Inmathematical biology,thecommunity matrixis thelinearizationof ageneralized Lotka–Volterra equationat anequilibrium point.[1]Theeigenvaluesof the community matrix determine thestabilityof the equilibrium point.
For example, theLotka–Volterra predator–prey modelis
wherex(t) denotes the number of prey,y(t) the number of predators, andα,β,γandδare constants. By theHartman–Grobman theoremthe non-linear system istopologically equivalentto a linearization of the system about an equilibrium point (x*,y*), which has the form
whereu=x−x* andv=y−y*. In mathematical biology, theJacobian matrixevaluated at the equilibrium point (x*,y*) is called the community matrix.[2]By thestable manifold theorem,if one or both eigenvalues ofhave positive real part then the equilibrium is unstable, but if all eigenvalues have negative real part then it is stable.
See also
editReferences
edit- ^Berlow, E. L.; Neutel, A.-M.; Cohen, J. E.; De Ruiter, P. C.; Ebenman, B.; Emmerson, M.; Fox, J. W.; Jansen, V. A. A.; Jones, J. I.; Kokkoris, G. D.; Logofet, D. O.; McKane, A. J.; Montoya, J. M; Petchey, O. (2004)."Interaction Strengths in Food Webs: Issues and Opportunities".Journal of Animal Ecology.73(5): 585–598.doi:10.1111/j.0021-8790.2004.00833.x.JSTOR3505669.
- ^Kot, Mark (2001).Elements of Mathematical Ecology.Cambridge University Press. p. 144.ISBN0-521-00150-1.
- Murray, James D. (2002),Mathematical Biology I. An Introduction,Interdisciplinary Applied Mathematics, vol. 17 (3rd ed.), Berlin, New York:Springer-Verlag,ISBN978-0-387-95223-9.