TheFerranti Mark 1,also known as theManchester Electronic Computerin its sales literature,[1]and thus sometimes called theManchester Ferranti,was produced by British electrical engineering firmFerranti Ltd.It was the world's first commercially available electronic general-purpose stored programdigital computer.[a]
Also known as | Manchester Electronic Computer Manchester Ferranti |
---|---|
Product family | Manchester computers |
Predecessor | Manchester Mark 1 |
Although preceded as a commercial digital computer by theBINACand theZ4,the Z4 was electromechanical and lacked software programmability, while BINAC never operated successfully after delivery.[2]
The Ferranti Mark 1 was "the tidied up and commercialised version of theManchester Mark I".[3]The first machine was delivered to theVictoria University of Manchesterin February 1951[4](publicly demonstrated in July)[5][6]ahead of theUNIVAC Iwhich was delivered to theUnited States Census Bureauin late December 1952, having been sold on 31 March 1951.[7]
History and specifications
editBased on theManchester Mark 1,[3][8]which was designed at the University of Manchester byFreddie WilliamsandTom Kilburn,the machine was built byFerrantiof the United Kingdom. The main improvements over it were in the size of theprimaryandsecondary storage,a faster multiplier, and additional instructions.
The Mark 1 used a 20-bit word stored as a single line of dots of electric charges settled on the surface of aWilliams tubedisplay, each cathodic tube storing 64 lines of dots. Instructions were stored in a single word, while numbers were stored in two words. The main memory consisted of eight tubes, each storing one such page of 64 words. Other tubes stored the single 80-bitaccumulator(A), the 40-bit "multiplicand/quotient register" (MQ) and eight "B-lines", orindex registers,which was one of the unique features of the Mark 1 design. The accumulator could also be addressed as two 40-bit words. An extra 20-bit word per tube stored an offset value into the secondary storage. Secondary storage was provided in the form of a 512-pagemagnetic drum,storing two pages per track, with about 30 milliseconds revolution time. The drum provided eight times the storage of the original designed at Manchester.
The instructions, like the Manchester machine, used a single-address format in which operands were modified and left in the accumulator. There were about fifty instructions in total. The basic cycle time was 1.2 milliseconds, and a multiplication could be completed in the new parallel unit in about 2.16 milliseconds (about 5 times faster than the original). The multiplier used almost a quarter of the machine's 4,050vacuum tubes.[1]Several instructions were included to copy a word of memory from one of the Williams tubes to apaper tapemachine, or read them back in. Several new instructions were added to the original Manchester design, including arandom numberinstruction and several new instructions using the B-lines.
The original Mark 1 had to be programmed by entering Alpha numeric characters representing a five-bit value that could be represented on the paper tape input. The engineers decided to use the simplest mapping between the paper holes and the binary digits they represented, but the mapping between the holes and the physical keyboard was never meant to be a binary mapping. As a result, the characters representing the values from 0–31 (five-bit numbers) looked entirely random, specifically/E@A:SIU½DRJNFCKTZLWHYPQOBG "MXV£
.
The first machine was delivered to the University of Manchester. Ferranti had high hopes for further sales, and were encouraged by an order placed by theAtomic Energy Research Establishmentfor delivery in autumn 1952. However, a change of government while the second machine was being built led to all government contracts over £100,000 being cancelled, leaving Ferranti with a partially completed Mark 1. The company ultimately sold it to theUniversity of Toronto,[9]who had been building their own machine, but saw the chance to buy the complete Mark 1 for even less. They purchased it for around $30,000, a "fire sale" price, andBeatrice Worsleygave it the nicknameFERUT.[10]FERUT was extensively used in business, engineering, and academia, among other duties, carrying out calculations as part of the construction of theSt. Lawrence Seaway.
Alan Turing wrote a programming manual.[11]
Mark 1 Star
editAfter the first two machines, a revised version of the design became available, known as the Ferranti Mark 1 Star or the Ferranti Mark 1*. The revisions mainly cleaned up theinstruction setfor better usability. Instead of the original mapping from holes to binary digits that resulted in the random-looking mapping, the new machines mapped digits to holes to produce a much simpler mapping,ø£½0@:$ABCDEFGHIJKLMNPQRSTUVWXYZ
.Additionally, several commands that used the index registers had side effects that led to quirky programming, but these were modified to have no side effects. The original machines'JUMP
instructions landed at a location "one before" the actual address, for reasons similar to the odd index behaviour, but these proved useful only in theory and quite annoying in practice, and were similarly modified. Input/output was also modified, with five-bit numbers being output least significant digit to theright,as is typical for most numeric writing. These, among other changes, greatly improved the ease of programming the newer machines.
The Mark 1/1* weighed 10,000 pounds (5.0 short tons; 4.5 t).[12]
At least seven of the Mark 1* machines were delivered between 1953 and 1957,[9]one of them toShelllabs inAmsterdam.[13]Another was installed atAvro,the aircraft manufacturers, at their Chadderton factory in Manchester. This was used for work on theVulcanamong other projects.
Conway Berners-LeeandMary Lee Woods,the parents ofTim Berners-Lee,inventor of theWorld Wide Web,both worked on the Ferranti Mark 1 and Mark 1*.[14]
Computer music
editIncluded in the Ferranti Mark 1's instruction set was ahootcommand, which enabled the machine to give auditory feedback to its operators. The sound generated could be altered in pitch, a feature which was exploited when the Mark 1 made the earliest known recording ofcomputer-generated music,playing a medley which included "God Save the King","Baa Baa Black Sheep",and"In the Mood".[15]The recording was made by theBBCtowards the end of 1951, with the programming being done byChristopher Strachey,a mathematics teacher atHarrowand a friend ofAlan Turing.It was not, however, the first computer to have played music;CSIRAC,Australia's first digital computer, achieved that with a rendition of "Colonel Bogey".[16]
Computer games
editIn November 1951, Dr.Dietrich Prinzwrote one of the earliest computer games, a chess-playing program for the Manchester Ferranti Mark 1 computer. The limitation of the Mark 1 computer did not allow for a whole game of chess to be programmed. Prinz could only program mate-in-twochess problems.The program examined every possible move for White and Black (thousands of possible moves) until a solution was found, which took 15–20 minutes on average. The program's restrictions were: nocastling,no doublepawnmove, noen passantcapture, no pawnpromotion,and no distinction betweencheckmateandstalemate.[17]
See also
editReferences
editNotes
edit- ^Several cheaper general purpose computers were available by 1952.See Pentagon symposium:Commercially Available General Purpose Electronic Digital Computers of Moderate Price,Washington, D.C., 14 MAY 1952
Citations
edit- ^abLavington 1998,p. 25
- ^"Description of the BINAC",citing Annals of the History of Computing, Vol. 10 No. 1 1988,archived fromthe originalon 4 August 2008,retrieved26 July2008
- ^abTootill, Geoff (2010),National Life Stories an Oral History of British Science: Geoff Tootill Interviewed by Thomas Lean(PDF),British Library, p. 169 C1379/02 Track 6, archived fromthe original(PDF)on 10 May 2023,retrieved30 January2011
- ^Teuscher, Christof (2004),Alan Turing: Life and Legacy of a Great Thinker,Springer Science & Business Media, pp. 334–335,ISBN9783540200208
- ^Cooper, S. Barry; Leeuwen, J. van (18 March 2013).Alan Turing: His Work and Impact.Elsevier. p. 468.ISBN9780123870124.
- ^
- "10. The Ferranti Computer at Manchester University, England".Digital Computer Newsletter.3(3): 4–5. October 1951.
- "11. The Ferranti Computer at Manchester University, England".Digital Computer Newsletter.4(3): 6. July 1952.
- ^UNIVAC I#cite ref-8
- ^Kilbur, T. (21 July 1951).THE NEW UNIVERSAL DIGITAL COMPUTING MACHINE AT THE UNIVERSITY OF MANCHESTER.Nature. Vol. 168. pp. 95–96.
- ^abGandy, A. (30 November 2012).The Early Computer Industry: Limitations of Scale and Scope.Springer. p. 135.ISBN978-0-230-38911-3.
- ^Williams, Michael (January–February 1994). "UTEC and Ferut: The University of Toronto's Computation Centre".IEEE Annals of the History of Computing.16(2): 4–12.doi:10.1109/85.279226.
- ^Ferranti Mark I programming manual,first edition. Alan Turing, 1950. Computer History Museum Catalog Number 102724592.
- ^Weik, Martin H. (December 1955)."FERRANTI MARK-I".ed-thelen.org.A Survey of Domestic Electronic Digital Computing Systems.
- ^Erno Eskens; Wessel Zweers; Onno Zweers glish."Interview with Lidy Zweers-De Ronde, programmer of the MIRACLE (Ferranti Mark I*), the first commercial electronic computer being employed in the Netherlands at Shell labs in Amsterdam".Retrieved9 May2016.
- ^"Frequently asked questions by the Press - Tim BL".w3.org.
- ^Manchester Mark 1 playing the first recorded computer music,Manchester University,retrieved2 November2015
- ^Fildes, Jonathan (17 June 2008),"'Oldest' computer music unveiled ",BBC News,retrieved18 June2008
- ^B. Jack Copeland;Jonathan Bowen;Mark Sprevak;Robin Wilson(2017).The Turing Guide.Oxford University Press.pp. 339–342.ISBN9780191065002.
Bibliography
edit- Lavington, Simon (1998),A History of Manchester Computers(2 ed.), The British Computer Society,ISBN978-1-902505-01-5
- The Ferranti Mark 1,The University of Manchester, 2008,retrieved31 October2016
- Williams, F. C.;Kilburn, T.(2008) [1951],The University of Manchester Computing Machine: The Enhamced Mark 1 – From the Manchester University Computer Inaugural Conference July 1951,The University of Manchester,retrieved31 October2016
Further reading
edit- Lavington, Simon (1980), "7",Early British Computers,Manchester University Press,ISBN0-7190-0803-4
- Williams, Michael (1997), "8.3.2",A History of Computing Technology,IEEE Computer Society Press,ISBN978-0-8186-7739-7
- Lavington, Simon (2019),Early Computing in Britain:Ferranti Ltd. and Government Funding, 1948 — 1958,Springer,ISBN978-3-030-15103-4
External links
edit- Ferranti Mark 1 at Computer50
- A simulator of the Ferranti Mark 1, executing Christopher Strachey's Love letter algorithm from 1952
- The Ferranti Mark 1* that went to Shell labs in Amsterdam, Netherlands(Dutch only),Google translation
- "The Ferranti Mark 1 Gallery (Digital 60)".curation.cs.manchester.ac.uk.
- "Ferranti Mark 1".Ferut.Contains photo of the console
- Programming Ferut in Transcode:
- Gotlieb, C.C. (1 May 1956)."Free Use of the Toronto Computer, and the Remote Programming of it. Part 1.".Computers and Automation: Vol 5 Iss 5.Internet Archive. Berkeley Enterprises. pp. 20–25, 34, 36, 44–45.,
- Gotlieb, C.C. (1 July 1956)."Free Use of the Toronto Computer, and the Remote Programming of it. Part 2.".Computers and Automation: Vol 5 Iss 7.Internet Archive. Berkeley Enterprises. pp. 29–31.