Nodal homolog

(Redirected fromNODAL)

Nodal homologis a secretoryproteinthat in humans is encoded by theNODALgene[5][6]which is located onchromosome 10q22.1.[7]It belongs to thetransforming growth factor beta superfamily(TGF-β superfamily). Like many other members of this superfamily it is involved incell differentiationin earlyembryogenesis,playing a key role in signal transfer from theprimitive node,in the anteriorprimitive streak,tolateral plate mesoderm(LPM).[8][9]

NODAL
Available structures
PDBOrtholog search:PDBeRCSB
Identifiers
AliasesNODAL,HTX5, nodal growth differentiation factor
External IDsOMIM:601265;MGI:97359;HomoloGene:8417;GeneCards:NODAL;OMA:NODAL - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_018055
NM_001329906

NM_013611

RefSeq (protein)

NP_001316835
NP_060525

NP_038639

Location (UCSC)Chr 10: 70.43 – 70.45 MbChr 10: 61.25 – 61.26 Mb
PubMedsearch[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Nodal signaling is important very early indevelopmentformesodermandendodermformation and subsequent organization of left-right axial structures.[10][11][12]In addition, Nodal seems to have important functions in neural patterning,stem cellmaintenance[7][12]and many other developmental processes, including left/righthandedness.[11][13]

Nodal induction of gastrulation

edit

The primitive node serves as the primary organizer while producing Nodal, which works as the signaling molecule for early embryonic development and gastrulation. Following the formation of the primitive node, secretion of Nodal induces local cell migration.[14]Secondary signals such asDKK1enable migration through upregulating or downregulating cell adhesion molecules, thereby allowing movement and association with like cells.[15]

First, cranially or anteriorly, anterior visceral endoderm (AVE) develops as the first wave of Nodal induces migration of visceral endoderm relative to the primitive node. AVE begins secreting inhibitory factors such asLeftyquickly following Nodal expression and works to inhibit Nodal and establish anterior-posterior axis patterning.[15]

As the primitive node extends cranially, epiblast cells exposed to high concentrations of nodal begin initial movement into the primitive streak and become endoderm, while epiblast cells exposed to intermediate concentrations of nodal become mesoderm, and cells that are not stimulated by nodal become ectoderm. This process results in transition from the single layer epiblast into three germ layers of progenitor cells for all other adult body systems. Simultaneous action of cilia on the primitive node surface pushes increased concentrations to the left side of the embryo, establishing the left-right concentration gradient preceding asymmetrical organogenesis in later development due to downstream signaling cascades. Absence of Nodal leads to failed gastrulation and nonviability.[14][15]

Signaling

edit

Nodal can bind type I and type IIserine/threonine kinase receptors,with Cripto-1 acting as its co-receptor.[16]Signaling throughSMAD2/3 and subsequent translocation ofSMAD4 to the nucleus promotes the expression ofgenesinvolved in proliferation and differentiation.[7]Nodal also further activates its own expression via a positive feedback loop.[12][16]It is tightly regulated by inhibitorsLeftyA,LeftyB, Cerberus, and Tomoregulin-1, which can interfere with Nodal receptor binding.[9][12]

Species specific Nodal ligands

edit

Nodal is a widely distributedcytokine.[17]The presence of Nodal is not limited tovertebrates,it is also known to be conserved in otherdeuterostomes(cephalochordates,tunicatesandechinoderms) andprotostomessuch as snails, but neither the nematodeC. elegans(another protosome) nor the fruit flyDrosophila(an arthropod) have a copy of nodal.[18][19]Although mouse and human only have onenodalgene, the zebrafish contain threenodalparalogs:squint, cyclopsandsouthpaw,and the frog five (xnr1,2,3,5 and 6). Even though the zebrafish Nodal homologs are very similar, they have specialized to perform different roles; for instance, Squint and Cyclops are important for mesoendoderm formation, whereas the Southpaw has a major role in asymmetric heartmorphogenesisand visceral left-right asymmetry.[20]Another example of protein speciation is the case of the frog where Xnr1 and Xnr2 regulate movements in gastrulation in contrast to Xnr5 and Xnr6 that are involved in mesoderm induction.[21]In mouse, Nodal has been implicated in left-right asymmetry, neural pattering and mesoderm induction (seenodal signaling).

Functions

edit

Nodal signaling regulatesmesodermformation in a species-specific manner. Thus, inXenopus,Xnr controls dorso-ventralmesodermformation along the marginal zone. Inzebrafish,Squint and Cyclops are responsible for animal-vegetalmesodermformation. Inchickenandmouse,Vg1 and Nodal respectively promote primitive streak formation in the epiblast.[12]In chick development, Nodal is expressed inKoller's sickle.[22]Studies have shown that a nodal knockout inmousecauses the absence of the primitive streak and failure in the formation ofmesoderm,leading to developmental arrest just aftergastrulation.[23][24][25]

Compared tomesodermspecification,endodermspecification requires a higher expression of Nodal. Here, Nodal stimulates mixer homeoproteins, which can interact withSMADsin order to up-regulateendodermspecific genes and repressmesodermspecific genes.[12]

Left-right asymmetry(LR asymmetry) of visceral organs invertebratesis also established throughnodal signaling.Whereas Nodal is initially symmetrically expressed in theembryo,aftergastrulation,Nodal becomes asymmetrically restricted to the left side of the organism.[7][12]It is highly conserved among deuterostomes.[26][27]Anorthologof Nodal was found insnailsand was shown to be involved inleft-right asymmetryas well in 2008.[27]

In order to enable anterior neural tissue development, Nodal signaling needs to be repressed after inducing mesendoderm and LR asymmetry.[12][16]

Recent research on mouse and humanembryonic stem cells(hESCs) indicates that Nodal seems to be involved in the maintenance ofstem cellself-renewal andpluripotentpotentials.[7][12][28][29]Thus, overexpression of Nodal in hESCs lead to the repression of cell differentiation.[12]On the contrary, inhibition of Nodal and Activin signaling enabled the differentiation of hESCs.[7]

References

edit
  1. ^abcGRCh38: Ensembl release 89: ENSG00000156574Ensembl,May 2017
  2. ^abcGRCm38: Ensembl release 89: ENSMUSG00000037171Ensembl,May 2017
  3. ^"Human PubMed Reference:".National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^"Mouse PubMed Reference:".National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^Gebbia M, Ferrero GB, Pilia G, Bassi MT, Aylsworth A, Penman-Splitt M, et al. (November 1997). "X-linked situs abnormalities result from mutations in ZIC3".Nature Genetics.17(3): 305–308.doi:10.1038/ng1197-305.PMID9354794.S2CID22916101.
  6. ^"NODAL - Nodal homolog precursor - Homo sapiens (Human) - NODAL gene & protein".uniprot.org.Archivedfrom the original on 30 March 2022.Retrieved30 March2022.
  7. ^abcdefStrizzi L, Postovit LM, Margaryan NV, Seftor EA, Abbott DE, Seftor RE, et al. (2008)."Emerging roles of nodal and Cripto-1: from embryogenesis to breast cancer progression".Breast Disease.29:91–103.doi:10.3233/bd-2008-29110.PMC3175751.PMID19029628.
  8. ^Kawasumi A, Nakamura T, Iwai N, Yashiro K, Saijoh Y, Belo JA, et al. (May 2011)."Left-right asymmetry in the level of active Nodal protein produced in the node is translated into left-right asymmetry in the lateral plate of mouse embryos".Developmental Biology.353(2): 321–330.doi:10.1016/j.ydbio.2011.03.009.PMC4134472.PMID21419113.
  9. ^abBranford WW, Yost HJ (May 2004)."Nodal signaling: CrypticLefty mechanism of antagonism decoded".Current Biology.14(9): R341–R343.Bibcode:2004CBio...14.R341B.doi:10.1016/j.cub.2004.04.020.PMID15120085.
  10. ^"Entrez Gene: NODAL nodal homolog (mouse)".
  11. ^abDougan ST, Warga RM, Kane DA, Schier AF, Talbot WS (May 2003)."The role of the zebrafish nodal-related genes squint and cyclops in patterning of mesendoderm".Development.130(9): 1837–1851.doi:10.1242/dev.00400.PMID12642489.
  12. ^abcdefghijShen MM (March 2007)."Nodal signaling: developmental roles and regulation".Development.134(6): 1023–1034.doi:10.1242/dev.000166.PMID17287255.
  13. ^Brandler WM, Morris AP, Evans DM, Scerri TS, Kemp JP, Timpson NJ, et al. (September 2013)."Common variants in left/right asymmetry genes and pathways are associated with relative hand skill".PLOS Genetics.9(9): e1003751.doi:10.1371/journal.pgen.1003751.PMC3772043.PMID24068947.
  14. ^abRobertson EJ (August 2014)."Dose-dependent Nodal/Smad signals pattern the early mouse embryo".Seminars in Cell & Developmental Biology.RNA biogenesis & TGFβ signalling in embryonic development.32:73–79.doi:10.1016/j.semcdb.2014.03.028.PMID24704361.Archivedfrom the original on 2023-04-08.Retrieved2024-04-16.
  15. ^abcKumar A, Lualdi M, Lyozin GT, Sharma P, Loncarek J, Fu XY, et al. (April 2015)."Nodal signaling from the visceral endoderm is required to maintain Nodal gene expression in the epiblast and drive DVE/AVE migration".Developmental Biology.400(1): 1–9.doi:10.1016/j.ydbio.2014.12.016.PMC4806383.PMID25536399.
  16. ^abcSchier AF (Aug 2003). "Nodal signaling in vertebrate development".Annual Review of Cell and Developmental Biology.19:589–621.doi:10.1146/annurev.cellbio.19.041603.094522.PMID14570583.
  17. ^Chen, Hsu-Hsin, Geijsen, Neils (2006)."Signaling germline commitment".In Simón, Carlos, Pellicer, Antonio (eds.).Stem cells in human reproduction: basic science and therapeutic potential.CRC Press. p. 74.ISBN978-0-415-39777-3.
  18. ^Chea HK, Wright CV, Swalla BJ (October 2005)."Nodal signaling and the evolution of deuterostome gastrulation".Developmental Dynamics.234(2): 269–278.doi:10.1002/dvdy.20549.PMID16127715.S2CID24982316.
  19. ^Schier AF (November 2009)."Nodal morphogens".Cold Spring Harbor Perspectives in Biology.1(5): a003459.doi:10.1101/cshperspect.a003459.PMC2773646.PMID20066122.
  20. ^Baker K, Holtzman NG, Burdine RD (September 2008)."Direct and indirect roles for Nodal signaling in two axis conversions during asymmetric morphogenesis of the zebrafish heart".Proceedings of the National Academy of Sciences of the United States of America.105(37): 13924–13929.Bibcode:2008PNAS..10513924B.doi:10.1073/pnas.0802159105.PMC2544555.PMID18784369.
  21. ^Luxardi G, Marchal L, Thomé V, Kodjabachian L (February 2010)."Distinct Xenopus Nodal ligands sequentially induce mesendoderm and control gastrulation movements in parallel to the Wnt/PCP pathway".Development.137(3): 417–426.doi:10.1242/dev.039735.PMID20056679.
  22. ^Schnell S (18 December 2007).Multiscale Modeling of Developmental Systems.Academic Press.ISBN978-0-08-055653-6.Retrieved7 December2013.
  23. ^Conlon FL, Lyons KM, Takaesu N, Barth KS, Kispert A, Herrmann B, et al. (July 1994). "A primary requirement for nodal in the formation and maintenance of the primitive streak in the mouse".Development.120(7): 1919–1928.doi:10.1242/dev.120.7.1919.PMID7924997.
  24. ^Zhou X, Sasaki H, Lowe L, Hogan BL, Kuehn MR (February 1993)."Nodal is a novel TGF-beta-like gene expressed in the mouse node during gastrulation".Nature.361(6412): 543–547.Bibcode:1993Natur.361..543Z.doi:10.1038/361543a0.PMID8429908.S2CID4318909.Archivedfrom the original on 2022-01-28.Retrieved2019-09-11.
  25. ^Reissmann E, Jörnvall H, Blokzijl A, Andersson O, Chang C, Minchiotti G, et al. (August 2001)."The orphan receptor ALK7 and the Activin receptor ALK4 mediate signaling by Nodal proteins during vertebrate development".Genes & Development.15(15): 2010–2022.doi:10.1101/gad.201801.PMC312747.PMID11485994.
  26. ^Hamada H, Meno C, Watanabe D, Saijoh Y (February 2002). "Establishment of vertebrate left-right asymmetry".Nature Reviews. Genetics.3(2): 103–113.doi:10.1038/nrg732.PMID11836504.S2CID20557143.
  27. ^abGrande C, Patel NH (February 2009)."Nodal signalling is involved in left-right asymmetry in snails".Nature.457(7232): 1007–1011.Bibcode:2009Natur.457.1007G.doi:10.1038/nature07603.PMC2661027.PMID19098895.
  28. ^Chng Z, Vallier L, Pedersen R (2011). "Activin/nodal signaling and pluripotency".Vitamins and Hormones.85:39–58.doi:10.1016/B978-0-12-385961-7.00003-2.ISBN978-0-12-385961-7.PMID21353875.
  29. ^Fei T, Chen YG (April 2010). "Regulation of embryonic stem cell self-renewal and differentiation by TGF-beta family signaling".Science China. Life Sciences.53(4): 497–503.doi:10.1007/s11427-010-0096-2.PMID20596917.S2CID9074927.

Further reading

edit
edit