In the study ofheat transfer,radiative cooling[1][2]is the process by which a body losesheatbythermal radiation.AsPlanck's lawdescribes, everyphysical bodyspontaneously and continuously emitselectromagnetic radiation.

Radiative cooling has been applied in various contexts throughout human history, includingice makinginIndiaandIran,[3]heat shieldsfor spacecraft,[4]and in architecture.[5]In 2014, ascientific breakthroughin the use ofphotonic metamaterialsmade daytime radiative cooling possible.[6][7]It has since been proposed as a strategy to mitigate local andglobal warmingcaused bygreenhouse gas emissionsknown aspassive daytime radiative cooling.[8]

Terrestrial radiative cooling

edit

Mechanism

edit

Infrared radiation can pass through dry, clear air in the wavelength range of 8–13 μm. Materials that can absorb energy and radiate it in those wavelengths exhibit a strong cooling effect. Materials that can also reflect 95% or more of sunlight in the 200 nanometres to 2.5 μm range can exhibit cooling even in direct sunlight.[9]

Earth's energy budget

edit

The Earth-atmosphere system is radiatively cooled, emitting long-wave (infrared) radiation which balances the absorption of short-wave (visible light) energy from the sun.

Convective transport of heat, and evaporative transport of latent heat are both important in removing heat from the surface and distributing it in the atmosphere. Pure radiative transport is more important higher up in the atmosphere. Diurnal and geographical variation further complicate the picture.

The large-scale circulation of theEarth's atmosphereis driven by the difference in absorbed solar radiation per square meter, as the sun heats the Earth more in theTropics,mostly because of geometrical factors. The atmospheric and oceanic circulation redistributes some of this energy assensible heatandlatent heatpartly via the mean flow and partly via eddies, known ascyclonesin the atmosphere. Thus the tropics radiate less to space than they would if there were no circulation, and the poles radiate more; however in absolute terms the tropics radiate more energy to space.

Nocturnal surface cooling

edit

Radiative cooling is commonly experienced on cloudless nights, whenheatis radiated intoouter spacefrom Earth's surface, or from the skin of a human observer. The effect is well-known amongamateur astronomers.

The effect can be experienced by comparing skin temperature from looking straight up into a cloudlessnight skyfor several seconds, to that after placing a sheet of paper between the face and the sky. Since outer space radiates at about a temperature of 3K(−270.15°C;−454.27°F), and the sheet of paper radiates at about 300 K (27 °C; 80 °F) (aroundroom temperature), the sheet of paper radiates more heat to the face than does the darkened cosmos. The effect is blunted by Earth's surrounding atmosphere, and particularly the water vapor it contains, so the apparent temperature of the sky is far warmer than outer space. The sheet does not block the cold, but instead reflects heat to the face and radiates the heat of the face that it just absorbed.

The same radiative cooling mechanism can causefrostorblack iceto form on surfaces exposed to the clear night sky, even when theambient temperaturedoes not fall below freezing.

Kelvin's estimate of the Earth's age

edit

The termradiative coolingis generally used for local processes, though the same principles apply to cooling over geological time, which was firstused by Kelvinto estimate the age of the Earth (although his estimate ignored the substantial heat released by radioisotope decay, not known at the time, and the effects of convection in the mantle).

Astronomy

edit

Radiative cooling is one of the few ways an object in space can give off energy. In particular,white dwarfstars are no longer generating energy by fusion or gravitational contraction, and have no solar wind. So the only way their temperature changes is by radiative cooling. This makes their temperature as a function of age very predictable, so by observing the temperature, astronomers can deduce the age of the star.[10][11]

Applications

edit

Climate change

edit
PDRC can lower temperatures with zero energy consumption or pollution by radiating heat into outer space. Widespread application has been proposed as a solution to global warming.[12]
Passive daytime radiative cooling(PDRC) (also passive radiative cooling, daytime passive radiative cooling, radiative sky cooling, photonic radiative cooling, and terrestrial radiative cooling[13][14][15][16]) is the use of unpowered, reflective/thermally-emissivesurfaces to lower the temperature of a building or other object.[17]

It has been proposed as a method of reducing temperature increases caused bygreenhouse gasesby reducing the energy needed forair conditioning,[18][19]lowering theurban heat island effect,[20][21]and lowering humanbody temperatures.[22][12][23][24][18]

PDRCs can aid systems that are more efficient at lower temperatures, such asphotovoltaic systems,[15][25]dew collectiondevices, andthermoelectric generators.[26][25]
Passive radiative cooling technologies use theinfrared windowof 8–13 μm to radiate heat into outer space and impede solar absorption.

Architecture

edit
Different roof materials absorb more or less heat. A higher roofalbedo,or the whiter a roof, the higher its solar reflectance and heat emittance, which can reduce energy use and costs.

Cool roofscombine high solar reflectance with highinfrared emittance,thereby simultaneously reducing heat gain from the sun and increasing heat removal through radiation. Radiative cooling thus offers potential for passive cooling for residential and commercial buildings.[5]Traditional building surfaces, such as paint coatings, brick and concrete have high emittances of up to 0.96.[27]They radiate heat into the sky to passively cool buildings at night. If made sufficiently reflective to sunlight, these materials can also achieve radiative cooling during the day.

The most common radiative coolers found on buildings are white cool-roof paint coatings, which have solar reflectances of up to 0.94, and thermal emittances of up to 0.96.[28]The solar reflectance of the paints arises from optical scattering by the dielectric pigments embedded in the polymer paint resin, while the thermal emittance arises from the polymer resin. However, because typical white pigments like titanium dioxide and zinc oxide absorb ultraviolet radiation, the solar reflectances of paints based on such pigments do not exceed 0.95.

In 2014, researchers developed the first daytime radiative cooler using a multi-layer thermal photonic structure that selectively emitslong wavelength infrared radiationinto space, and can achieve 5 °C sub-ambient cooling under direct sunlight.[29]Later researchers developed paintable porous polymer coatings, whose pores scatter sunlight to give solar reflectance of 0.96-0.99 and thermal emittance of 0.97.[30]In experiments under direct sunlight, the coatings achieve 6 °C sub-ambient temperatures and cooling powers of 96 W/m2.

Other notable radiative cooling strategies include dielectric films on metal mirrors,[31]and polymer or polymer composites on silver or aluminum films.[32]Silvered polymer films with solar reflectances of 0.97 and thermal emittance of 0.96, which remain 11 °C cooler than commercial white paints under the mid-summer sun, were reported in 2015.[33]Researchers explored designs with dielectricsilicon dioxideorsilicon carbideparticles embedded in polymers that are translucent in the solar wavelengths and emissive in the infrared.[34][35]In 2017, an example of this design with resonant polar silica microspheres randomly embedded in a polymeric matrix, was reported.[36]The material is translucent to sunlight and has infraredemissivityof 0.93 in the infrared atmospheric transmission window. When backed with silver coating, the material achieved a midday radiative cooling power of 93 W/m2under direct sunshine along with high-throughput, economical roll-to-roll manufacturing.

Heat shields

edit

High emissivity coatingsthat facilitate radiative cooling may be used inreusable thermal protection systems(RTPS) in spacecraft andhypersonicaircraft. In such heat shields a high emissivity material, such asmolybdenum disilicide(MoSi2) is applied on a thermally insulating ceramic substrate.[4]In such heat shields high levels of totalemissivity,typically in the range 0.8 - 0.9, need to be maintained across a range of high temperatures.Planck's lawdictates that at higher temperatures the radiative emission peak shifts to lower wavelengths (higher frequencies), influencing material selection as a function of operating temperature. In addition to effective radiative cooling, radiative thermal protection systems should provide damage tolerance and may incorporate self-healing functions through the formation of a viscous glass at high temperatures.

James Webb Space Telescope

edit

TheJames Webb Space Telescopeuses radiative cooling to reach its operation temperature of about 50 K. To do this, its large reflective sunshield blocks radiation from the Sun, Earth, and Moon. The telescope structure, kept permanently in shadow by the sunshield, then cools by radiation.

Nocturnal ice making in early India and Iran

edit
Radiative cooling energy budget
Ice Pool beside theMeybodyakhchāl in Iran

Before the invention of artificial refrigeration technology, ice making by nocturnal cooling was common in both India and Iran.

In India, such apparatuses consisted of a shallow ceramic tray with a thin layer of water, placed outdoors with a clear exposure to the night sky. The bottom and sides were insulated with a thick layer of hay. On a clear night the water would lose heat by radiation upwards. Provided the air was calm and not too far above freezing, heat gain from the surrounding air byconvectionwas low enough to allow the water to freeze.[37][38][3]

In Iran, this involved making large flatice pools,which consisted of a reflection pool of water built on a bed of highly insulative material surrounded by high walls. The high walls provided protection against convective warming, the insulative material of the pool walls would protect against conductive heating from the ground, the large flat plane of water would then permit evaporative and radiative cooling to take place.

Types

edit
Earth's longwave thermalradiationintensity, from clouds, atmosphere and surface

The three basic types of radiant cooling are direct, indirect, and fluorescent:

  • Direct radiant cooling- In a building designed to optimize direct radiation cooling, the building roof acts as a heat sink to absorb the daily internal loads. The roof acts as the best heat sink because it is the greatest surface exposed to the night sky. Radiate heat transfer with the night sky will remove heat from the building roof, thus cooling the building structure. Roof ponds are an example of this strategy. The roof pond design became popular with the development of the Sky thermal system designed by Harold Hay in 1977. There are various designs and configurations for the roof pond system but the concept is the same for all designs. The roof uses water, either plastic bags filled with water or an open pond, as the heat sink while a system of movable insulation panels regulate the mode of heating or cooling. During daytime in the summer, the water on the roof is protected from the solar radiation and ambient air temperature by movable insulation, which allows it to serve as a heat sink and absorb the heat generated inside through the ceiling. At night, the panels are retracted to allow nocturnal radiation between the roof pond and the night sky, thus removing the stored heat. In winter, the process is reversed so that the roof pond is allowed to absorb solar radiation during the day and release it during the night into the space below.[39][40]
  • Indirect radiant cooling- A heat transfer fluid removes heat from the building structure through radiate heat transfer with the night sky. A common design for this strategy involves a plenum between the building roof and the radiator surface. Air is drawn into the building through the plenum, cooled from the radiator, and cools the mass of the building structure. During the day, the building mass acts as a heat sink.
  • Fluorescent radiant cooling- An object can be madefluorescent:it will then absorb light at some wavelengths, but radiate the energy away again at other, selected wavelengths. By selectively radiating heat in theinfrared atmospheric window,a range of frequencies in which the atmosphere is unusually transparent, an object can effectively useouter spaceas a heat sink, and cool to well below ambient air temperature.[41][42][43]

See also

edit

References

edit
  1. ^Fan, Shanhui; Li, Wei (March 2022). "Photonics and thermodynamics concepts in radiative cooling".Nature Photonics.16(3): 182–190.Bibcode:2022NaPho..16..182F.doi:10.1038/s41566-021-00921-9.S2CID246668570.
  2. ^Li, Wei; Fan, Shanhui (1 November 2019). "Radiative Cooling: Harvesting the Coldness of the Universe".Optics and Photonics News.30(11): 32.Bibcode:2019OptPN..30...32L.doi:10.1364/OPN.30.11.000032.S2CID209957921.
  3. ^ab"The Persian ice house, or how to make ice in the desert".Field Study of the World.2016-04-04.Retrieved2019-04-28.
  4. ^abShao, Gaofeng; et al. (2019). "Improved oxidation resistance of high emissivity coatings on fibrous ceramic for reusable space systems".Corrosion Science.146:233–246.arXiv:1902.03943.Bibcode:2019Corro.146..233S.doi:10.1016/j.corsci.2018.11.006.S2CID118927116.
  5. ^abHossain, Md Muntasir; Gu, Min (2016-02-04)."Radiative cooling: Principles, progress and potentials".Advanced Science.3(7): 1500360.doi:10.1002/advs.201500360.PMC5067572.PMID27812478.
  6. ^Heo, Se-Yeon; Ju Lee, Gil; Song, Young Min (June 2022)."Heat-shedding with photonic structures: radiative cooling and its potential".Journal of Materials Chemistry C.10(27): 9915–9937.doi:10.1039/D2TC00318J.S2CID249695930– via Royal Society of Chemistry.
  7. ^Raman, Aaswath P.; Anoma, Marc Abou; Zhu, Linxiao; Raphaeli, Eden; Fan, Shanhui (2014)."Passive Radiative Cooling Below Ambient air Temperature under Direct Sunlight".Nature.515(7528): 540–544.Bibcode:2014Natur.515..540R.doi:10.1038/nature13883.PMID25428501.S2CID4382732– via nature.com.
  8. ^Munday, Jeremy (2019)."Tackling Climate Change through Radiative Cooling".Joule.3(9): 2057–2060.Bibcode:2019Joule...3.2057M.doi:10.1016/j.joule.2019.07.010.S2CID201590290.
  9. ^Lim, XiaoZhi (2019-12-31)."The super-cool materials that send heat to space".Nature.577(7788): 18–20.doi:10.1038/d41586-019-03911-8.PMID31892746.
  10. ^ Mestel, L. (1952)."On the theory of white dwarf stars. I. The energy sources of white dwarfs".Monthly Notices of the Royal Astronomical Society.112(6): 583–597.Bibcode:1952MNRAS.112..583M.doi:10.1093/mnras/112.6.583.
  11. ^"Cooling white dwarfs"(PDF).Physics Department, University of Patras.
  12. ^abChen, Meijie; Pang, Dan; Chen, Xingyu; Yan, Hongjie; Yang, Yuan (2022)."Passive daytime radiative cooling: Fundamentals, material designs, and applications".EcoMat.4.doi:10.1002/eom2.12153.S2CID240331557.Passive daytime radiative cooling (PDRC) dissipates terrestrial heat to the extremely cold outer space without using any energy input or producing pollution. It has the potential to simultaneously alleviate the two major problems of energy crisis and global warming.
  13. ^Wang, Tong; Wu, Yi; Shi, Lan; Hu, Xinhua; Chen, Min; Wu, Limin (2021)."A structural polymer for highly efficient all-day passive radiative cooling".Nature Communications.12(365): 365.doi:10.1038/s41467-020-20646-7.PMC7809060.PMID33446648.Accordingly, designing and fabricating efficient PDRC with sufficiently high solar reflectance (𝜌¯solar) (λ ~ 0.3–2.5 μm) to minimize solar heat gain and simultaneously strong LWIR thermal emittance (ε¯LWIR) to maximize radiative heat loss is highly desirable. When the incoming radiative heat from the Sun is balanced by the outgoing radiative heat emission, the temperature of the Earth can reach its steady state.
  14. ^Zevenhovena, Ron; Fält, Martin (June 2018)."Radiative cooling through the atmospheric window: A third, less intrusive geoengineering approach".Energy.152:27.Bibcode:2018Ene...152...27Z.doi:10.1016/j.energy.2018.03.084.S2CID116318678– via Elsevier Science Direct.An alternative, third geoengineering approach would be enhanced cooling by thermal radiation from the Earth's surface into space. "[...]" With 100 W m2as a demonstrated passive cooling effect, a surface coverage of 0.3% would then be needed, or 1% of Earth's land mass surface. If half of it would be installed in urban, built areas which cover roughly 3% of the Earth's land mass, a 17% coverage would be needed there, with the remainder being installed in rural areas.
  15. ^abHeo, Se-Yeon; Ju Lee, Gil; Song, Young Min (June 2022)."Heat-shedding with photonic structures: radiative cooling and its potential".Journal of Materials Chemistry C.10(27): 9915–9937.doi:10.1039/D2TC00318J.S2CID249695930– via Royal Society of Chemistry.
  16. ^Aili, Ablimit; Yin, Xiaobo; Yang, Ronggui (October 2021)."Global Radiative Sky Cooling Potential Adjusted for Population Density and Cooling Demand".Atmosphere.12(11): 1379.Bibcode:2021Atmos..12.1379A.doi:10.3390/atmos12111379.
  17. ^Chen, Jianheng; Lu, Lin; Gong, Quan (June 2021)."A new study on passive radiative sky cooling resource maps of China".Energy Conversion and Management.237:114132.Bibcode:2021ECM...23714132C.doi:10.1016/j.enconman.2021.114132.S2CID234839652– via Elsevier Science Direct.Passive radiative cooling utilizes atmospheric transparency window (8–13 μm) to discharge heat into outer space and inhibits solar absorption.
  18. ^abBijarniya, Jay Prakash; Sarkar, Jahar; Maiti, Pralay (November 2020)."Review on passive daytime radiative cooling: Fundamentals, recent researches, challenges and opportunities".Renewable and Sustainable Energy Reviews.133:110263.Bibcode:2020RSERv.13310263B.doi:10.1016/j.rser.2020.110263.S2CID224874019– via Elsevier Science Direct.
  19. ^Benmoussa, Youssef; Ezziani, Maria; Djire, All-Fousseni; Amine, Zaynab; Khaldoun, Asmae; Limami, Houssame (September 2022)."Simulation of an energy-efficient cool roof with cellulose-based daytime radiative cooling material".Materials Today: Proceedings.72:3632–3637.doi:10.1016/j.matpr.2022.08.411.S2CID252136357– via Elsevier Science Direct.
  20. ^Khan, Ansar; Carlosena, Laura; Feng, Jie; Khorat, Samiran; Khatun, Rupali; Doan, Quang-Van; Santamouris, Mattheos (January 2022)."Optically Modulated Passive Broadband Daytime Radiative Cooling Materials Can Cool Cities in Summer and Heat Cities in Winter".Sustainability.14– via MDPI.
  21. ^Anand, Jyothis; Sailor, David J.; Baniassadi, Amir (February 2021)."The relative role of solar reflectance and thermal emittance for passive daytime radiative cooling technologies applied to rooftops".Sustainable Cities and Society.65:102612.Bibcode:2021SusCS..6502612A.doi:10.1016/j.scs.2020.102612.S2CID229476136– via Elsevier Science Direct.
  22. ^Liang, Jun; Wu, Jiawei; Guo, Jun; Li, Huagen; Zhou, Xianjun; Liang, Sheng; Qiu, Cheng-Wei; Tao, Guangming (September 2022)."Radiative cooling for passive thermal management towards sustainable carbon neutrality".National Science Review.10(1): nwac208.doi:10.1093/nsr/nwac208.PMC9843130.PMID36684522.
  23. ^Munday, Jeremy (2019)."Tackling Climate Change through Radiative Cooling".Joule.3(9): 2057–2060.Bibcode:2019Joule...3.2057M.doi:10.1016/j.joule.2019.07.010.S2CID201590290.By covering the Earth with a small fraction of thermally emitting materials, the heat flow away from the Earth can be increased, and the net radiative flux can be reduced to zero (or even made negative), thus stabilizing (or cooling) the Earth.
  24. ^Yin, Xiaobo; Yang, Ronggui; Tan, Gang; Fan, Shanhui (November 2020)."Terrestrial radiative cooling: Using the cold universe as a renewable and sustainable energy source".Science.370(6518): 786–791.Bibcode:2020Sci...370..786Y.doi:10.1126/science.abb0971.PMID33184205.S2CID226308213....terrestrial radiative cooling has emerged as a promising solution for mitigating urban heat islands and for potentially fighting against global warming if it can be implemented at a large scale.
  25. ^abAhmed, Salman; Li, Zhenpeng; Javed, Muhammad Shahzad; Ma, Tao (September 2021)."A review on the integration of radiative cooling and solar energy harvesting".Materials Today: Energy.21:100776.Bibcode:2021MTEne..2100776A.doi:10.1016/j.mtener.2021.100776– via Elsevier Science Direct.
  26. ^Heo, Se-Yeon; Ju Lee, Gil; Song, Young Min (June 2022)."Heat-shedding with photonic structures: radiative cooling and its potential".Journal of Materials Chemistry C.10(27): 9915–9937.doi:10.1039/D2TC00318J.S2CID249695930– via Royal Society of Chemistry.
  27. ^"Emissivity Coefficients Materials".www.engineeringtoolbox.com.Retrieved2019-02-23.
  28. ^"Find rated products – Cool Roof Rating Council".coolroofs.org.Retrieved2019-02-23.
  29. ^Raman, Aaswath P.; Anoma, Marc Abou; Zhu, Linxiao; Rephaeli, Eden; Fan, Shanhui (November 2014). "Passive radiative cooling below ambient air temperature under direct sunlight".Nature.515(7528): 540–544.Bibcode:2014Natur.515..540R.doi:10.1038/nature13883.PMID25428501.S2CID4382732.
  30. ^Mandal, Jyotirmoy; Fu, Yanke; Overvig, Adam; Jia, Mingxin; Sun, Kerui; Shi, Norman Nan; Yu, Nanfang; Yang, Yuan (19 October 2018)."Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling".Science.362(6412): 315–319.Bibcode:2018Sci...362..315M.doi:10.1126/science.aat9513.PMID30262632.
  31. ^Granqvist, C. G.; Hjortsberg, A. (June 1981). "Radiative cooling to low temperatures: General considerations and application to selectively emitting SiO films".Journal of Applied Physics.52(6): 4205–4220.Bibcode:1981JAP....52.4205G.doi:10.1063/1.329270.
  32. ^Grenier, Ph. (January 1979)."Réfrigération radiative. Effet de serre inverse".Revue de Physique Appliquée.14(1): 87–90.doi:10.1051/rphysap:0197900140108700.
  33. ^Gentle, Angus R.; Smith, Geoff B. (September 2015)."A Subambient Open Roof Surface under the Mid-Summer Sun".Advanced Science.2(9): 1500119.doi:10.1002/advs.201500119.PMC5115392.PMID27980975.
  34. ^Gentle, A. R.; Smith, G. B. (2010-02-10). "Radiative Heat Pumping from the Earth Using Surface Phonon Resonant Nanoparticles".Nano Letters.10(2): 373–379.Bibcode:2010NanoL..10..373G.doi:10.1021/nl903271d.PMID20055479.
  35. ^WO 2016205717A1,Yu, Nanfang; Mandalal, Jyotirmoy; Overvig, Adam and Shi, Norman Nan, "Systems and methods for radiative cooling and heating", issued 2016-06-17
  36. ^Zhai, Yao; Ma, Yaoguang; David, Sabrina N.; Zhao, Dongliang; Lou, Runnan; Tan, Gang; Yang, Ronggui; Yin, Xiaobo (2017-03-10)."Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling".Science.355(6329): 1062–1066.Bibcode:2017Sci...355.1062Z.doi:10.1126/science.aai7899.PMID28183998.
  37. ^"Lesson 1: History Of Refrigeration, Version 1 ME"(PDF).Indian Institute of Technology Kharagpur.Archived fromthe original(PDF)on 2011-12-16.
  38. ^"XXII. The process of making ice in the East Indies. By Sir Robert Barker, F. R. S. in a letter to Dr. Brocklesby".Philosophical Transactions of the Royal Society of London.65:252–257. 1997.doi:10.1098/rstl.1775.0023.JSTOR106193.
  39. ^Givoni, Baruch (1994).Passive and Low Energy Cooling of Buildings(1st ed.). New York, NY: John Wiley & Sons, Inc.ISBN978-0-471-28473-4.
  40. ^Sharifi, Ayyoob; Yamagata, Yoshiki (December 2015). "Roof ponds as passive heating and cooling systems: A systematic review".Applied Energy.160:336–357.Bibcode:2015ApEn..160..336S.doi:10.1016/j.apenergy.2015.09.061.
  41. ^Raman, Aaswath P.; Anoma, Marc Abou; Zhu, Linxiao; Rephaeli, Eden; Fan, Shanhui (November 2014). "Passive radiative cooling below ambient air temperature under direct sunlight".Nature.515(7528): 540–544.Bibcode:2014Natur.515..540R.doi:10.1038/nature13883.ISSN1476-4687.PMID25428501.S2CID4382732.
  42. ^Burnett, Michael (November 25, 2015)."Passive Radiative Cooling".large.stanford.edu.
  43. ^Berdahl, Paul; Chen, Sharon S.; Destaillats, Hugo; Kirchstetter, Thomas W.; Levinson, Ronnen M.; Zalich, Michael A. (December 2016)."Fluorescent cooling of objects exposed to sunlight – The ruby example".Solar Energy Materials and Solar Cells.157:312–317.Bibcode:2016SEMSC.157..312B.doi:10.1016/j.solmat.2016.05.058.