TheIrish elk(Megaloceros giganteus),[1][2]also called thegiant deerorIrish deer,is an extinct species ofdeerin the genusMegalocerosand is one of the largest deer that ever lived. Its range extended acrossEurasiaduring thePleistocene,fromIreland(where it is known from abundant remains found in bogs) toLake BaikalinSiberia.The most recent remains of the species have beenradiocarbon datedto about 7,700 years ago in western Russia.[3][4]Its antlers, which can span 3.5 metres (11 ft) across are the largest known of any deer.[5]It is not closely related to either living species called the elk, with it being widely agreed that its closest living relatives arefallow deer(Dama).[5][6][7][8]

Irish elk
Temporal range: MiddlePleistoceneto MiddleHolocene,0.45–0.0077Ma
Mounted skeleton
Scientific classificationEdit this classification
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Class: Mammalia
Order: Artiodactyla
Family: Cervidae
Genus: Megaloceros
Species:
M. giganteus
Binomial name
Megaloceros giganteus
(Blumenbach,1799)
Time averaged range ofM. giganteusduring the Late Pleistocene
Synonyms
  • Alce giganteaBlumenbach, 1799
  • Cervus hibernusDesmarest, 1820
  • Cervus megacerosHart, 1825
  • Megaloceros antiquorumBrookes, 1828
  • Cervus euryceros(Aldrovandi, 1621), Hibbert, 1830
  • Cervus megaceros irlandicusFischer, 1838
  • Cervus(Megaceros)hibernicusOwen, 1844
  • Cervus giganteusReynolds, 1929
  • Megaceros giganteus latifronsRaven,1935

Taxonomy

edit

Research history

edit
Skeletal reconstruction from 1856

The first scientific descriptions of the animal's remains were made by Irish physicianThomas Molyneuxin 1695, who identified large antlers fromDardistown—which were apparently commonly unearthed in Ireland—as belonging to theelk(known as the moose in North America), concluding that it was once abundant on the island.[9]It was first formally named asAlce giganteabyJohann Friedrich Blumenbachin hisHandbuch der Naturgeschichtein 1799,[10]withAlcebeing a variant ofAlces,theLatinname for the elk. The original Blumenbach's description ofAlce giganteaprovides rather scant information about the species, specifying only that this particular kind of "fossil elk" comes from Ireland and is characterized by immense body size. According to Blumenbach,[10]the distance between summits of giant deer antlers may attain 14 feet (approximately 4.4 m). This particular feature mentioned by Blumenbach permitted to Roman Croitor to identify the type specimen of giant deer[11]that was figured and described for the first time inLouthianaofThomas Wright.[12]TheholotypeofMegaloceros giganteus(Blumenbach, 1799) is a well-preserved male skull with exceptionally large antlers found inDunleerenvirons (County Louth,Ireland).[11]The type specimen of giant deer is currently exposed inBarmeath CastlewhereThomas Wrightfirst saw and described it.[11]

French scientistGeorges Cuvierdocumented in 1812 that the Irish elk did not belong to any species of mammal currently living, declaring it "le plus célèbre de tous les ruminans fossiles"(the most famous of all fossil ruminants).[13]In 1827Joshua Brookes,in a listing of his zoological collection, named the new genusMegaloceros(spelledMegalocerusin the earlier editions) in the following passage:[14][15]

Amongst other Fossil Bones, there [are]... two uncommonly fine Crania of theMegalocerus antiquorum(Mihi). (Irish), with unusually fine horns, (in part restored)

— Joshua Brookes, Brookesian Museum. The Museum of Joshua Brookes, Esq. Anatomical and Zoological Preparations, p 20.

The etymology being fromGreek:μεγαλοςmegalos"great" +κεραςkeras"horn, antler".[16]The type and only species named in the description beingMegaloceros antiquorum,based on Irish remains now considered to belong toM. giganteus,making the former ajunior synonym.The original description was considered by Adrian Lister in 1987 to be inadequate for a taxonomic definition.[2]In 1828 Brookes published an expanded list in the form of a catalogue for an upcoming auction, which included the Latin phrase "Cornibus deciduis palmatis "as a description of the remains. The 1828 publication was approved byInternational Commission on Zoological Nomenclature(ICZN) in 1977 as an available publication for the basis of zoological nomenclature.[2]Adrian Lister in 1987 judged that "the phase"Cornibus deciduis palmatis "constitutes a definition sufficient under the [International Code of Zoological Nomenclature] (article 12) to validateMegalocerus."[2]The original spelling ofMegaloceruswas never used after its original publication.[15]

Outdated 1897 reconstruction of doe and stag Irish elk byJoseph Smit

In 1844Richard Owennamed another synonym of the Irish elk, including it within the newly named subgenusMegaceros,Cervus(Megaceros)hibernicus.This has been suggested to be derived from another junior synonym of the Irish elk described by J. Hart in 1825,Cervus megaceros.[2]Despite being a junior synonym,Megalocerosremained in obscurity andMegacerosbecame the common genus name for the taxon.[15]The combination "Megaceros giganteus "was in use by 1871.[17]George Gaylord Simpsonin 1945 revived the originalMegalocerosname, which became progressively more widely used, until a taxonomic decision in 1989 by the ICZN confirmed thepriorityofMegalocerosoverMegaceros,andMegalocerosto be the correct spelling.[15][18]

Before the 20th century, the Irish elk, having evolved from smaller ancestors with smaller antlers, was taken as a prime example oforthogenesis(directed evolution), an evolutionary mechanism opposed to Darwinian evolution in which the successive species within the lineage become increasingly modified in a single undeviating direction, evolution proceeding in a straight line void ofnatural selection.Orthogenesis was claimed to have caused an evolutionary trajectory towards antlers that became larger and larger, eventually causing the species' extinction because the antlers grew to sizes which inhibited proper feeding habits and caused the animal to become trapped in tree branches.[6]In the 1930s, orthogenesis was disputed by Darwinians led byJulian Huxley,who noted that antler size was not grossly large, and was proportional to body size.[19][20]The currently favoured view is thatsexual selectionwas the driving force behind the large antlers rather than orthogenesis or natural selection.[20]

Evolution

edit
Skull ofM. g. antecedens

M. giganteusbelongs to the genusMegaloceros.Megaloceroshas often been placed into the tribe Megacerini, alongside other genera often collectively referred to as "giant deer", likeSin Omega cerosandPraemegaceros.[21]The taxonomy of giant deer lacks consensus, with genus names used for species varying substantially between authors.[22][23]The earliest possible record of the genus is a partial antler from the Early PleistoceneMN 17(2.5–1.8 Ma) ofStavropol Kraiin theNorth CaucasusofRussia,which were given the name ofM. stavropolensisin 2016,[24]however this species has been subsequently suggested to belong toArvernoceros.[22][23]orSin Omega ceros.[11]The oldest generally accepted records of the genus are from the lateEarly Pleistocene.[25]Other species often considered to belong toMegalocerosinclude thereindeersizedM. savini,which is known from early Middle Pleistocene (~700,000–450,000 years ago) localities in England, France, Spain and Germany, and the more recently described speciesM. novocarthaginiensis,which is known from late Early Pleistocene (0.9–0.8 Ma) localities in Spain, and the smallM. matritensisendemic to the Iberian peninsula during the late Middle Pleistocene (~400,000 to 250,000 years ago), which overlaps chronologically with the earliestM. giganteusrecords. Jan van der Made proposedM. novocarthaginiensis, M. saviniandM. matritensisto be sequentialchronospecies,due to shared morphological characteristics not found inM. giganteusand gradual transition of morphological characters through time.[22]M. saviniand related species have also been suggested to comprise the separate genusPraedamaby other authors.[23]While theM. savini/Praedamalineage is often suggested to be closely relatedto M. giganteus,most authors agree that this group of deer is unlikely to be directly ancestral toM. giganteus.[11]

Outdated 1906 restoration byCharles R. Knight

The origin ofM. giganteusremains unclear, and appears to lie outside Western Europe.[22]Jan van der Made has suggested that remains of an indeterminateMegalocerosspecies from the late Early Pleistocene (~1.2 Ma) of Libakos in Greece are closer toM. giganteusthan theM. novocarthaginiensis-savini-matritensislineage due to the shared molarisation of the lower fourthpremolar(P4).[22]Croitor has suggested thatM. giganteusis closely related to what was originally described asDama clactoniana mugharensis(which he proposes be namedMegaloceros mugharensis) from the Middle Pleistocene ofTabun Cavein Israel, due to similarities in the antlers, molars and premolars.[23]The earliest possible records ofM. giganteuscomes fromHomersfield,England thought to be about 450,000 years ago—though the dating is uncertain.[26]The oldest securely dated Middle Pleistocene records are those fromHoxne,England, which have been dated toMarine Isotope Stage 11(424,000 to 374,000 years ago),[27][22]other Middle Pleistocene early records includeSteinheim an der Murr,Germany, (classified asM. g. antecedens) about 400,000–300,000 years ago andSwanscombe,England.[26][22]Most remains of the Irish elk are known from theLate Pleistocene.A large proportion of the known remains ofM. giganteusare from Ireland, which mostly date to theAllerød oscillationnear the end of the Late Pleistocene around 13,000 years ago. Over 100 individuals have been found in Ballybetagh Bog near Dublin.[28]

Some authors have proposed that Late PleistoceneM. giganteusshould be divided into several subspecies includingM. giganteus ruffiiandM. giganteus giganteus,based primarily on differences in antler morphology.[11]

It has been historically thought that, because both have palmated antlers, the Irish elk andfallow deer(Damaspp.) are closely related, this is supported by several other morphological similarities, including the lack of upper canines, proportionally long braincase andnasal bones,and proportionally short front portion of the skull.[23]In 2005, two fragments ofmitochondrial DNA(mtDNA) from thecytochrome bgene were extracted and sequenced from 4 antlers and a bone, the mtDNA found that the Irish elk was nested withinCervus,and were inside thecladecontaining livingred deer(Cervus elaphus). Based on this, the authors suggested that the Irish elk and red deer interbred.[29]However, another study from the same year in the journalNatureutilising both fragmentary mitochondrial DNA and morphological data found that the Irish elk was indeed most closely related toDama.[5]The close relationship withDamawas supported by another cytochrome b study in 2006,[6]a 2015 study involving the full mitochondrial genome,[7]and by a 2017 morphological analysis of thebony labyrinth.[8]The 2006 and 2017 studies also directly suggest that the results of the 2005 cytochrome b paper were the result ofDNA contamination.[6][8]

Cladogram of Cervidae based on mitochondrial DNA:[30]

Cervidae

Hydropotes(water deer)

Capreolus(roe deer)

Alces(moose)

Rangifer(reindeer/caribou)

Odocoileini(brocket deer, mule deer, white tailed deer, etc)

Elaphodus(tufted deer)

Muntiacus(muntjacs)

Cervini

Rucervus(Schomburgk's deer and barasingha)

Axis(chital, hog deer)

Dama(Fallow deer)

Megaloceros giganteus(Irish elk)

Elaphurus(Père David's deer)

Panolia(Eld's deer)

Rusa alfredi(Visayan spotted deer)

Rusa marianna(Philippine deer)

Rusa timorensis(Javan rusa)

Rusa unicolor(Sambar deer)

Cervus(red deer, elk, sika deer)

A study of mitochondrial genomes fromSin Omega cerosfrom the Late Pleistocene of East Asia found that the mitochondrial genomes ofMegaloceros giganteuswere nested within those ofSin Omega ceros,suggesting that the two lineages interbred after their initial split. Cladogram ofMegalocerosandSin Omega cerosmitochondrial genomes following Xiao et al. 2023.[31]

Dama

Sin Omega ceros+Megaloceros

Sin Omega ceros pachyosteus(China)

Megaloceros giganteus(Russia, Belgium)

Sin Omega ceros ordosianus(China, Russia)

Sin Omega ceros pachyosteus(China)

Megaloceros giganteus(Europe, Russia)

Description

edit
Life restoration
Skeleton of Irish elk exhibited inKelvingrove Art Gallery and MuseuminGlasgow

The Irish elk stood about 2 m (6 ft 7 in) tall at the shoulders,[5]and had large palmate (flat and broad)antlers,[32]the largest of any known deer, with the largest specimens reaching over 3.5 m (11 ft) from tip to tip[5](though it is rare for specimens to exceed 3 metres (9.8 ft) across[11]) and 40 kg (88 lb) in weight.[33]The antlers are considerably larger than those of living moose, being on average over twice the volume of moose antlers.[30]For body size, at about 450–600 kg (990–1,320 lb) and up to 700 kg (1,540 lb) or more,[34][33][35]the Irish elk was the heaviest knowncervine( "Old World deer" );[5]and tied with the extantAlaska moose(Alces alces gigas) as the third largest known deer, after the extinctCervalces latifronsandCervalces scotti.[34][33]The shape and span of the antlers varied significantly over time and space, likely reflecting some populations adaptation to forested environments.[11]Compared toAlces,Irish elk appear to have had a more robust skeleton, with older and more matureAlcesskeletons bearing some resemblance to those of prime Irish elk, and younger Irish elk resembling primeAlces.Likely due to different social structures, the Irish elk exhibits more markedsexual dimorphismthanAlces,with Irish elk bucks being notably larger than does.[36]In total, Irish elk bucks may have ranged from 450–700 kg (990–1,540 lb), with an average of 575 kg (1,268 lb), and does may have been relatively large, about 80% of buck size, or 460 kg (1,010 lb) on average.[37]The distinguishing characters ofM. giganteusinclude concavefrontals,proportionally long braincase, proportionally short front section of the skull (orbitofrontal region), alongside the absence of upper canines and the molarisation of the lower fourth premolar (P4). The skull and mandible of the Irish elk exhibit substantial thickening (pachyostosis), with the early and complete obliteration ofcranial sutures.[23]

Based onUpper Palaeolithic cave paintings,the Irish elk seems to have had overall light colouration, with a dark stripe running along the back, a stripe on either side from shoulder to haunch, a dark collar on the throat and a chinstrap, and a dark hump on thewithers(between theshoulder blades). In 1989, American palaeontologist Dale Guthrie suggested that, likebison,the hump allowed a higher hinging action of the front legs to increase stride length while running.Valerius Geistsuggested that the hump may have also been used to store fat. Localising fat rather than evenly distributing it may have prevented overheating while running or in rut during the summer.[37]

Habitat

edit

The Irish elk had a far-reaching range, extending from the Atlantic Ocean in the West toLake Baikalin the East. Irish elk do not appear have extended northward onto the openmammoth steppein Siberia, rather keeping to the boreal steppe-woodland environments, which consisted of scatteredspruceandpine,as well as low-lying herbs and shrubs including grasses,sedges,Ephedra,ArtemisiaandChenopodiaceae.[4]The species appears to have had a degree of ecological plasticity, as duringinterglacialperiods prior to the Holocene, the species was present in temperate forested environments in Europe.[11][38]During these times, the species generally had less broad antlers than during glacial periods, likely as an adaptation to moving through forested environments.[11]

Palaeobiology

edit

Physiology

edit
Drawing of cave art from Grotte de Cougnac, France showing coloured shoulder hump and lines. c. 25,000 to 19,000 years old[39]

In 1998, Canadian biologist Valerius Geist hypothesised that the Irish elk wascursorial(adapted for running and stamina). He noted that the Irish elk physically resembledreindeer.The body proportions of the Irish elk are similar to those of the cursorialaddax,oryx,andsaiga antelope.These include the relatively short legs, the long front legs nearly as long as the hind legs, and a robust cylindrical body. Cursorial saiga,gnus,and reindeer have a top speed of over 80 km/h (50 mph), and can maintain high speeds for up to 15 minutes.[37]

Reproduction

edit
Mounted skeletons of a buck (left) and a doe

At Ballybetagh Bog, over 100 Irish elk individuals were found, all small antlered bucks. This indicates that bucks and does segregated during at least winter and spring. Many modern deer species do this partly because males and females have different nutritional requirements and need to consume different types of plants. Segregation would also imply apolygynoussociety, with stags fighting for control over harems duringrut.Because most of the individuals found were juvenile or geriatric and were likely suffering from malnutrition, they probably died from winterkill. Most Irish elk specimens known may have died from winterkill, and winterkill is the highest source of mortality among many modern deer species. Bucks generally suffer higher mortality rates because they eat little during the autumn rut.[40]For rut, a lean stag normally 575 kg (1,268 lb) may have fattened up to 690 kg (1,520 lb), and would burn through the extra fat over the next month.[37]

Assuming a similar response to starvation as red deer, a large, healthy Irish elk stag with 40 kg (88 lb) antlers would have had 20-to-28 kg (44-to-62 lb) antlers under poor conditions;[13][33]and an average sized Irish elk stag with 35 kg (77 lb) antlers would have had 18 to 25 kg (40 to 55 lb) antlers under poorer conditions,[41]similar sizes to the moose. A similar change in a typical Irish elk population with prime stags having 35 kg (77 lb) antlers would result in antler weights of 13 kg (29 lb) or less in worsening climatic conditions. This is within the range of present-day wapiti/red deer (Cervusspp.) antler weights.[37]Irish elk antlers vary widely in form depending upon the habitat, such as a compact, upright shape in closed forest environments.[41]Irish elk likely shed their antlers and re-grew a new pair during mating season. Antlers generally require high amounts ofcalciumandphosphate,especially those for stags which have larger structures, and the massive antlers of Irish elk may have required much greater quantities. Stags typically meet these requirements in part from their bones, suffering from a condition similar toosteoporosiswhile the antlers are growing, and replenishing them from food plants after the antlers have grown in or reclaiming nutrients from shed antlers.[33]

The large antlers have generally been explained as being used for male-male battle during mating season.[42]They may have also been used for display,[13]to attract females and assert dominance against rival males.[40]Afinite element analysisof the antlers suggested that during fighting, the antlers were likely to interlock around the middle tine, the high stress when interlocking on the distal tine suggests that the fighting was likely more constrained and predictable than among extant deer, likely involving twisting motions, as is known in extant deer with palmated antlers.[43]

In deer, gestation time generally increases with body size. A 460 kg (1,010 lb) doe may have had a gestation period of about 274 days. Based on this and patterns seen in modern deer, last year's antlers in Irish elk bucks were potentially shed in early March, peak antler growth in early June, completion by mid-July, sheddingvelvet(a layer of blood vessels on the antlers in-use while growing them) by late July, and the height of rut falling on the second week of August. Geist, believing the Irish elk to have been a cursorial animal, concluded that a doe would have to have produced nutrient-rich milk so that her calf would have enough energy and stamina to keep up with the herd.[37]

Diet and life history

edit
Skull in front view

The mesodont (meaning neither high (hypsodont) or low (brachydont) crowned) condition of the teeth suggests that the species was a mixed feeder, being able to both browse and graze. Pollen remains from teeth found in the North Sea around 43,000 years old were found to be dominated byArtemisiaand otherAsteraceae,with minorPlantago,Helianthemum,Plumbaginaceaeandwillow(Salix).[44]Another earlier specimen from the Netherlands (dating to theEemianinterglacial or early in theLast Glacial Period) was found to have pollen ofApiaceae,includingcow parsley(Anthriscus sylvestris), cow parsnip/hogweed (Heracleum),water pennywort(Hydrocotyle), Asteraeceae,Filipendula,Symphytumand grass embedded with its teeth.[45]A stable isotope analysis of the terminal Pleistocene Irish population suggests a grass andforbbased diet, supplemented by browsing during stressed periods.[46]Dental wear patterns of specimens from the late Middle and Late Pleistocene of Britain suggest a diet tending towards mixed feeding and grazing, but with a wide range including leaf browsing.[47]Comparisons ofδ15Nbetween Irish elk and red deer at the Middle Pleistocene site of Schöningen in Germany suggest that grasses were a more important component of the former's diet relative to the latter.[48]

Examination of histological sections of their long bones suggests that the species has relatively rapid growth rates, reaching skeletal maturity by around 6 years of age. Analysis of thecementumlayers of their teeth suggests that Irish elk reached a maximum lifespan of at least 19 years, comparable to moose.[49]

Based on the dietary requirements of red deer, a 675 kg (1,488 lb) lean Irish elk stag would have needed to consume 39.7 kg (88 lb) of fresh forage daily. Assuming antler growth occurred over a span of 120 days, a stag would have required 1,372 g (3 lb) of protein daily, as well as access to nutrient- and mineral-dense forage starting about a month before antlers began sprouting and continuing until they had fully grown. Such forage is not very common, and stags perhaps sought after aquatic plants in lakes. After antler growing, stags could probably satisfy their nutritional requirements in productive sedge lands bordered by willow and birch forests.[37]

Gnaw marks on found on Irish elk bones indicates that they were preyed on or scavenged bycave hyenas.[4]

Relationship with early humans

edit
36,000 year old Irish elk cave painting atChauvet Cave,France (dot indicates14Csample)
Replica of a cave painting fromLascaux,c. 15,000 BC

At a number ofMiddle Paleolithicsites, remains ofM. giganteushave been found with cut marks indicating butchery byNeanderthals.These includeBolomor Cavein Spain, dating to around 180,000 years ago,[50]and De Nadale Cave and Riparo del Broion in northern Italy, dating to 71-69,000[51]and 50-44,000 years ago,[52]respectively. Other sites probably resulting from exploitation of Irish elk by Neanderthals include Abri du Maras in southeast France, dating to 55-40,000 years ago.[53]A mandible fromOfatinţi,Moldova dating to either the Eemian or the early Late Pleistocene, has been noted for having "tool-made notches on its lateral side".[54]

A handful of Irish elk depictions are known from theart of the Upper Paleolithicin Europe. However, these are much less abundant than the common red deer and reindeer depictions. Only a handful of examples of modern human interaction are known.[4]SeveralM. giganteusbones from theChatelperronianlevels of the Labeko Koba site in Spain are noted for bearing puncture marks, which have been interpreted as anthropogenic.[55]A terminal Pleistocene (13,710-13,215 cal BP) skull fromLüdersdorf,Germany is noted to have had the antler and facial part of the skull deliberately removed.[56]Acalcaneumfrom an associated lower hind limb from the early Holocene site of Sosnovy Tushamsky in Siberia is noted to have "two short and deep traces of cutting blows", which are interpreted as "clear evidence of butchery".[57][4]The use of shed antler bases is also known, at the terminal Pleistocene (Allerød) Endingen VI site in Germany, a shed antler base appears to have been used in a way analogous to alithic coreto produce "blanks"for the manufacture of barbed projectile tips.[58][4]A ring-like mark on a shed antler beam from the similarly agedPaderbornsite in Germany has been suggested to be anthropogenic.[59]

Extinction

edit

Outside of the Irish Late Pleistocene, remains of Irish elk are uncommon, suggesting that they were usually rare in the areas where they did occur.[4]

Historically, its extinction has been attributed to the encumbering size of the antlers, a "maladaptation"making fleeing through forests especially difficult for males while being chased by human hunters,[13]or being too ta xing nutritionally when the vegetation makeup shifted.[33]In these scenarios,sexual selectionby does for stags with large antlers would have contributed to decline.[60]

However, antler size decreased through the Late Pleistocene and into the Holocene, and so may not have been the primary cause of extinction.[41]A reduction in forest density in the Late Pleistocene and a lack of sufficient high-quality forage is associated with a decrease in body and antler size.[61]Such resource constriction may have cut female fertility rates in half.[41]Human hunting may have forced Irish elk into suboptimal feeding grounds.[3]

The distribution ofM. giganteusis thought to have been strongly controlled by climactic conditions. The range of the Irish elk appears to have collapsed during theLast Glacial Maximum(LGM), with few remains known between 27,500 and 14,600 years ago, and none between 23,300 and 17,500 years ago. Known remains substantially increase during the latest PleistoceneBølling–Allerød Interstadial,where it appears to have re-colonized northern Europe, with abundant remains in the UK, Ireland, and Denmark, though its range contracted again during the followingYounger Dryas,disappearing from northern Europe by the end of the period.[4]A 2021 study found thatM. giganteussaw a progressive decline in mitochondrial genome diversity beginning around 50,000 years ago, which accelerated during the LGM.[38]

By the early Holocene, the range of the species had been dramatically reduced, with the youngest records in the eastern part of its range near Lake Baikal dating to around 10,700–10,400 yearsBefore Present(BP), surviving latest in central part of its range withinEuropean RussiaandWestern Siberia.It is suggested that extinction was contributed to by further climatic changes transforming preferred open habitat into uninhabitable dense forest.[4]The final demise may have been caused by several factors both on a continental and regional scale, including climate change and hunting.[61][62]The youngest dates in this region fromKamyshlovin Western Siberia andMaloarkhangelsk, Oryol OblastIn European Russia date to around 7,700-7,600 years ago, and it is suggested that it likely became extinct shortly after this time. Lister and Stewart concluded in a study of the extinction of the Irish elk that "it seems clear that environmental factors, cumulatively over thousands of years, reduced giant deer populations to a highly vulnerable state. In this situation, even relatively low-level hunting by small human populations could have contributed to its extinction."[4]

Modern significance

edit
Sculptures inCrystal Palace

Due to the abundance of Irish elk remains in Ireland, a thriving trade in their bones existed there during the 19th century to supply museums and collectors. Skeletons and skulls with attached antlers were also prized ornaments in aristocratic homes. The remains of Irish elk were of high value: "In 1865, full skeletons might fetch £30, while particularly good heads with antlers could cost £15." with £15 being more than 30 weeks' wages for a low skilled worker at the time.[63]IndeedLeeds Philosophical and Literary Societybought a full skeleton in 1847, from Glennon's in Dublin, for £38.[64]This specimen, discovered atLough GurnearLimerick,is still on display atLeeds City Museum.[65]

See also

edit

References

edit
  1. ^Geist, Valerius (1998)."Megaloceros:The Ice Age Giant and Its Living Relatives ".Deer of the World: Their Evolution, Behaviour, and Ecology.Stackpole Books.ISBN978-0-8117-0496-0.
  2. ^abcdeLister, A.M. (1987)."MegacerosorMegaloceros?The nomenclature of the giant deer ".Quaternary Newsletter.52:14–16.
  3. ^abStuart, A.J.; Kosintsev, P.A.; Higham, T.F.G.; Lister, A.M. (2004)."Pleistocene to Holocene extinction dynamics in giant deer and woolly mammoth"(PDF).Nature.431(7009): 684–689.Bibcode:2004Natur.431..684S.doi:10.1038/nature02890.PMID15470427.S2CID4415073.Archived fromthe original(PDF)on 14 September 2006.Supplementary information.Erratum inStuart, A. J. (2005)."Erratum: Pleistocene to Holocene extinction dynamics in giant deer and woolly mammoth".Nature.434(7031): 413.Bibcode:2005Natur.434..413S.doi:10.1038/nature03413.
  4. ^abcdefghijLister, Adrian M.; Stuart, Anthony J. (January 2019)."The extinction of the giant deerMegaloceros giganteus(Blumenbach): New radiocarbon evidence ".Quaternary International.500:185–203.Bibcode:2019QuInt.500..185L.doi:10.1016/j.quaint.2019.03.025.
  5. ^abcdefLister, Adrian M.; Edwards, Ceiridwen J.; Nock, D. A. W.; Bunce, Michael; van Pijlen, Iris A.; Bradley, Daniel G.; Thomas, Mark G.; Barnes, Ian (2005). "The phylogenetic position of the giant deerMegaloceros giganteus".Nature.438(7069): 850–853.Bibcode:2005Natur.438..850L.doi:10.1038/nature04134.PMID16148942.S2CID4396326.
  6. ^abcdHughes, Sandrine; Hayden, Thomas J.; Douady, Christophe J.; Tougard, Christelle; Germonpré, Mietje; Stuart, Anthony; Lbova, Lyudmila; Carden, Ruth F.; Hänni, Catherine; Say, Ludovic (2006). "Molecular phylogeny of the extinct giant deer,Megaloceros giganteus".Molecular Phylogenetics and Evolution.40(1): 285–291.Bibcode:2006MolPE..40..285H.doi:10.1016/j.ympev.2006.02.004.PMID16556506.
  7. ^abImmel, Alexander; Drucker, Dorothée G.; Bonazzi, Marion; Jahnke, Tina K.; Münzel, Susanne C.; Schuenemann, Verena J.; Herbig, Alexander; Kind, Claus-Joachim; Krause, Johannes (2015)."Mitochondrial Genomes of Giant Deers Suggest their Late Survival in Central Europe".Scientific Reports.5(10853): 10853.Bibcode:2015NatSR...510853I.doi:10.1038/srep10853.PMC4459102.PMID26052672.
  8. ^abcMennecart, Bastien; DeMiguel, Daniel; Bibi, Faysal; Rössner, Gertrud E.; Métais, Grégoire; Neenan, James M.; Wang, Shiqi; Schulz, Georg; Müller, Bert; Costeur, Loïc (13 October 2017)."Bony labyrinth morphology clarifies the origin and evolution of deer".Scientific Reports.7(1): 13176.Bibcode:2017NatSR...713176M.doi:10.1038/s41598-017-12848-9.ISSN2045-2322.PMC5640792.PMID29030580.
  9. ^Molyneux, T. (1695)."A Discourse Concerning the Large Horns Frequently Found under Ground in Ireland, Concluding from Them That the Great American Deer, Call'd a Moose, Was Formerly Common in That Island: With Remarks on Some Other Things Natural to That Country".Philosophical Transactions of the Royal Society.19(227): 489–512.Bibcode:1695RSPT...19..489M.doi:10.1098/rstl.1695.0083.S2CID186207711.
  10. ^abBlumenbach J. 1799.Handbuch der Naturgeschichte(6th Ed.)16:697
  11. ^abcdefghijCroitor, Roman (December 2021)."Taxonomy, Systematics and Evolution of Giant Deer Megaloceros Giganteus (Blumenbach, 1799) (Cervidae, Mammalia) from the Pleistocene of Eurasia".Quaternary.4(4): 36.doi:10.3390/quat4040036.ISSN2571-550X.
  12. ^Wright, T. 1748. Louthiana: Or, an Introduction to the Antiquities of Ireland; W. Faden: London, UK; p. 20
  13. ^abcdGould, Stephen Jay (1974). "The Origin and Function of 'Bizarre' Structures: Antler Size and Skull Size in the 'Irish Elk,'Megaloceros giganteus".Evolution.28(2): 191–220.doi:10.2307/2407322.JSTOR2407322.PMID28563271.
  14. ^Joshua Brookes (1827)"Brookesian Museum. The Museum of Joshua Brookes, Esq. Anatomical and Zoological Preparations"London Gold and Walton
  15. ^abcdLister, A M, 1987MegalocerosBrookes 1828 Mammalia Artiodactyla Proposed Emendation Of The Original SpellingThe Bulletin of zoological nomenclature.44255–256
  16. ^"Megaloceros".Oxford Dictionary.Archived fromthe originalon 12 July 2020.Retrieved12 July2020– via Lexico.
  17. ^Vogt, Carl(1871).Lehrbuch der Geologie und Petrefactenkunde: zum Gebrauche bei Vorlesungen und zum Selbstunterrichte.p. 7.OCLC162473843.
  18. ^International Commission on Zoological Nomenclature 1989.Opinion 1566.MegalocerosBrookes, 1828 (Mammalia, Artiodactyla): original spelling emended.Bulletin of zoological nomenclature46:219–220.
  19. ^Anderson, Kristina. "What On Earth - A Canadian Newsletter for the Earth Sciences".What On Earth - A Canadian Newsletter for the Earth Sciences.N.p., 15 November 2002. Web. 23 October 2014.
  20. ^abZimmer, Carl."The Allure of Big Antlers".The Loom. Discover,National Geographic.3 September 2008. Web. 23 October 2014.
  21. ^Vislobokova, I. A. (December 2013)."Morphology, taxonomy, and phylogeny of megacerines (Megacerini, Cervidae, Artiodactyla)".Paleontological Journal.47(8): 833–950.Bibcode:2013PalJ...47..833V.doi:10.1134/S0031030113080017.ISSN0031-0301.S2CID86697746.
  22. ^abcdefgVan der Made, Jan (2019). "The dwarfed 'giant deer'Megaloceros matritensisn.sp. from the Middle Pleistocene of Madrid - A descendant ofM. saviniand contemporary toM. giganteus".Quaternary International.520:110–139.Bibcode:2019QuInt.520..110V.doi:10.1016/j.quaint.2018.06.006.S2CID133792579.
  23. ^abcdefCroitor, Roman (2018).Plio-Pleistocene deer of Western Palearctic: taxonomy, systematics, phylogeny.Institute of Zoology of the Academy of Sciences of Moldova. pp. 72 (stavropolensis) 93–94 (Praedama) 100–101 (Megaloceros) 105 (mugharensis).ISBN978-9975-66-609-1.OCLC1057238213.
  24. ^Titov, V. V.; Shvyreva, A. K. (January 2016). "Deer of the genus Megaloceros (Mammalia, Cervidae) from the Early Pleistocene of Ciscaucasia".Paleontological Journal.50(1): 87–95.Bibcode:2016PalJ...50...87T.doi:10.1134/S0031030116010111.ISSN0031-0301.S2CID131336166.
  25. ^van der Made, J.; Tong, H.W. (March 2008)."Phylogeny of the giant deer with palmate brow tines Megaloceros from west and Sin Omega ceros from east Eurasia"(PDF).Quaternary International.179(1): 135–162.Bibcode:2008QuInt.179..135V.doi:10.1016/j.quaint.2007.08.017.
  26. ^abLister, Adrian M. (September 1994). "The evolution of the giant deer,Megaloceros giganteus(Blumenbach) ".Zoological Journal of the Linnean Society.112(1–2): 65–100.doi:10.1111/j.1096-3642.1994.tb00312.x.
  27. ^Ashton, Nick; Lewis, Simon G.; Parfitt, Simon A.; Penkman, Kirsty E.H.; Russell Coope, G. (April 2008)."New evidence for complex climate change in MIS 11 from Hoxne, Suffolk, UK".Quaternary Science Reviews.27(7–8): 652–668.Bibcode:2008QSRv...27..652A.doi:10.1016/j.quascirev.2008.01.003.PMC2748712.PMID19777138.
  28. ^Johnston, Penny; Kelly, Bernice; Tierney, John."Megaloceros Giganteus on the Loose"(PDF).Seanda: The NRA Archaeology Magazine. pp. 58–59. Archived fromthe original(PDF)on 29 October 2013.
  29. ^Kuehn, Ralph; Ludt, Christian J.; Schroeder, Wolfgang; Rottmann, Oswald (2005). "Molecular Phylogeny ofMegaloceros giganteus— the Giant Deer or Just a Giant Red Deer? ".Zoological Science.22(9): 1031–1044.doi:10.2108/zsj.22.1031.PMID16219984.S2CID45958165.
  30. ^abTsuboi, Masahito; Kopperud, Bjørn Tore; Matschiner, Michael; Grabowski, Mark; Syrowatka, Christine; Pélabon, Christophe; Hansen, Thomas F. (29 January 2024)."Antler Allometry, the Irish Elk and Gould Revisited".Evolutionary Biology.51(1): 149–165.Bibcode:2024EvBio..51..149T.doi:10.1007/s11692-023-09624-1.ISSN0071-3260.
  31. ^Xiao, Bo; Rey-lglesia, Alba; Yuan, Junxia; Hu, Jiaming; Song, Shiwen; Hou, Yamei; Chen, Xi; Germonpré, Mietje; Bao, Lei; Wang, Siren; Taogetongqimuge; Valentinovna, Lbova Liudmila; Lister, Adrian M.; Lai, Xulong; Sheng, Guilian (November 2023)."Relationships of Late Pleistocene Giant Deer as Revealed by Sin Omega ceros Mitogenomes from East Asia".iScience.26(12): 108406.Bibcode:2023iSci...26j8406X.doi:10.1016/j.isci.2023.108406.PMC10690636.PMID38047074.
  32. ^Van der Made, J. Giant deer. InElefantenreich. Eine Fossilwelt in Europa;Meller, H., Ed.; Verlag Beier & Beran: Halle, Germany, 2010; pp. 408–412
  33. ^abcdefMoen, Ron A.; Pastor, John; Cohen, Yosef (1999)."Antler growth and extinction of Irish elk"(PDF).Evolutionary Ecology Research:235–249.
  34. ^abR. D. E. Mc Phee,Extinctions in Near Time: Causes, Contexts, and Consequencesp. 262
  35. ^A View to a Kill: Investigating Middle Palaeolithic Subsistence Using an Optimal Foraging Perspective
  36. ^Breda, M. (2005). "The morphological distinction between the postcranial skeleton ofCervalces/AlcesandMegaloceros giganteusand comparison between the two Alceini genera from the Upper Pliocene–Holocene of Western Europe ".Geobios.38(2): 151–170.Bibcode:2005Geobi..38..151B.doi:10.1016/j.geobios.2003.09.008.
  37. ^abcdefgGeist, V.(1998)."Megaloceros:the ice age giant and its living relatives ".Deer of the World: Their Evolution, Behaviour, and Ecology.Stackpole Books.ISBN978-0-8117-0496-0.
  38. ^abRey-Iglesia, Alba; Lister, Adrian M.; Campos, Paula F.; Brace, Selina; Mattiangeli, Valeria; Daly, Kevin G.; Teasdale, Matthew D.; Bradley, Daniel G.; Barnes, Ian; Hansen, Anders J. (12 May 2021)."Exploring the phylogeography and population dynamics of the giant deer (Megaloceros giganteus) using Late Quaternary mitogenomes".Proceedings of the Royal Society B: Biological Sciences.288(1950): rspb.2020.1864, 20201864.doi:10.1098/rspb.2020.1864.ISSN0962-8452.PMC8114472.PMID33977786.
  39. ^Jaubert, Jacques.L' "art" pariétal gravettien en France: éléments pour un bilan chronologique.p. 446.OCLC803593335.
  40. ^abBarnosky, Anthony D. (19 April 1985)."Taphonomy and Herd Structure of the Extinct Irish Elk,Megalocerous giganteus".Science.New.228(4697): 340–344.Bibcode:1985Sci...228..340B.doi:10.1126/science.228.4697.340.PMID17790237.S2CID30082176.
  41. ^abcdO'Driscoll Worman, Cedric; Kimbrell, Tristan (2008)."Getting to the hart of the matter: Did antlers truly cause the extinction of the Irish elk?".Oikos.117(9): 1397–1405.Bibcode:2008Oikos.117.1397O.doi:10.1111/j.0030-1299.2008.16608.x.S2CID85392250.
  42. ^Kitchener, A. (1987). "Fighting behavior of the extinct Irish elk".Modern Geology.11:1–28.
  43. ^Klinkhamer, Ada J.; Woodley, Nicholas; Neenan, James M.; Parr, William C. H.; Clausen, Philip; Sánchez-Villagra, Marcelo R.; Sansalone, Gabriele; Lister, Adrian M.; Wroe, Stephen (9 October 2019)."Head to head: the case for fighting behaviour in Megaloceros giganteus using finite-element analysis".Proceedings of the Royal Society B: Biological Sciences.286(1912): 20191873.doi:10.1098/rspb.2019.1873.ISSN0962-8452.PMC6790765.PMID31594504.
  44. ^van Geel, B.; Sevink, J.; Mol, D.; Langeveld, B. W.; van der Ham, R. W. J. M.; van der Kraan, C. J. M.; van der Plicht, J.; Haile, J. S.; Rey-Iglesia, A.; Lorenzen, E. D. (November 2018)."Giant deer (Megaloceros giganteus) diet from Mid-Weichselian deposits under the present North Sea inferred from molar-embedded botanical remains: Giant Deer Diet from Mid-Weichselian Deposits ".Journal of Quaternary Science.33(8): 924–933.doi:10.1002/jqs.3069.S2CID134292692.
  45. ^van der Knaap, Willem O.; van Geel, Bas; van Leeuwen, Jacqueline F.N.; Roescher, Frans; Mol, Dick (January 2024)."Pollen reveals the diet and environment of an extinct Pleistocene giant deer from the Netherlands".Review of Palaeobotany and Palynology.320:105021.Bibcode:2024RPaPa.32005021V.doi:10.1016/j.revpalbo.2023.105021.
  46. ^Chritz, Kendra L.; Dyke, Gareth J.; Zazzo, Antoine; Lister, Adrian M.; Monaghan, Nigel T.; Sigwart, Julia D. (November 2009). "Palaeobiology of an extinct Ice Age mammal: Stable isotope and cementum analysis of giant deer teeth".Palaeogeography, Palaeoclimatology, Palaeoecology.282(1–4): 133–144.Bibcode:2009PPP...282..133C.doi:10.1016/j.palaeo.2009.08.018.
  47. ^Rivals, Florent; Lister, Adrian M. (August 2016). "Dietary flexibility and niche partitioning of large herbivores through the Pleistocene of Britain".Quaternary Science Reviews.146:126.Bibcode:2016QSRv..146..116R.doi:10.1016/j.quascirev.2016.06.007.
  48. ^Kuitems, Margot; van der Plicht, Johannes; Drucker, Dorothée G.; Van Kolfschoten, Thijs; Palstra, Sanne W.L.; Bocherens, Hervé (December 2015)."Carbon and nitrogen stable isotopes of well-preserved Middle Pleistocene bone collagen from Schöningen (Germany) and their paleoecological implications".Journal of Human Evolution.89:105–113.doi:10.1016/j.jhevol.2015.01.008.Retrieved24 September2024– via Elsevier Science Direct.
  49. ^Kolb, Christian; Scheyer, Torsten M; Lister, Adrian M; Azorit, Concepcion; de Vos, John; Schlingemann, Margaretha AJ; Rössner, Gertrud E; Monaghan, Nigel T; Sánchez-Villagra, Marcelo R (December 2015)."Growth in fossil and extant deer and implications for body size and life history evolution".BMC Evolutionary Biology.15(1): 19.Bibcode:2015BMCEE..15...19K.doi:10.1186/s12862-015-0295-3.ISSN1471-2148.PMC4332446.PMID25887855.
  50. ^Blasco, Ruth; Fernández Peris, Josep; Rosell, Jordi (June 2010)."Several different strategies for obtaining animal resources in the late Middle Pleistocene: The case of level XII at Bolomor Cave (Valencia, Spain)".Comptes Rendus Palevol.9(4): 171–184.Bibcode:2010CRPal...9..171B.doi:10.1016/j.crpv.2010.05.004.
  51. ^Livraghi, Alessandra; Fanfarillo, Gabriele; Colle, Maurizio Dal; Romandini, Matteo; Peresani, Marco (June 2021)."Neanderthal ecology and the exploitation of cervids and bovids at the onset of MIS4: A study on De Nadale cave, Italy".Quaternary International.586:24–41.Bibcode:2021QuInt.586...24L.doi:10.1016/j.quaint.2019.11.024.hdl:11392/2414685.
  52. ^Romandini, Matteo; Silvestrini, Sara; Real, Cristina; Lugli, Federico; Tassoni, Laura; Carrera, Lisa; Badino, Federica; Bortolini, Eugenio; Marciani, Giulia; Delpiano, Davide; Piperno, Marcello; Collina, Carmine; Peresani, Marco; Benazzi, Stefano (September 2023)."Late Neanderthal" menu "from northern to southern Italy: freshwater and terrestrial animal resources".Quaternary Science Reviews.315:108233.Bibcode:2023QSRv..31508233R.doi:10.1016/j.quascirev.2023.108233.hdl:11585/945233.
  53. ^Marín, Juan; Daujeard, Camille; Saladié, Palmira; Rodríguez-Hidalgo, Antonio; Vettese, Delphine; Rivals, Florent; Boulbes, Nicolas; Crégut-Bonnoure, Evelyne; Lateur, Nicolas; Gallotti, Rosalia; Arbez, Louis; Puaud, Simon; Moncel, Marie-Hélène (September 2020)."Neanderthal faunal exploitation and settlement dynamics at the Abri du Maras, level 5 (south-eastern France)".Quaternary Science Reviews.243:106472.Bibcode:2020QSRv..24306472M.doi:10.1016/j.quascirev.2020.106472.
  54. ^Croitor, Roman; Stefaniak, Krzysztof; Pawłowska, Kamilla; Ridush, Bogdan; Wojtal, Piotr; Stach, Małgorzata (April 2014). "Giant deerMegaloceros giganteusBlumenbach, 1799 (Cervidae, Mammalia) from Palaeolithic of Eastern Europe ".Quaternary International.326–327: 91–104.Bibcode:2014QuInt.326...91C.doi:10.1016/j.quaint.2013.10.068.
  55. ^A. Villaluenga, A. Arrizabalaga, J. Rios-Garaizar"Multidisciplinary approach to two Chatelperronian series: lower IX layer of Labeko Koba and X level of Ekain (Basque Country, Spain)"Journal of Taphonomy,10 (2012), pp. 499–520
  56. ^B. Bratlund "Ein Riesenhirschschädel mit Bearbeitungsspuren aus Lüdersdorf",Kreis Grevesmühlen.Offa 49/50 (1992/1993) (1994), pp. 7–14
  57. ^S. K. Vasiliev, V. S. Slavinsky, A. V. Postnov. "The Irish elk (Megaloceros giganteusBlumenbach, 1803) in the paleofauna of the Holocene sites of the northern Angara region (Ust-Tushama-1, Sosnovy Tushamsky Ostrov, Ust-Talaya) "Journal of Novosibirsk State University,Series: Hist. Philol., 12/7 (2013), pp. 177–185 Archaeology and Ethography
  58. ^K. Kaiser, P. De Klerk, T. Terberger. "Die 'Riesenhirsch Fundstelle' von Endingen: geowissenschaftliche und archäologische Untersuchungen an einem spätglazialen Fundplatz in Vorpommern".Eiszeitalt und Gegenwart.49 (1999). pp. 102–123.
  59. ^M. Baales, S. Birker, H.-O. Pollman, W. Rosendahl, B. Stapel "Erstmals datierte organische Artefakte aus dem Spätpaläolithikum Westfalens Archäologie in Westfalen".Lippe,2012 (2012), pp. 24–27
  60. ^Kokko, H.; Brooks, R. (2003). "Sexy to die for? sexual selection and the risk of extinction".Annales Zoologici Fennici.40(2): 207–219.ProQuest18804232.
  61. ^abGonzalez, Silvia; Andrew Kitchener; Adrian Lister (15 June 2000). "Survival of the Irish elk into the Holocene".Nature.405(6788): 753–754.Bibcode:2000Natur.405..753G.doi:10.1038/35015668.PMID10866185.S2CID4417046.
  62. ^"Irish Elk Survived after Ice Age Ended" Author(s): S. P.Science News,Vol. 166, No. 19 (6 November 2004), p. 301. Society for Science & the Public.
  63. ^Adelman, Juliana (April 2012). "An insight into commercial natural history: Richard Glennon, William Hinchy and the nineteenth-century trade in giant Irish deer remains".Archives of Natural History.39(1): 16–26.doi:10.3366/anh.2012.0059.ISSN0260-9541.
  64. ^Letter from R. Glennon, Dublin, to Henry Denny, Leeds, 10 July 1847. Held at Leeds Discovery Centre, Leeds, UK.
  65. ^"Natural Science".Leeds Museums and Galleries.Retrieved13 January2021.

Further reading

edit
Kurten is a paleo-anthropologist, and in this novel, he presents a theory ofNeanderthalextinction. Irish elk feature prominently, under the nameshelkwhich Kurten coins (based on the aforementioned old Germanschelch) to avoid the problematic aspects of "Irish" and "elk" as discussed above. The book was first published in 1980 when "Giant Deer" was not yet being used widely.
  • Zoological Science22: 1031–1044 (2005).
  • Larson, Edward J. (2004).Evolution: The Remarkable History of a Scientific Theory.
edit