Charophyta(UK:/kəˈrɒfɪtə,ˌkærəˈftə/) is a group offreshwatergreen algae,calledcharophytes(/ˈkærəˌfts/), sometimes treated as adivision,[2]yet also as a superdivision[3]or an unrankedclade.The terrestrial plants, theEmbryophytaemerged deep within Charophyta, possibly from terrestrial unicellular charophytes,[4]with the classZygnematophyceaeas asister group.[5][6][7][8][9]

Charophyta
Chara globularis
Chara globularis
Scientific classificationEdit this classification
Clade: Viridiplantae
(unranked): Charophyta
Migula1897,[1]sensuLeliaert et al. 2012
Groups included
Cladisticallyincluded but traditionally excluded taxa

Embryophyta

With the Embryophyta nowcladisticallyplaced in the Charophyte, it is a synonym of Streptophyta.[10][11][12][13]The sister group of the charophytes are theChlorophyta.In some charophyte groups, such as theZygnematophyceaeor conjugating green algae,flagellaare absent and sexual reproduction does not involve free-swimming flagellate sperm. Flagellate sperm, however, are found instoneworts(Charales) andColeochaetales,orders of parenchymatous charophytes that are the closest relatives of the land plants, where flagellate sperm are also present in all except theconifersandflowering plants.[14]Fossil stoneworts of earlyDevonianage that are similar to those of the present day have been described from theRhynie chertof Scotland.[15]Somewhat different charophytes have also been collected from the Late Devonian (Famennian)Waterloo Farm lagerstätteof South Africa. These include two species each ofOctocharaandHexachara,which are the oldest fossils of Charophyte axes bearing in situoogonia.

The name comes from thegenusChara,but the finding that the Embryophyta actually emerged in them hasnotresulted in a much more restricted meaning of the Charophyta, namely to a much smaller side branch. This more restricted group corresponds to theCharophyceae.

Description

edit

TheZygnematophyceae,formerly known as the Conjugatophyceae, generally possess two fairly elaboratechloroplastsin each cell, rather than many discoid ones. They reproduceasexuallyby the development of a septum between the two cell-halves or semi-cells (in unicellular forms, each daughter-cell develops the other semi-cell afresh) and sexually by conjugation, or the fusion of the entire cell-contents of the two conjugating cells. The saccoderm desmids and the placoderm or true desmids, unicellular or filamentous members of the Zygnematophyceae, are dominant in non-calcareous, acid waters of oligotrophic or primitivelakes(e.g. Wastwater), or in lochans, tarns and bogs, as in the West of Scotland, Eire, parts of Wales and of the Lake District.[16]

Klebsormidium,the type of theKlebsormidiophyceae,is a simple filamentous form with circular, plate-like chloroplasts, reproducing by fragmentation, by dorsiventral,biciliateswarmers and, according to Wille, a twentieth-century algologist, byaplanospores.[17]Sexual reproduction is simple andisogamous(the male and female gametes are outwardly indistinguishable).[17]

TheCharales(Charophyceae), or stoneworts, are freshwater andbrackishalgae with slender green or grey stems; the grey colour of many species results from the deposition of lime on the walls, masking the green colour of the chlorophyll. The main stems are slender and branch occasionally. Lateralbranchletsoccur inwhorlsat regular intervals up the stem, they are attached by rhizoids to the substrate.[18]The reproductive organs consist ofantheridiaandoogonia,though the structures of these organs differ considerably from the corresponding organs in other algae. As a result of fertilization, aprotonemais formed, from which the sexually reproducing algae develops.

A new terrestrial genus found in sandy soil in theCzech Republic,Streptofilum,may belong in its own class due its unique phylogenetic position. Acell wallis absent, instead thecell membraneconsists of many layers of specific scales. It is a short, filamentous and unbranched algae surrounded by a mucilaginous sheath, which often disintegrates to diads and unicells.[19]

Reproduction

edit

The cells in Charophyta algae are allhaploid,except during sexual reproduction, where a diploid unicellular zygote is produced. The zygote becomes four new haploid cells through meiosis, which will develop into new algae. In multicellular forms these haploid cells will grow into agametophyte.In embryophytes (land plants) the zygote will instead give rise to a multicellularsporophyte.[20][21]

Except from land plants, retention of the zygote is only known from some species in one group of green algae; thecoleochaetes.In these species the zygote is corticated by a layer of sterile gametophytic cells. Another similarity is the presence ofsporopolleninin the inner wall of the zygote. In at least one species, it receives nourishment from the gametophyte through placental transfer cells.[22]

Classification

edit

Charophyta are complex green algae that form a sister group to theChlorophytaand within which theEmbryophytaemerged. Thechlorophyteand charophyte green algae and the embryophytes or land plants form a clade called the green plants orViridiplantae,that is united among other things by the absence ofphycobilins,the presence ofchlorophyll aandchlorophyll b,cellulose in the cell wall and the use ofstarch,stored in the plastids, as a storage polysaccharide. The charophytes and embryophytes share several traits that distinguish them from the chlorophytes, such as the presence of certain enzymes (class Ialdolase,Cu/Znsuperoxide dismutase,glycolate oxidase,flagellarperoxidase), lateral flagella (when present), and, in many species, the use ofphragmoplastsinmitosis.[23]Thus Charophyta and Embryophyta together form the cladeStreptophyta,excluding the Chlorophyta.

Charophytes such asPalaeonitella craniiand possibly the yet unassignedParka decipiens[24]are present in the fossil record of theDevonian.[15]Palaeonitelladiffered little from some present-day stoneworts.

Cladogram

edit

There is an emerging consensus on green algal relationships, mainly based on molecular data.[23][25][26][27][10][2][6][28][29][30][31][32][19][33]The Mesostigmatophyceae (includingSpirotaenia,and Chlorokybophyceae) are at the base of charophytes (streptophytes). The cladograms below show consensus phylogenetic relationships based on plastid genomes[34]and a new proposal for a third phylum of green plants based on analysis of nuclear genomes.[35]

Mesostigmatophyceae s.l. in the cladograms corresponds to a clade of a narrower circumscription, Mesostigmatophyceae s.s., and a separate class Chlorokybophyceae, as used byAlgaeBase.[1]

The Mesostigmatophyceae are not filamentous, but the other basal charophytes (streptophytes) are.[36][19][30]

References

edit
  1. ^abGuiry, M.D.; Guiry, G.M."Charophytes".AlgaeBase.World-wide electronic publication, National University of Ireland, Galway.Retrieved2022-02-21.
  2. ^abLewis, Louise A.; McCourt, Richard M. (2004). "Green algae and the origin of land plants".American Journal of Botany.91(10): 1535–56.doi:10.3732/ajb.91.10.1535.PMID21652308.
  3. ^Ruggiero, M. A.; Gordon, D. P.; Orrell, T. M.; Bailly, N.; Bourgoin, T.; Brusca, R. C.; et al. (2015)."A higher level classification of all living organisms".PLOS One.10(4): e0119248.Bibcode:2015PLoSO..1019248R.doi:10.1371/journal.pone.0119248.PMC4418965.PMID25923521.
  4. ^de Vries, J; Archibald, JM (March 2018)."Plant evolution: landmarks on the path to terrestrial life".The New Phytologist.217(4): 1428–1434.doi:10.1111/nph.14975.PMID29318635.
  5. ^Del-Bem, Luiz-Eduardo (2018-05-31)."Xyloglucan evolution and the terrestrialization of green plants".New Phytologist.219(4): 1150–1153.doi:10.1111/nph.15191.hdl:1843/36860.ISSN0028-646X.PMID29851097.
  6. ^abRuhfel, Brad R.; Gitzendanner, Matthew A.; Soltis, Pamela S.; Soltis, Douglas E.; Burleigh, J. Gordon (2014-02-17)."From algae to angiosperms–inferring the phylogeny of green plants (Viridiplantae) from 360 plastid genomes".BMC Evolutionary Biology.14:23.doi:10.1186/1471-2148-14-23.ISSN1471-2148.PMC3933183.PMID24533922.
  7. ^Wickett, Norman J.; Mirarab, Siavash; Nguyen, Nam; Warnow, Tandy; Carpenter, Eric; Matasci, Naim; Ayyampalayam, Saravanaraj; Barker, Michael S.; Burleigh, J. Gordon (2014-11-11)."Phylotranscriptomic analysis of the origin and early diversification of land plants".Proceedings of the National Academy of Sciences.111(45): E4859–E4868.Bibcode:2014PNAS..111E4859W.doi:10.1073/pnas.1323926111.ISSN0027-8424.PMC4234587.PMID25355905.
  8. ^Vries, Jan de; Stanton, Amanda; Archibald, John M.; Gould, Sven B. (2016-02-16). "Streptophyte Terrestrialization in Light of Plastid Evolution".Trends in Plant Science.21(6): 467–476.doi:10.1016/j.tplants.2016.01.021.ISSN1360-1385.PMID26895731.
  9. ^Treatise on invertebrate paleontology. Part B. Protoctista 1. Volume1: Charophyta.[1]
  10. ^abCook, Martha E.; Graham, Linda E. (2017). "Chlorokybophyceae, Klebsormidiophyceae, Coleochaetophyceae". In Archibald, John M.; Simpson, Alastair G. B.; Slamovits, Claudio H. (eds.).Handbook of the Protists.Springer International Publishing. pp. 185–204.doi:10.1007/978-3-319-28149-0_36.ISBN9783319281476.
  11. ^Delwiche, Charles F.; Timme, Ruth E. (2011)."Plants".Current Biology.21(11): R417–R422.doi:10.1016/j.cub.2011.04.021.PMID21640897.
  12. ^Karol, Kenneth G.; McCourt, Richard M.; Cimino, Matthew T.; Delwiche, Charles F. (2001-12-14). "The Closest Living Relatives of Land Plants".Science.294(5550): 2351–2353.Bibcode:2001Sci...294.2351K.doi:10.1126/science.1065156.ISSN0036-8075.PMID11743201.S2CID35983109.
  13. ^Lewis, Louise A.; McCourt, Richard M. (2004)."Green algae and the origin of land plants".American Journal of Botany.91(10): 1535–1556.doi:10.3732/ajb.91.10.1535.ISSN1537-2197.PMID21652308.
  14. ^Vaughn, K.C.; Renzaglia, K.S. (2006)."Structural and immunocytochemical characterization of theGinkgo bilobaL. sperm motility apparatus ".Protoplasma.227(2–4): 165–73.doi:10.1007/s00709-005-0141-3.PMID16736257.S2CID9864200.
  15. ^abKelman, R.; Feist, M.; Trewin, N.H.; Hass, H. (2003). "Charophyte algae from the Rhynie chert".Transactions of the Royal Society of Edinburgh: Earth Sciences.94(4): 445–455.doi:10.1017/s0263593300000808.S2CID128869547.
  16. ^West, G.S; Fritsch, F.E. (1927).A Treatise of the British Freshwater Algae.Cambridge: Cambridge University Press.
  17. ^abFritsch, F.E. (1935).The Structure and Reproduction of the Algae, vol I.Cambridge University Press. pp. 205–206.
  18. ^Bryant 2007, J. The Stoneworts (Chlorophyta, Charales) in Guiry, M.D., John, D.M., Rindi, F. and McCarthy, T.K (Ed)New Survey of Clare Island Volume 6: The Freshwater and Terrestrial Algae.Royal Irish Academy.ISBN9781904890317
  19. ^abcMikhailyuk, Tatiana; Lukešová, Alena; Glaser, Karin; Holzinger, Andreas; Obwegeser, Sabrina; Nyporko, Svetlana; Friedl, Thomas; Karsten, Ulf (2018)."New Taxa of Streptophyte Algae (Streptophyta) from Terrestrial Habitats Revealed Using an Integrative Approach".Protist.169(3): 406–431.doi:10.1016/j.protis.2018.03.002.ISSN1434-4610.PMC6071840.PMID29860113.
  20. ^Evolution and development of land plant embryos - GtR - UKRI
  21. ^Becker, B.; Marin, B. (2009)."Streptophyte algae and the origin of embryophytes".Annals of Botany.103(7): 999–1004.doi:10.1093/aob/mcp044.PMC2707909.PMID19273476.
  22. ^Paleobotany: The Biology and Evolution of Fossil Plants
  23. ^abLeliaert, Frederik; Smith, David R.; Moreau, Hervé; Herron, Matthew D.; Verbruggen, Heroen; Delwiche, Charles F.; De Clerck, Olivier (2012)."Phylogeny and molecular evolution of the green algae"(PDF).Critical Reviews in Plant Sciences.31:1–46.doi:10.1080/07352689.2011.615705.S2CID17603352.Archived fromthe original(PDF)on 2015-06-26.Retrieved2016-10-04.
  24. ^Hemsley, A.R. (1989). "The ultrastructure of the spores of the Devonian plantParka decipiens".Annals of Botany.64(3): 359–367.doi:10.1093/oxfordjournals.aob.a087852.
  25. ^Marin, Birger (2012). "Nested in the Chlorellales or Independent Class? Phylogeny and Classification of the Pedinophyceae (Viridiplantae) Revealed by Molecular Phylogenetic Analyses of Complete Nuclear and Plastid-encoded rRNA Operons".Protist.163(5): 778–805.doi:10.1016/j.protis.2011.11.004.PMID22192529.
  26. ^Laurin-Lemay, Simon; Brinkmann, Henner; Philippe, Hervé (2012)."Origin of land plants revisited in the light of sequence contamination and missing data".Current Biology.22(15): R593–R594.doi:10.1016/j.cub.2012.06.013.PMID22877776.
  27. ^Leliaert, Frederik; Tronholm, Ana; Lemieux, Claude; Turmel, Monique; DePriest, Michael S.; Bhattacharya, Debashish; Karol, Kenneth G.; Fredericq, Suzanne; Zechman, Frederick W. (2016-05-09)."Chloroplast phylogenomic analyses reveal the deepest-branching lineage of the Chlorophyta, Palmophyllophyceae class. nov".Scientific Reports.6:25367.Bibcode:2016NatSR...625367L.doi:10.1038/srep25367.ISSN2045-2322.PMC4860620.PMID27157793.
  28. ^Adl, Sina M.; Simpson, Alastair G. B.; Lane, Christopher E.; Lukeš, Julius; Bass, David; Bowser, Samuel S.; Brown, Matthew W.; Burki, Fabien; Dunthorn, Micah (2012-09-01)."The Revised Classification of Eukaryotes".Journal of Eukaryotic Microbiology.59(5): 429–514.doi:10.1111/j.1550-7408.2012.00644.x.ISSN1550-7408.PMC3483872.PMID23020233.
  29. ^Lemieux, Claude; Otis, Christian; Turmel, Monique (2007-01-12)."A clade uniting the green algae Mesostigma viride and Chlorokybus atmophyticus represents the deepest branch of the Streptophyta in chloroplast genome-based phylogenies".BMC Biology.5:2.doi:10.1186/1741-7007-5-2.ISSN1741-7007.PMC1781420.PMID17222354.
  30. ^abUmen, James G. (2014-11-01)."Green Algae and the Origins of Multicellularity in the Plant Kingdom".Cold Spring Harbor Perspectives in Biology.6(11): a016170.doi:10.1101/cshperspect.a016170.ISSN1943-0264.PMC4413236.PMID25324214.
  31. ^Sánchez-Baracaldo, Patricia; Raven, John A.; Pisani, Davide; Knoll, Andrew H. (2017-09-12)."Early photosynthetic eukaryotes inhabited low-salinity habitats".Proceedings of the National Academy of Sciences.114(37): E7737–E7745.Bibcode:2017PNAS..114E7737S.doi:10.1073/pnas.1620089114.PMC5603991.PMID28808007.
  32. ^Gitzendanner, Matthew A.; Soltis, Pamela S.; Wong, Gane K.-S.; Ruhfel, Brad R.; Soltis, Douglas E. (2018)."Plastid phylogenomic analysis of green plants: A billion years of evolutionary history".American Journal of Botany.105(3): 291–301.doi:10.1002/ajb2.1048.ISSN0002-9122.PMID29603143.
  33. ^Glass, Sarah (2021).Chloroplast Genome Evolution in the Klebsormidiophyceae and Streptofilum(MS thesis). Lehman College.
  34. ^abTurmel, Monique; Lemieux, Claude (2018),"Evolution of the Plastid Genome in Green Algae",Advances in Botanical Research,Elsevier, pp. 157–193,doi:10.1016/bs.abr.2017.11.010,ISBN9780128134573
  35. ^abLi, Linzhou; Wang, Sibo; Wang, Hongli; Sahu, Sunil Kumar; Marin, Birger; Li, Haoyuan; Xu, Yan; Liang, Hongping; Li, Zhen; Cheng, Shifeng; Reder, Tanja (2020)."The genome of Prasinoderma coloniale unveils the existence of a third phylum within green plants".Nature Ecology & Evolution.4(9): 1220–1231.doi:10.1038/s41559-020-1221-7.ISSN2397-334X.PMC7455551.PMID32572216.
  36. ^Nishiyama, Tomoaki; Sakayama, Hidetoshi; de Vries, Jan; Buschmann, Henrik; Saint-Marcoux, Denis; Ullrich, Kristian K.; Haas, Fabian B.; Vanderstraeten, Lisa; Becker, Dirk (2018)."The Chara Genome: Secondary Complexity and Implications for Plant Terrestrialization".Cell.174(2): 448–464.e24.doi:10.1016/j.cell.2018.06.033.ISSN0092-8674.PMID30007417.
edit