Requirements engineering

Requirements engineering(RE)[1]is the process of defining, documenting, and maintainingrequirements[2]in theengineering design process.It is a common role insystems engineeringandsoftware engineering.

The first use of the termrequirements engineeringwas probably in 1964 in the conference paper "Maintenance, Maintainability, and System Requirements Engineering",[3]but it did not come into general use until the late 1990s with the publication of anIEEE Computer Societytutorial[4]in March 1997 and the establishment of a conference series on requirements engineering that has evolved into theInternational Requirements Engineering Conference.

In thewaterfall model,[5]requirements engineering is presented as the first phase of the development process. Later development methods, including theRational Unified Process(RUP) for software, assume that requirements engineering continues through a system's lifetime.

Requirements management,which is a sub-function of Systems Engineering practices, is also indexed in theInternational Council on Systems Engineering(INCOSE) manuals.

Activities

edit

The activities involved in requirements engineering vary widely, depending on the type of system being developed and the organization's specific practice(s) involved.[6]These may include:

  1. Requirements inceptionorrequirements elicitation– Developers and stakeholders meet; the latter are inquired concerning their needs and wants regarding the software product.
  2. Requirements analysisand negotiation – Requirements are identified (including new ones if the development is iterative), and conflicts with stakeholders are solved. Both written and graphical tools (the latter commonly used in the design phase, but some find them helpful at this stage, too) are successfully used as aids. Examples of written analysis tools:use casesanduser stories.Examples of graphical tools:Unified Modeling Language[7](UML) andLifecycle Modeling Language(LML).
  3. System modeling– Some engineering fields (or specific situations) require the product to be completely designed and modeled before its construction or fabrication starts. Therefore, the design phase must be performed in advance. For instance, blueprints for a building must be elaborated before any contract can be approved and signed. Many fields might derive models of the system with theLML,whereas others, might useUML.Note: In many fields, such as software engineering, most modeling activities are classified as design activities and not as requirement engineering activities.
  4. Requirements specification– Requirements are documented in a formal artifact called a Requirements Specification (RS), which will become official only after validation. A RS can contain both written and graphical (models) information if necessary. Example:Software requirements specification(SRS).
  5. Requirements validation– Checking that the documented requirements and models are consistent and meet the stakeholder's needs. Only if the final draft passes the validation process, the RS becomes official.
  6. Requirements management– Managing all the activities related to the requirements since inception, supervising as the system is developed, and even until after it is put into use (e. g., changes, extensions, etc.)

These are sometimes presented as chronological stages although, in practice, there is considerable interleaving of these activities.

Requirements engineering has been shown to clearly contribute to software project successes.[8]

Problems

edit

One limited study in Germany presented possible problems in implementing requirements engineering and asked respondents whether they agreed that they were actual problems. The results were not presented as being generalizable but suggested that the principal perceived problems were incomplete requirements, moving targets, and time boxing, with lesser problems being communications flaws, lack of traceability, terminological problems, and unclear responsibilities.[9]

Criticism

edit

Problem structuring, a key aspect of requirements engineering, has been speculated to reduce design performance.[10]Some research suggests that it is possible if there are deficiencies in the requirements engineering process resulting in a situation where requirements do not exist, software requirements may be created regardless as anillusionmisrepresenting design decisions as requirements[11]

See also

edit

References

edit
  1. ^Nuseibeh, B.; Easterbrook, S. (2000).Requirements engineering: a roadmap(PDF).ICSE'00.Proceedings of the conference on the future of Software engineering.pp.35–46.CiteSeerX10.1.1.131.3116.doi:10.1145/336512.336523.ISBN1-58113-253-0.
  2. ^
  3. ^Dresner, K. H. Borchers (1964).Maintenance, maintainability, and system requirements engineering.SAE World Congress & Exhibition1964.SAE Technical Paper 640591.doi:10.4271/640591.
  4. ^Thayer, Richard H.; Dorfman, Merlin, eds. (March 1997).Software Requirements Engineering(2nd ed.).IEEE Computer Society Press.ISBN978-0-8186-7738-0.
  5. ^Royce, W. W.(1970).Managing the Development of Large Software Systems: Concepts and Techniques(PDF).ICSE'87.Proceedings of the 9th international conference on Software Engineering.pp.1–9.
  6. ^Sommerville, Ian(2009).Software Engineering(9th ed.).Addison-Wesley.ISBN978-0-13-703515-1.
  7. ^"Uncovering Requirements With UML Class Diagrams Part 1".tynerblain.com.March 7, 2008.RetrievedMarch 14,2018.
  8. ^Hofmann, H.F.; Lehner, F. (2001). "Requirements engineering as a success factor in software projects".IEEE Software.18(4):58–66.doi:10.1109/MS.2001.936219.ISSN0740-7459.
  9. ^Méndez Fernández, Daniel; Wagner, Stefan (2015). "Naming the pain in requirements engineering: A design for a global family of surveys and first results from Germany".Information and Software Technology.57:616–643.arXiv:1611.04976.doi:10.1016/j.infsof.2014.05.008.S2CID1924926.
  10. ^Ralph, Paul; Mohanani, Rahul (May 2015)."Is Requirements Engineering Inherently Counterproductive?".IEEE.doi:10.13140/2.1.3831.6321.{{cite journal}}:Cite journal requires|journal=(help)
  11. ^Ralph, P. (September 2013). "The illusion of requirements in software development".Requirements Engineering.18(3):293–296.arXiv:1304.0116.Bibcode:2013AIPC.1516..293R.doi:10.1007/s00766-012-0161-4.S2CID11499083.
edit