. Clapp.Organic Syntheses,Coll. Vol. 4, p. 372 (1963); Vol. 37, p. 23 (1957). (Article)
  17. ^Zocher, Georg; Winkler, Robert; Hertweck, Christian; Schulz, Georg E (2007). "Structure and Action of the N-oxygenase AurF from Streptomyces thioluteus".Journal of Molecular Biology.373(1): 65–74.doi:10.1016/j.jmb.2007.06.014.PMID17765264.
  18. ^Maia, José Guilherme S.; Andrade, Eloísa Helena A. (2009)."Database of the Amazon aromatic plants and their essential oils"(PDF).Química Nova.32(3). FapUNIFESP (SciELO): 595–622.doi:10.1590/s0100-40422009000300006.ISSN0100-4042.
  19. ^Kramer, K.U.; Kubitzki, K.; Rohwer, J.G.; Bittrich, V. (1993).Flowering Plants, Dicotyledons: Magnoliid, Hamamelid, and Caryophyllid Families.Families and genera of vascular plants. Springer-Verlag, Berlin.ISBN978-3-540-55509-4.
  20. ^Nepali K, Lee HY, Liou JP (March 2019). "Nitro-Group-Containing Drugs".J. Med. Chem.62(6): 2851–2893.doi:10.1021/acs.jmedchem.8b00147.PMID30295477.S2CID52931949.
  21. ^"ETHYL p-DIMETHYLAMINOPHENYLACETATE"(PDF).Organic Syntheses.47:69. 1967.doi:10.15227/orgsyn.047.0069.
  22. ^Bordwell, Frederick G; Satish, A. V (1994). "Is Resonance Important in Determining the Acidities of Weak Acids or the Homolytic Bond Dissociation Enthalpies (BDEs) of Their Acidic H-A Bonds?".Journal of the American Chemical Society.116(20): 8885.doi:10.1021/ja00099a004.
  23. ^Ranganathan, Darshan; Rao, Bhushan; Ranganathan, Subramania; Mehrotra, Ashok & Iyengar, Radha (1980). "Nitroethylene: a stable, clean, and reactive agent for organic synthesis".The Journal of Organic Chemistry.45(7): 1185–1189.doi:10.1021/jo01295a003.
  24. ^Jubert, Carole & Knochel, Paul (1992). "Preparation of polyfunctional nitro olefins and nitroalkanes using the copper-zinc reagents RCu(CN)ZnI".The Journal of Organic Chemistry.57(20): 5431–5438.doi:10.1021/jo00046a027.
  25. ^Williams, D. L. H. (1988).Nitrosation.Cambridge, UK:Cambridge University.p. 44.ISBN0-521-26796-X.
  26. ^Smith (2020)),March's Organic Chemistry,rxn. 16-3.
  27. ^Bartoli, Giuseppe; Marcantoni, Enrico; Petrini, Marino (1992) [14 Apr 1992]. "Nitrones from addition of benzyl and allyl Grignard reagents to alkyl nitro compounds: chemo-, regio-, and stereoselectivity of the reaction".Journal of Organic Chemistry.57(22). American Chemical Society: 5834–5840.doi:10.1021/jo00048a012.
  28. ^Nagpal, Akanksha; Valley, Michael P.; Fitzpatrick, Paul F.; Orville, Allen M. (2006)."Crystal Structures of Nitroalkane Oxidase: Insights into the Reaction Mechanism from a Covalent Complex of the Flavoenzyme Trapped during Turnover".Biochemistry.45(4): 1138–50.doi:10.1021/bi051966w.PMC1855086.PMID16430210.