This articleis missing informationabout Rfam LSU_rRNA_eukarya.(December 2020) |
28S ribosomal RNAis the structural ribosomal RNA (rRNA) for thelarge subunit (LSU)of eukaryotic cytoplasmic ribosomes, and thus one of the basic components of all eukaryotic cells. It has a size of 25S in plants and 28S in mammals, hence the alias of25S–28S rRNA.[1]
Combined with5.8S rRNAto the 5' side, it is the eukaryotic nuclear homologue of theprokaryotic 23Sandmitochondrial 16Sribosomal RNAs.[2][3][4]
Use in phylogeny
editThe genes coding for 28S rRNA are referred to as 28S rDNA. The comparison of thesequencesfrom these genes are sometimes used in molecular analysis to constructphylogenetic trees,for example inprotists,[5]fungi,[6]insects,[7]arachnids,[8]tardigrades,[9]andvertebrates.[10][11]
Structure
editThe 28S rRNA is typically 4000–5000 nt long.[12]
Some eukaryotes cleave 28S rRNA into two parts before assembling both into the ribosome, a phenomenon termed the "hidden break".[12]
Databases
editSeveraldatabasesprovidealignmentsandannotationsof LSU rRNA sequences forcomparativepurposes:
References
edit- ^Lodish, Harvey F.; Darnell, James E. (1995-01-01).Molecular cell biology.Scientific American Books.ISBN978-0-7167-2380-6.OCLC30783343.
- ^Eperon, I. C.; Anderson, S.; Nierlich, D. P. (1980-07-31). "Distinctive sequence of human mitochondrial ribosomal RNA genes".Nature.286(5772): 460–467.Bibcode:1980Natur.286..460E.doi:10.1038/286460a0.PMID6157106.S2CID4262269.
- ^Doris, Stephen M.; Smith, Deborah R.; Beamesderfer, Julia N.; Raphael, Benjamin J.; Nathanson, Judith A.; Gerbi, Susan A. (October 2015)."Universal and domain-specific sequences in 23S–28S ribosomal RNA identified by computational phylogenetics".RNA.21(10): 1719–1730.doi:10.1261/rna.051144.115.PMC4574749.PMID26283689.
- ^Lafontaine, D. L. J.; Tollervey, D. (2001). "The function and synthesis of ribosomes".Nature Reviews Molecular Cell Biology.2(7): 514–520.doi:10.1038/35080045.hdl:1842/729.PMID11433365.S2CID2637106.
- ^Baroin, A.; Perasso, R.; Qu, L. H.; Brugerolle, G.; Bachellerie, J. P.; Adoutte, A. (1988-05-01)."Partial phylogeny of the unicellular eukaryotes based on rapid sequencing of a portion of 28S ribosomal RNA".Proceedings of the National Academy of Sciences.85(10): 3474–3478.Bibcode:1988PNAS...85.3474B.doi:10.1073/pnas.85.10.3474.ISSN0027-8424.PMC280234.PMID3368456.
- ^James, Timothy Y.; Kauff, Frank; Schoch, Conrad L.; Matheny, P. Brandon; Hofstetter, Valérie; Cox, Cymon J.; Celio, Gail; Gueidan, Cécile; Fraker, Emily (2006). "Reconstructing the early evolution of Fungi using a six-gene phylogeny".Nature.443(7113): 818–822.Bibcode:2006Natur.443..818J.doi:10.1038/nature05110.PMID17051209.S2CID4302864.
- ^Whiting, Michael F.; Carpenter, James C.; Wheeler, Quentin D.; Wheeler, Ward C. (1997-03-01)."The Strepsiptera Problem: Phylogeny of the Holometabolous Insect Orders Inferred from 18S and 28S Ribosomal DNA Sequences and Morphology".Systematic Biology.46(1): 1–68.doi:10.1093/sysbio/46.1.1.ISSN1063-5157.PMID11975347.
- ^Hedin, Marshal C.; Maddison, Wayne P. (March 2001). "A Combined Molecular Approach to Phylogeny of the Jumping Spider Subfamily Dendryphantinae (Araneae: Salticidae)".Molecular Phylogenetics and Evolution.18(3): 386–403.doi:10.1006/mpev.2000.0883.PMID11277632.
- ^Jørgensen, Aslak; Faurby, Søren; Hansen, Jesper G.; Møbjerg, Nadja; Kristensen, Reinhardt M. (2010-03-01). "Molecular phylogeny of Arthrotardigrada (Tardigrada)".Molecular Phylogenetics and Evolution.54(3): 1006–1015.doi:10.1016/j.ympev.2009.10.006.PMID19822216.
- ^Le, Hoc Lanh Vân; Lecointre, Guillaume; Perasso, Roland (1993-03-01). "A 28S rRNA-Based Phylogeny of the Gnathostomes: First Steps in the Analysis of Conflict and Congruence with Morphologically Based Cladograms".Molecular Phylogenetics and Evolution.2(1): 31–51.doi:10.1006/mpev.1993.1005.PMID8081546.
- ^Mallatt, Jon; Sullivan, Jack (December 1998). "28S and 18S rDNA sequences support the monophyly of lampreys and hagfishes".Molecular Biology and Evolution.15(12): 1706–1718.doi:10.1093/oxfordjournals.molbev.a025897.PMID9866205.
- ^abNatsidis, Paschalis; Schiffer, Philipp H.; Salvador-Martínez, Irepan; Telford, Maximilian J. (December 2019)."Computational discovery of hidden breaks in 28S ribosomal RNAs across eukaryotes and consequences for RNA Integrity Numbers".Scientific Reports.9(1): 19477.Bibcode:2019NatSR...919477N.doi:10.1038/s41598-019-55573-1.PMC6925239.PMID31863008.
- ^"Ribosomal Database Project".RDP Release 11, Update 5.September 30, 2016. Archived fromthe originalon 2020-08-19.Retrieved2016-12-31.
- ^Olsen, G. J.; Overbeek, R.; Larsen, N.; Marsh, T. L.; McCaughey, M. J.; Maciukenas, M. A.; Kuan, W.-M.; Macke, T. J.; Xing, Y. (1992-05-11)."The Ribosomal Database Project".Nucleic Acids Research.20(suppl): 2199–2200.doi:10.1093/nar/20.suppl.2199.ISSN0305-1048.PMC333993.PMID1598241.
- ^Cole, James R.; Wang, Qiong; Fish, Jordan A.; Chai, Benli; McGarrell, Donna M.; Sun, Yanni; Brown, C. Titus; Porras-Alfaro, Andrea; Kuske, Cheryl R. (2014-01-01)."Ribosomal Database Project: data and tools for high throughput rRNA analysis".Nucleic Acids Research.42(D1): D633–D642.doi:10.1093/nar/gkt1244.ISSN0305-1048.PMC3965039.PMID24288368.
- ^Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glockner, F. O. (2013-01-01)."The SILVA ribosomal RNA gene database project: improved data processing and web-based tools".Nucleic Acids Research.41(D1): D590–D596.doi:10.1093/nar/gks1219.ISSN0305-1048.PMC3531112.PMID23193283.