This articleneeds additional citations forverification.(February 2019) |
TheAegis Combat Systemis an American integrated naval weapons system, which uses computers and radars to track and guide weapons to destroy enemy targets. It was developed by the Missile and Surface Radar Division ofRCA,and it is now produced byLockheed Martin.
Initially used by theUnited States Navy,Aegis is now used also by theJapan Maritime Self-Defense Force,Spanish Navy,Royal Norwegian Navy,Republic of Korea Navy,andRoyal Australian Navy,and is planned for use by theRoyal Canadian Navy.As of 2022, a total of 110 Aegis-equipped ships have been deployed, and 71 more are planned (seeoperators).
Aegis BMD(Ballistic Missile Defense) capabilities are being developed as part of theNATO missile defense system.[1]
Etymology
editThe word "Aegis"is a reference that dates back to Greek mythology, with connotations of a protective shield, as the Aegis was thebuckler(shield) of Zeus, worn by Athena.
Overview
editThe Aegis Combat System (ACS) implements advanced command and control (command and decision, or C&D, in Aegis parlance). It is composed of the Aegis Weapon System (AWS), the fast-reaction component of the Aegis Anti-Aircraft Warfare (AAW) capability, along with thePhalanx Close In Weapon System (CIWS),and theMark 41 Vertical Launch System.[2]Mk 41 VLS is available in different versions that vary in size and weight. There are three lengths: 209 in (5.3 m) for the self-defense version, 266 in (6.8 m) for the tactical version, and 303 in (7.7 m) for the strike version. The empty weight for an 8-cell module is 26,800 lb (12,200 kg) for the self-defense version, 29,800 lb (13,500 kg) for the tactical version, and 32,000 lb (15,000 kg) for the strike version, thus incorporatinganti-submarine warfare(ASW) systems andTomahawkLand Attack Cruise Missiles (TLAM). Shipboard torpedo and naval gunnery systems are also integrated.
AWS, the heart of Aegis, comprises theAN/SPY-1Radar, MK 99 Fire Control System, Weapon Control System (WCS), the Command and Decision Suite, and Standard Missile family of weapons; these include the basicRIM-66 Standard,theRIM-156 Standard ERextended range missile, and the newerRIM-161 Standard Missile 3designed to counterballistic missilethreats. A further SM-2 based weapon, theRIM-174 Standard ERAM(Standard Missile 6) was deployed in 2013. Individual ships may not carry all variants. Weapons loads are adjusted to suit assigned mission profile. The Aegis Combat System is controlled by an advanced, automatic detect-and-track, multi-function three-dimensionalpassive electronically scanned arrayradar,the AN/SPY-1. Known as "the Shield of the Fleet", the SPY high-powered (6megawatt) radar is able to perform search, tracking, and missile guidance functions simultaneously with a track capacity of well over 100 targets at more than 100 nautical miles (190 km).[3]However, the AN/SPY-1 Radar is mounted lower than theAN/SPS-49radar system and so has a reducedradar horizon.[4]
The Aegis system communicates with the Standard missiles through a radio frequency (RF) uplink using the AN/SPY-1 radar formid-course updatemissile guidanceduring engagements, but still requires theAN/SPG-62fire-control radarfor terminal guidance. This means that with proper scheduling of intercepts, a large number of targets can be engaged simultaneously.
Thecomputer-based command-and-decision (C&D) element is the core of the Aegis Combat System and came from theNaval Tactical Data System(NTDS) threat evaluation and weapons assignment (TEWA) function.[5]This interface makes the ACS capable of simultaneous operation against almost all kinds of threats.
In December 2019, Lockheed Martin released a promotional video heralding the 50th anniversary of the Aegis combat system.[6]
Development
editAegis was initially developed by the Missile and Surface Radar Division ofRCA,which was later acquired byGeneral Electric.The division responsible for the Aegis systems became Government Electronic Systems. This, and otherGE Aerospacebusinesses, were sold toMartin Mariettain 1992.[7]This became part ofLockheed Martinin 1995.
By the late 1950s, the U.S. Navy replaced guns with guided missiles on its ships. These were sufficient weapons but by the late 1960s, the U.S. Navy recognized that reaction time, firepower, and operational availability in all environments did not match theanti-ship missilethreat.[8]The new threat of Soviet anti-ship missiles exposed a weakness in contemporary naval radar. The requirements of both tracking and targeting these missiles was limited by the number of radars on each ship, which was typically 2–4. In 1958 the navy started theTyphon Combat System,a prophetic program culminating in the futuristic but unreliableAN/SPG-59phased array radar, which was never made viable and was cancelled in 1963 to be replaced by the Advanced Surface Missile System (ASMS).[9]
As a result, the U.S. Navy decided to develop a program to defend ships from anti-ship missile threats. An Advanced Surface Missile System (ASMS) was promulgated and an engineering development program was initiated in 1964 to meet the requirements.[10]ASMS was renamed "Aegis" in December 1969 after theaegis,theshieldof theGreek godZeus.The name was suggested by Captain L. J. Stecher, a formerTartar Weapon Systemmanager, after an internal U.S. Navy contest to name the ASMS program was initiated. Captain Stecher also submitted a possible acronym of Advanced Electronic Guided Interceptor System although this definition was never used.[11]The main manufacturer of the Aegis Combat System, Lockheed Martin, makes no mention of the name Aegis being an acronym, nor does theU.S. Navy.
In 1970, then-CaptainWayne Meyerwas named Manager Aegis Weapons System. Under his leadership the first systems were successfully deployed on various U.S. Navy vessels.
The first Engineering Development Model (EDM-1) was installed in a test ship,USSNorton Sound,in 1973.[12]During this time frame, the Navy envisioned installing the Aegis Combat System on both a nuclear-powered "strike cruiser"(or CSGN) and a conventionally-powered destroyer (originally designated DDG 47). The CSGN was to be a new, 17,200 ton cruiser design based on the earlierCaliforniaandVirginia-classcruisers. The Aegis destroyer design would be based on the gas turbine poweredSpruanceclass.When the CSGN was cancelled, the Navy proposed a modifiedVirginia-class design (CGN 42) with a new superstructure designed for the Aegis Combat System and with a displacement of 12,100 tons. As compared to the CSGN, this design was not as survivable and had reduced command and control facilities for an embarked flag officer. Ultimately this design was also cancelled during the Carter Administration due to its increased cost compared to the non-nuclear DDG 47. With the cancellation of the CGN 42, the DDG 47 Aegis destroyer was redesignated as CG 47, a guided missile cruiser.
The first cruiser of this class wasUSSTiconderoga,which used two twin-armed Mark-26 missile launchers, fore and aft. The commissioning of the sixth ship of the class,USSBunker Hillopened a new era in surface warfare as the first Aegis ship outfitted with theMartin MariettaMark-41Vertical Launching System(VLS), allowing a wider missile selection, more firepower, and survivability. The improved AN/SPY-1B radar went to sea inUSSPrinceton,ushering in another advance in Aegis capabilities.USSChosinintroduced theAN/UYK-43/44computers, which provide increased processing capabilities.
During 1980, theArleigh Burke-classdestroyer was designed using an improved sea-keeping hull form, reducedinfraredand radar cross-sections, and upgrades to the Aegis Combat System. The first ship of the class,USSArleigh Burke,was commissioned during 1991.
Flight II of theArleigh Burkeclass, introduced in 1992, incorporated improvements to the SPY-1 radar, and to the Standard missile, active electronic countermeasures, and communications. Flight IIA, introduced in 2000, added ahelicopterhangar with one anti-submarine helicopter and one armedattack helicopter.The Aegis program has also projected reducing the cost of each Flight IIA ship by at least $30 million.
Recent Aegis Combat System ships come withactive electronically scanned arrayradars which use solid-stategallium nitrideemitters. These includeCanadian Surface Combatant (CSC)and SpanishF110-class frigates,which use theAN/SPY-7radar from Lockheed-Martin, andConstellation-class frigateswhich useAN/SPY-6radar fromRaytheon.AN/SPY-6 radar will also be installed in Flight III and Flight IIAArleigh Burke-class destroyers, giving them Ballistic Missile Defense capability currently deployed on Flight I and Flight II ships.
Ballistic missile defense
editTheAegis Ballistic Missile Defense System(BMD) program by the U.S.Missile Defense Agencyenables the Aegis system to act in a sea-basedballistic missile defensefunction, to counter short- and medium-rangeballistic missilesof the variety typically employed by a number of potential opponent states. The program is part of theUnited States national missile defensestrategy andNATO European missile defense system.[1]
BMD capabilities allow vessels equipped withMk 41 Vertical Launching System(VLS) to intercept ballistic missiles in post-boost phase and prior to reentry, using theRIM-161 Standard Missile 3(SM-3) mid-course interceptors[13]and theRIM-156 Standard Missile 2 Extended Range Block IV(SM-2ER Block IV)[14]terminal-phase interceptors.[15]The SM-2ER Block IV can engage the ballistic missiles within the atmosphere (i.e. endoatmospheric intercept) in the terminal phase of a missile's trajectory with a blast fragmentation warhead. The Standard Missile 3 is a development of the SM2-ER Block IV, capable of exo-atmospheric intercept (i.e. above the atmosphere) during the midcourse phase; its kinetic warhead (KW) is designed to destroy a ballistic missile's warhead by colliding with it.RIM-174 Standard ERAM(Standard Missile 6) extended range active missile is a further development of the SM-2ER Block IV, which adds a booster and anactive radar homingseeker.[16]SM-6 can be used for either air defense or ballistic missile defense, providing extended range and increased firepower; it is not intended to replace the SM-2 series of missiles.[17]The SM-6 Block IB includes a larger 21-inch rocket motor that sits on top of the 21-inch booster.[18]
To enable Ballistic Missile Defense capabilities,signal processingfor the SPY-1 radar was upgraded usingcommercial off-the-shelfcomponents andopen architecturestandards.[19]The Multi-Mission Signal Processor (MMSP) provides Anti-Air Warfare (AAW) and Ballistic Missile Defense (BMD) capability for the first 28 ships (DDGs 51–78) of the U.S. Navy'sArleigh Burke-class destroyers. This capability is also incorporated inUSSJohn Finn(DDG-113)and following new construction, as well as Aegis Ashore. MMSP modifies transmitters of theSPY-1Dradar to enable dual-beam operation for reduced frame times and better reaction time, and provides stability for allwaveforms,allowing the radar system to detect, track, and support engagements of a broader range of threats. MMSP improves performance inlittoral,ductedclutter,electronic attack(EA), andchaffenvironments and provides greater commonality in computer programs and equipment.[20][21]
As of April 2022, the U.S. and Japan are the only countries to purchase or deploy the Aegis BMD on their military ships.[22][23][24]
Flight III ofArleigh Burke-class destroyers starting withUSSJack H. Lucasare equipped withAN/SPY-6AESA radar fromRaytheon,which is 30 times more sensitive and thus can handle 30 times more targets comparing to the SPY-1D radar, providing increased air and missile defense capabilities.[25][26]Flight IIA ships will also be upgraded to SPY-6 in the future, giving them Aegis BMD capabilities.[26][25]
Aegis Ashoreis a land-based version of Aegis BMD which includes the AN/SPY-1 radar and command systems, and Mk 41 VLS equipped SM-3 and SM-6 missiles. Test installation exists at thePacific Missile Range FacilityinHawaii.AsiteinDeveselu,Romaniais operational since 2016, and a site nearRedzikowo,Polandwill become operational in 2022. Japan intended to deploy two systems with anAN/SPY-7AESA radar by 2021, but cancelled these plans in 2020. Possible deployments of Aegis Ashore include U.S. naval base atGuam.[22]
U.S. ArmyIntegrated Air and Missile Defense Battle Command System(IBCS) program aims to integrate Aegis BMD and itsAN/SPY-1andAN/SPY-6radars withMIM-104 Patriot(AN/MPQ-65A and GhostEye),NASAMS(GhostEye MR),AN/TPY-2(THAADandGMD), andF-35 Lightning II(AN/APG-81) radars to form aplug and fightnetwork of land, sea, and air-based sensors to help detect and track ballistic missile threats and select Patriot and THAAD surface-to-air launchers that are best positioned for a successful intercept.
NATO European Phased Adaptive Approach
editOn 5 October 2011,U.S. Secretary of DefenseLeon Panettaannounced that the United States Navy will station fourAegis Ballistic Missile Defense Systemwarships atNaval Station Rota,Spain, to strengthen its presence in the Mediterranean Sea and bolster the ballistic missile defense (BMD) of NATO as part of theEuropean Phased Adaptive Approach(EPAA) missile defense program. On 16 February 2012, it was reported that theArleigh Burke-class destroyersDonald CookandRosswould be relocated to Rota during Fiscal Year 2014, followed byPorterandCarneyin fiscal year 2015.[27]On 9 May 2013, CommanderDestroyer Squadron 60was formally designated to performtype-commandadministrative oversight for the four BMD-capable destroyers based at Rota, Spain.[28]
JMSDF Aegis Afloat
editTheJapanese Maritime Self Defense Force(JMSDF) currently operates fourKongō,twoAtago,and twoMaya-classguided-missile destroyers as part of its "Aegis Afloat" program (See table below).
Additionally, on 31 August 2022, TheJapan Ministry of Defenseannounced that JMSDF will operate two "Aegis system equipped ships"(イージス・システム chở khách hạm in Japanese) (picturedto replace the earlier plan of Aegis Ashore installations, commissioning one by the end of fiscal year 2027, and the other by the end of FY2028. The budget for design and other related expenses are to be submitted in the form of "item requests", without specific amounts, and the initial procurement of the lead items are expected to clear legislation by FY2023. Construction is to begin in the following year of FY2024. At 20,000 tons each, both vessels will be the largestsurface combatantwarships operated by the JMSDF, and according toPopular Mechanics,they will "arguably [be] the largest deployable surface warships in the world.".[29][30][31][32]
On 6 October 2022, five warships from the United States, Japan, and South Korea held a multilateral ballistic missile defense exercise in theSea of Japan(pictured) as part of the military response toongoing North Korean intermediate-range ballistic missile tests over the Japanese home islands.[33][34]
On 16 November 2022, the guided-missile destroyerMayafired an SM-3 Block IIA missile, successfully intercepting the target outside the atmosphere in the first launch of the missile from a Japanese warship. On 18 November 2022, theHagurolikewise fired an SM-3 Block IB missile with a successful hit outside the atmosphere (pictured). Both test firings were conducted at the U.S.Pacific Missile Range FacilityonKauai Island,Hawaii, in cooperation with the U.S. Navy andU.S. Missile Defense Agency.This was the first time the two ships conducted SM-3 firings in the same time period, and the tests validated the ballistic missile defense capabilities of Japan's newestMaya-class destroyers.[35]
On 23 December 2022, the Japanese Ministry of Defense's 2023 budget and program guidance illustrated examples of operation ( vận dụng の đồng loạt ) for the Aegis-equipped naval forces of the Japanese Maritime Self Defense Force (MSDF). The two ASEV warship would be exclusively tasked for dedicated ballistic missile defense (BDM) missions (BMD chờ ) and operate off the Korean peninsula in theSea of Japan,allowing the other Aegis guided-missile destroyers to meet other contingencies ( xâm công ngăn cản ) while operating independently to maintain thesea lines of communication(SLOC) open in theEast China Seasouthwest of the Japanese home islands.[36][37][38][39]
On 22 February 2023, five warships from the United States, Japan, and South Korea held a multilateral ballistic missile defense exercise in theSea of Japanin response to the launch of a North KoreanHwasong-15ballistic missile on 18 February 2023, landing inJapan's exclusive economic zone (EEZ)in the Sea of Japan, in an area 125 miles west of the island ofŌshima,which lies 30 miles (48 km) west of the main island ofHokkaido.Two additional ICBMs were subsequently launched on 20 February 2023, with both landing in the Sea of Japan off the east coast of theKorean Peninsula.[40]On 19 December 2023, United States, Japan, and South Korea announced the activation of a real-time North Korea missile warning system as well as jointly established a multi-year trilateral exercise plan in response to North Korea's continued ballistic missile launches.[41][42]
Name | Hull pennant no. | Builder/shipyard | Aegis radar | Anti-ballistic missile | Vertical launchers | Commissioned | Home port | Flotilla | Squadron | Status |
---|---|---|---|---|---|---|---|---|---|---|
Mayaclass | ||||||||||
JSMaya | DDG-179 | JMU, Yokohama | AN/SPY-1D(V) | SM-3 Standard missile | Mark 41:96 cells (total) | 19 March 2020 | Yokosuka | Escort Flotilla 1 | Escort Squadron 1 | Active |
JSHaguro | DDG-180 | JMU, Yokohama | AN/SPY-1D(V) | SM-3 Standard missile | Mark 41:96 cells (total) | 19 March 2021 | Sasebo | Escort Flotilla 4 | Escort Squadron 8 | Active |
Atagoclass | ||||||||||
JDSAtago | DDG-177 | JMU, Yokohama | AN/SPY-1D(V) | SM-3 Standard missile | Mark 41:96 cells (total) | 15 March 2007 | Maizuru | Escort Flotilla 3 | Escort Squadron 3 | Active |
JDSAshigara | DDG-178 | JMU, Yokohama | AN/SPY-1D(V) | SM-3 Standard missile | Mark 41:96 cells (total) | 13 March 2008 | Sasebo | Escort Flotilla 2 | Escort Squadron 2 | Active |
Kongōclass | ||||||||||
Kongō | DDG-173 | Mitsubishi Heavy Industries | AN/SPY-1DPESA | SM-3 Standard missile | Mark 41:90 cells (total) | 25 March 1993 | Sasebo | Escort Flotilla 1 | Escort Squadron 5: | Active |
Kirishima | DDG-174 | Mitsubishi Heavy Industries | AN/SPY-1DPESA | SM-3 Standard missile | Mark 41:90 cells (total) | 16 March 1995 | Yokosuka | Escort Flotilla 2 | Escort Squadron 6 | Active |
Myōkō | DDG-175 | Mitsubishi Heavy Industries | AN/SPY-1DPESA | SM-3 Standard missile | Mark 41:90 cells (total) | 14 March 1996 | Maizuru | Escort Flotilla 3 | Escort Squadron 3 | Active |
Chōkai | DDG-176 | IHI Corporation | AN/SPY-1DPESA | SM-3 Standard missile | Mark 41:90 cells (total) | 20 March 1998 | Sasebo | Escort Flotilla 4 | Escort Squadron 8 | Active |
System problems
editIn 2010, it was reported that Aegis radar systems on board some individual warships were not being maintained properly. A Navy panel headed by retired Vice Adm. Phillip Balisle issued the "Balisle report," which asserted that over-emphasis on saving money, including cuts in crews and streamlined training and maintenance, led to a drastic decline in readiness, and left Aegis Combat Systems in low state of readiness.[43]
Iran Air Flight 655
editThe Aegis system was involved in a disaster in whichUSSVincennesmistakenly shot downIran Air Flight 655in 1988 resulting in 290 civilian deaths.
A formal military investigation by the United States Navy concluded that the Aegis system was completely operational and well maintained. The investigation found that if thecommanding officerhad relied on the complete tactical data displayed by the Aegis system, the engagement might never have occurred. Additionally, psychological effects of the crew subconsciously manipulating the data to accord with a predefined scenario greatly contributed to the false identification. The investigation found that the Aegis Combat System did not contribute to the incident and that the system's recorded target data contributed to the investigation of the incident. The discrepancies between the Aegis data report and what the ship's personnel reported to the commanding officer are as follows:[44]
Aegis Data Report | Personnel Report to CO |
---|---|
Iran Air Flight 655 continuously ascended in duration of flight | Iran Air Flight 655, after attaining 9,000 to 12,000 ft (2,700 to 3,700 m), reportedly descended on an attack vector on USSVincennes |
Iran Air Flight 655 continuously squawkedMode IIIidentification, friend or foe(IFF) in duration of flight | Iran Air Flight 655 reportedly squawked IranianF-14 Tomcaton Mode II IFF for a moment; personnel proceeded to re-label the target from "Unknown Assumed Enemy" to "F-14" |
Iran Air Flight 655 held consistent climb speed in duration of flight | Iran Air Flight 655 was reported to increase in speed to an attack vector similar to an F-14 Tomcat |
Other analyses found that ineffective user interface design caused poor integration with the crisis management human processes it was intended to facilitate. The Aegis System software shuffles target tracking numbers as it gathers additional data. When the captain asked for a status of the original target identifier TN4474, the Aegis system had recycled that identifier to a different target which was descending, indicating possible attack posture.[45]An article byDavid PogueinScientific Americanrated it as one of the five "worst digital user-interface debacles of all time."[46]
Operators
edit- TheRoyal Australian Navycommissioned threeHobart-class destroyerswhich have Aegis as the core of their combat systems, with the last entering service in 2020. The Australian Government announced that the class of nineHunter-class frigatesto be built in the next decade will also be Aegis equipped, but with a tactical interface developed by Saab Australia.[47]The number ofHunter-class frigates were reduced to 6 following the Australian government's Enhanced Lethality Surface Combatant Fleet program.
- TheRoyal Canadian Navyhas awardedLockheed Martin Canadabuilding 15Canadian Surface Combatants.The ships will be equipped with the AN/SPY-7(V)1 solid state radar and the International Aegis Fire Control Loop (IAFCL) is integrated with Canada's combat management system, CMS 330, developed by Lockheed Martin Canada for the Royal Canadian Navy'sHalifax-classships. The program will make Canada the owner of the world's second largest Aegis fleet.[48]
- TheJapanese Maritime Self-Defense Forceoperates eight Aegis ships comprising the fourKongō-class destroyersthat entered service from 1993 and two improved units known as theAtagoclassfrom 2007. Two further improved units known as theMayaclasswere ordered with the first being commissioned in 2020 and the second in 2021.
- TheRoyal Norwegian Navyhas acquired five Spanish-builtFridtjof Nansen-classfrigatesequipped with the Aegis system, with the first,HNoMSFridtjof Nansenentering service in 2006 and the last,HNoMSThor Heyerdahl,in 2011. One,HNoMSHelge Ingstadwas sunk after colliding with an oil tanker. After being raised, it was thought that repairing the ship was too costly and so it was decided to scrap the ship.
- Republic of Korea Navycurrently operates threeSejong the Great-class destroyers,with the lead ship commissioned in 2008. Three further vessels have been ordered.
- TheSpanish Navyis currently operating five F100Álvaro de Bazán-classAegisfrigates,and starting it 2024, it will operate theF110-class frigate[49]as well. The F-110 class will incorporate the International Aegis Fire Control Loop (IAFCL) integrated with SCOMBA, the national combat system developed by Navantia.[48]
- The U.S. Navy currently operates the Aegis equippedTiconderoga-class cruisersandArleigh Burke-class destroyersand has ordered more of the latter. It will reportedly integrate the new Aegis Baseline 10 on its upcomingConstellation-class frigates.[50]
- Informally, some media refer to the Chinese phased-array radar air-defense destroyers,Type 052CandType 052D destroyers,as "Chinese Aegis".[51]Outside foreign observers retain the usage of "Aegis" mainly for the brand-name Aegis Combat System-equipped classes.[52]
Gallery
edit-
Map with Aegis operators in blue
-
JSKongō,the first non-U.S. ship equipped with AWS
-
Large screen displays onUSSVincennes,typical of early Aegis platforms, 1988
-
Combat Information Center(CIC) consoles aboardUSSNormandy,1997
-
Large screen displays onUSSJohn S. McCain,circa 1997. Destroyers have two displays while cruisers have four.
See also
edit- Wayne E. Meyer
- Aegis Ballistic Missile Defense System– (United States)
- PAAMS– (United Kingdom, France, Italy)
- Typhon Combat System– (United States)
- Some destroyers owned by the Chinese Navy equipped with active electronically scanned array and vertical launch systems are also informally calledChinese Aegis(Trung Hoa thần thuẫn), such asType 052D destroyer,etc.
References
edit- ^ab"Fact Sheet on U.S. Missile Defense Policy - A" Phased, Adaptive Approach "for Missile Defense in Europe".Office of the Press Secretary.The White House. 17 September 2009.Retrieved23 August2012.
- ^Originally, the first five ships of the United States' Aegis equippedTiconderoga-class cruiserswere outfitted with Mark-26 twin-arm missile launchers; however, the ships with this system have been decommissioned and are no longer in service.
- ^"Aegis Combat System".The Warfighter Encyclopedia.Warfighter Response Center. October 8, 2003. Archived fromthe originalon November 5, 2004.RetrievedAugust 10,2006..
- ^"AN/SPY-1 Radar".Retrieved29 January2016.
- ^First-Hand:Legacy of NTDS - Chapter 9 of the Story of the Naval Tactical Data SystemSection 4.3 Building Aegis.Engineering and Technology History Wiki
- ^"20191205_Lockheed_AEGIS_50th_Anniversary_3D_ME_FINAL".Vimeo.Green Buzz Agency. 5 December 2019.Archivedfrom the original on 10 December 2019.Retrieved10 December2019.
- ^Lenorovitz, Jeffrey. "GE Aerospace to merge into Martin Marietta"Aviation Week & Space Technology.November 30, 1992. Accessed on July 19, 2007
- ^Hearings on H.R. 6566, ERDA Authorization Legislation (National Security Programs) for Fiscal Year 1978.1977. p. 145.
- ^"Archived copy"(PDF).Archived fromthe original(PDF)on 2017-11-18.Retrieved2012-07-11.
{{cite web}}
:CS1 maint: archived copy as title (link) - ^"Aegis Cruisers".About Careers.Archived fromthe originalon 4 March 2016.Retrieved29 January2016.
- ^Lockheed Martin. "Aegis Heritage". Presentation. November 20, 2002.
- ^Dan Petty."The US Navy -- Fact File: Aegis Weapon System".Archived fromthe originalon 4 February 2016.Retrieved29 January2016.
- ^"Standard Missile-3 (SM-3)".Missile Threat.Retrieved2022-08-30.
- ^"Standard Missile-2 Block IV".Missile Threat.Retrieved2022-08-31.
- ^"Aegis Ballistic Missile Defense".Missile Threat.Retrieved2022-11-30.
- ^Sydney J. Freedberg, Jr.,"Non-Standard: Navy SM-6 Kills Cruise Missiles Deep Inland"– Breakingdefense, 19 August 2014
- ^"Report to Congress on Aegis Ballistic Missile Defense".December 18, 2018.
- ^"Lockheed Martin Successfully Completes Formal Testing of Second-Generation Aegis Ballistic Missile Defense Capability".lockheedmartin.2010-09-16. Archived from the original on 2013-01-27.
{{cite web}}
:CS1 maint: unfit URL (link) - ^FY 2013 Presidential Budget (PB): Navy, February 2012. Exhibit R-2, Research, Development, Test, and Evaluation (RDT&E) Budget Item Justification: Program Element (PE) 0604501N: Advanced Above Water Sensors, Page 2 of 37.[1].Accessed on 04 April 2013
- ^"pr_mission_aegis-live-tracking-041210 · Lockheed Martin".lockheedmartin.
- ^ab"Navy Aegis Ballistic Missile Defense (BMD) Program: Background and Issues for Congress (RL33745)".Congressional Research Service. 2022-04-01.Archivedfrom the original on 2022-04-01.Retrieved2022-05-08.Alt URL
- ^"Aegis Ballistic Missile Defense".Missile Defense Agency.US Dept. of Defense. 8 January 2014. Archived fromthe originalon 25 January 2014.Retrieved30 January2014.
- ^"Aegis Ballistic Missile Defense - Foreign Military Sales".Missile Defense Agency.US Dept. of Defense. 2 January 2014. Archived fromthe originalon 13 October 2013.Retrieved30 January2014.
- ^abJustin KatzRaytheon to start backfitting destroyers with SPY-6 radar.Breaking Defense (11 Jan 2022)
- ^ab"U.S. Navy's SPY-6 Family of Radars".raytheonmissilesanddefense.Raytheon. 12 July 2020.Retrieved12 July2020.
- ^"Navy Names Forward Deployed Ships to Rota, Spain".NNS120216-15.U.S. Department of Defense.16 February 2012. Archived fromthe originalon 12 October 2014.Retrieved11 August2013.
- ^"ESTABLISHMENT OF COMMANDER, DESTROYER SQUADRON SIX ZERO"(PDF).OPNAVNOTE 5400 Ser DNS-33/13U102244.United States Department of the Navy.9 May 2013. Archived fromthe original(PDF)on 14 October 2013.Retrieved11 August2013.
- ^Lia Wong (1 September 2022)."Japanese Defense Budget Expansion Includes Two 20,000 Ton Cruisers".Overt Defense.Retrieved7 September2022.
- ^Dzirhan Mahadzir (6 September 2022)."Japan to Build Two 20,000-ton Missile Defense Warships, Indian Carrier Commissions".USNI News Blog.Retrieved7 September2022.
- ^Yoshihiro Inaba (1 September 2022)."Japan's New" Aegis Equipped Ships ": What We Know So Fars".NavalNews.Retrieved7 September2022.
- ^Kyle Mizokami (12 September 2022)."Japan Defense Ministry plans new Aegis destroyers in place of Aegis Ashore".Popular Mechanics.Archived from the original on 12 September 2022.Retrieved13 September2022.
{{cite web}}
:CS1 maint: bot: original URL status unknown (link) - ^LaGrone, Sam (October 6, 2022)."UPDATED: Warships from U.S., Japan, South Korea Ballistic Missile Defense Drills After North Korean Missile Shots".News Blog.United States Naval Institute.RetrievedOctober 11,2022.
- ^"US Navy, JMSDF And ROK Navy Conduct BMD Exercise".NavalNews.October 6, 2022.RetrievedOctober 25,2022.
- ^Mahadzir, Dzirhan (November 21, 2022)."Two Japanese Destroyers Score in Ballistic Missile Defense Test off Hawaii".News Blog.United States Naval Institute.RetrievedNovember 22,2022.
- ^LaGrone, Sam (December 27, 2022)."Japanese MoD Releases New Details on Ballistic Missile Defense Ships".News Blog.United States Naval Institute.RetrievedJanuary 3,2023.
- ^Emma, Helfrich (December 29, 2022)."First Rendering Of Japan's Ballistic Missile Defense Ship Concept Released".The Drive.RetrievedJanuary 3,2023.
- ^"Defense Programs and Budget of Japan FY Reiwa 5 (2023) Budget Overview"(PDF).Budget overview.Japanese Ministry of Defense.December 23, 2022. p. 15.Retrieved2023-01-09.
Japanese
- ^Mahadzir, Dzirhan (February 22, 2023)."U.S., Japan, South Korea Hold Ballistic Missile Defense Drills after North Korean Launches".News Blog.United States Naval Institute.RetrievedFebruary 22,2023.
- ^Mahadzir, Dzirhan (December 19, 2023)."U.S., Japan, South Korea Establish North Korean Missile".News Blog.United States Naval Institute.RetrievedDecember 22,2023.
- ^"Japan-United States-Republic of Korea Trilateral Ministerial Joint Press Statement".Press Release.Japanese Ministry of Defense.December 19, 2023.RetrievedDecember 24,2023.
- ^Study says Aegis radar systems on the decline,by Philip Ewing, Navy Times, Wednesday July 7, 2010.
- ^Fogarty, William M. (July 28, 1988)."Formal Investigation into the Circumstances Surrounding the Downing of Iran Air Flight 655 on 3 July 1988".93-FOI-0184. Archived fromthe original(PDF)on 6 May 2006.RetrievedMarch 31,2006.
- ^Fisher, Craig; Kingma, Bruce (2001). "Criticality of data quality as exemplified in two disasters".Information and Management.39(2): 109–116.CiteSeerX10.1.1.15.1047.doi:10.1016/S0378-7206(01)00083-0.S2CID13015473.
- ^Pogue, David (1 April 2016)."5 of the Worst User-Interface Disasters".Scientific American.Archivedfrom the original on 22 September 2016.Retrieved3 July2019.
- ^"Subscribe to The Australian - Newspaper home delivery, website, iPad, iPhone & Android apps".theaustralian.au.
- ^ab"SNA 2020: Four Nations to Be Protected with Lockheed Martin's Next Generation SPY-7 Radar".Naval News.2020-01-15.Retrieved2020-01-15.
- ^"Fragatas F-110: presupuestados por ahora 174 millones en I+D+i y su diseño".ABC. 20 January 2018.Retrieved24 January2018.
- ^"Fincantieri's FREMM Wins US Navy FFG(X) Frigate Competition".30 April 2020.
- ^"PLA Navy shows off 'Chinese Aegis' at RIMPAC 2014".2014-06-19. Archived fromthe originalon 2014-08-14.
- ^James R. Holmes, The Diplomat."'Taipei must admit defeat in the arms race…' - The Diplomat ".The Diplomat.Retrieved29 January2016.
External links
edit- Center For Surface Combat Systems (CSCS)U.S. Navy Combat Systems Training, Dahlgren, VA.
- AEGIS Training and Readiness Center (ATRC)U.S. Navy AEGIS Training, Dahlgren, VA.
- AEGIS Weapon System MK-7in the FAS Military Analysis Network.
- DDG-51 ARLEIGH BURKE-classin the FAS Military Analysis Network.
- "AN/SPY-1".The Warfighter Encyclopedia.Warfighter Response Center. October 8, 2003. Archived fromthe originalon November 5, 2004.RetrievedAugust 10,2006..
- "AEGIS Weapon System MK-7".Jane's Information Group.April 25, 2001.Archivedfrom the original on July 1, 2006.RetrievedAugust 10,2006.
- "MK 7 AEGIS FIRE CONTROL SYSTEM RADAR".FIRE CONTROLMAN, VOLUME 02--FIRE CONTROL RADAR FUNDAMENTALS(PDF).US NAVY.RetrievedAugust 10,2006.