Ingeology,hotspots(orhot spots) arevolcaniclocales thought to be fed by underlyingmantlethat is anomalously hot compared with the surrounding mantle.[1]Examples include theHawaii,Iceland,andYellowstone hotspots.A hotspot's position on the Earth's surface is independent oftectonic plate boundaries,and so hotspots may create a chain of volcanoes as the plates move above them.

There are twohypothesesthat attempt to explain their origins. One suggests that hotspots are due tomantle plumesthat rise as thermaldiapirsfrom the core–mantle boundary.[2]The alternativeplate theoryis that the mantle source beneath a hotspot is not anomalously hot, rather the crust above is unusually weak or thin, so that lithospheric extension permits the passive rising of melt from shallow depths.[3][4]
Origin
editThe origins of the concept of hotspots lie in the work ofJ. Tuzo Wilson,who postulated in 1963 that the formation of theHawaiian Islandsresulted from the slow movement of atectonic plateacross a hot region beneath the surface.[5]It was later postulated that hotspots are fed by streams of hotmantlerising from the Earth'score–mantle boundaryin a structure called amantle plume.[6]Whether or not such mantle plumes exist has been the subject of a major controversy in Earth science,[4][7]but seismic images consistent with evolving theory now exist.[8]
At any place wherevolcanismis not linked to a constructive or destructive plate margin, the concept of a hotspot has been used to explain its origin. A review article by Courtillot et al.[9]listing possible hotspots makes a distinction between primary hotspots coming from deep within the mantle and secondary hotspots derived from mantle plumes. The primary hotspots originate from the core/mantle boundary and create large volcanic provinces with linear tracks (Easter Island, Iceland, Hawaii, Afar, Louisville, Reunion, and Tristan confirmed; Galapagos, Kerguelen and Marquersas likely). The secondary hotspots originate at the upper/lower mantle boundary, and do not form large volcanic provinces, but island chains (Samoa, Tahiti, Cook, Pitcairn, Caroline, MacDonald confirmed, with up to 20 or so more possible). Other potential hotspots are the result of shallow mantle material surfacing in areas of lithospheric break-up caused by tension and are thus a very different type of volcanism.
Estimates for the number of hotspots postulated to be fed by mantle plumes have ranged from about 20 to several thousand, with most geologists considering a few tens to exist.[8]Hawaii,Réunion,Yellowstone,Galápagos,andIcelandare some of the most active volcanic regions to which the hypothesis is applied. The plumes imaged to date vary widely in width and other characteristics, and are tilted, being not the simple, relatively narrow and purely thermal plumes many expected.[8]Only one, (Yellowstone) has as yet been consistently modelled and imaged from deep mantle to surface.[8]
Composition
editMost hotspot volcanoes arebasaltic(e.g.,Hawaii,Tahiti). As a result, they are less explosive thansubduction zonevolcanoes, in which water is trapped under the overriding plate. Where hotspots occur incontinental regions,basalticmagmarises through the continental crust, which melts to formrhyolites.Theserhyolitescan form violent eruptions.[10][11]For example, theYellowstone Calderawas formed by some of the most powerful volcanic explosions in geologic history. However, when the rhyolite is completely erupted, it may be followed by eruptions of basaltic magma rising through the same lithospheric fissures (cracks in the lithosphere). An example of this activity is theIlgachuz Rangein British Columbia, which was created by an early complex series oftrachyteandrhyoliteeruptions, and late extrusion of a sequence of basaltic lava flows.[12]
The hotspot hypothesis is now closely linked to themantle plumehypothesis.[13][8]The detailed compositional studies now possible on hotspot basalts have allowed linkage of samples over the wider areas often implicate in the later hypothesis,[14]and it's seismic imaging developments.[8]
Contrast with subduction zone island arcs
editHotspot volcanoes are considered to have a fundamentally different origin fromisland arcvolcanoes. The latter form oversubductionzones, at converging plate boundaries. When one oceanic plate meets another, the denser plate is forced downward into a deep ocean trench. This plate, as it is subducted, releases water into the base of the over-riding plate, and this water mixes with the rock, thus changing its composition causing some rock to melt and rise. It is this that fuels a chain of volcanoes, such as theAleutian Islands,nearAlaska.
Hotspot volcanic chains
editThe jointmantle plume/hotspot hypothesis originally envisaged the feeder structures to be fixed relative to one another, with the continents andseafloordrifting overhead. The hypothesis thus predicts that time-progressive chains of volcanoes are developed on the surface. Examples areYellowstone,which lies at the end of a chain of extinct calderas, which become progressively older to the west. Another example is the Hawaiian archipelago, where islands become progressively older and more deeply eroded to the northwest.
Geologists have tried to use hotspot volcanic chains to track the movement of the Earth's tectonic plates. This effort has been vexed by the lack of very long chains, by the fact that many are not time-progressive (e.g. theGalápagos) and by the fact that hotspots do not appear to be fixed relative to one another (e.g.HawaiiandIceland).[15]That mantle plumes are much more complex than originally hypothesised and move independently of each other and plates is now used to explain such observations.[8]
In 2020, Wei et al. usedseismic tomographyto detect the oceanic plateau, formed about 100 million years ago by the hypothesized mantle plume head of the Hawaii-Emperor seamount chain, nowsubductedto a depth of 800 km under eastern Siberia.[16]
Postulated hotspot volcano chains
edit- Hawaiian–Emperor seamount chain(Hawaii hotspot)
- Louisville Ridge(Louisville hotspot)
- Walvis Ridge(Gough andTristan hotspot)
- Kodiak–Bowie Seamount chain(Bowie hotspot)
- Cobb–Eickelberg Seamount chain(Cobb hotspot)
- New England Seamounts(New England hotspot)
- Anahim Volcanic Belt(Anahim hotspot)
- Mackenzie dike swarm(Mackenzie hotspot)
- Great Meteor hotspot track(New England hotspot)
- St. Helena Seamount Chain–Cameroon Volcanic Line(Saint Helena hotspot)
- Southern Mascarene Plateau–Chagos-Maldives-Laccadive Ridge(Réunion hotspot)
- Ninety East Ridge(Kerguelen hotspot)[17]
- Tuamotu–LineIsland chain (Easter hotspot)[2]
- Austral–Gilbert–Marshallchain (Macdonald hotspot)
- Juan Fernández Ridge(Juan Fernández hotspot)
- Tasmantid Seamount Chain(Tasmantid hotspot)
- Canary Islands(Canary hotspot)[18]
- Cape Verde(Cape Verde hotspot)[18]
List of volcanic regions postulated to be hotspots
editEurasian plate
edit- Eifel hotspot(8)
- 50°12′N6°42′E/ 50.2°N 6.7°E,w= 1 az= 082° ±8° rate= 12 ±2 mm/yr[19]
- Iceland hotspot(14)
- 64°24′N17°18′W/ 64.4°N 17.3°W[19]
- Eurasian Plate, w=.8 az= 075° ±10° rate= 5 ±3 mm/yr
- North American Plate, w=.8 az= 287° ±10° rate= 15 ±5 mm/yr
- Possibly related to the North Atlantic continental rifting (62 Ma),Greenland.[20]
- 64°24′N17°18′W/ 64.4°N 17.3°W[19]
- Azores hotspot(1)
- 37°54′N26°00′W/ 37.9°N 26.0°W[19]
- Eurasian Plate, w=.5 az= 110° ±12°
- North American Plate, w=.3 az= 280° ±15°
- 37°54′N26°00′W/ 37.9°N 26.0°W[19]
- Jan Mayen hotspot(15)
- Hainan hotspot(46)
- 20°00′N110°00′E/ 20.0°N 110.0°E,az= 000° ±15°[19]
African plate
edit- Mount Etna(47)
- Hoggarhotspot (13)
- 23°18′N5°36′E/ 23.3°N 5.6°E,w=.3 az= 046° ±12°[19]
- Tibestihotspot (40)
- 20°48′N17°30′E/ 20.8°N 17.5°E,w=.2 az= 030° ±15°[19]
- Jebel Marra/Darfur hotspot(6)
- 13°00′N24°12′E/ 13.0°N 24.2°E,w=.5 az= 045° ±8°[19]
- Afar hotspot(29, misplaced in map)
- 7°00′N39°30′E/ 7.0°N 39.5°E,w=.2 az= 030° ±15° rate= 16 ±8 mm/yr[19]
- Possibly related to theAfar triple junction,30 Ma.
- Cameroonhotspot (17)
- 2°00′N5°06′E/ 2.0°N 5.1°E,w=.3 az= 032° ±3° rate= 15 ±5 mm/yr[19]
- Madeirahotspot (48)
- 32°36′N17°18′W/ 32.6°N 17.3°W,w=.3 az= 055° ±15° rate= 8 ±3 mm/yr[19]
- Canary hotspot(18)
- 28°12′N18°00′W/ 28.2°N 18.0°W,w= 1 az= 094° ±8° rate= 20 ±4 mm/yr[19]
- New England/Great Meteor hotspot(28)
- 29°24′N29°12′W/ 29.4°N 29.2°W,w=.8 az= 040° ±10°[19]
- Cape Verdehotspot (19)
- 16°00′N24°00′W/ 16.0°N 24.0°W,w=.2 az= 060° ±30°[19]
- Sierra Leone hotspot
- St. Helena hotspot(34)
- 16°30′S9°30′W/ 16.5°S 9.5°W,w= 1 az= 078° ±5° rate= 20 ±3 mm/yr[19]
- Goughhotspot (49), at 40°19' S 9°56' W.[21][22]
- 40°18′S10°00′E/ 40.3°S 10.0°E,w=.8 az= 079° ±5° rate= 18 ±3 mm/yr[19]
- Tristan hotspot(42), at 37°07′ S 12°17′ W.
- Vema hotspot(Vema Seamount, 43), at 31°38' S 8°20' E.
- 32°06′S6°18′W/ 32.1°S 6.3°W[19]
- Related maybe to theParaná and Etendeka traps(c. 132 Ma) through theWalvis Ridge.
- Discovery hotspot (50) (Discovery Seamounts)
- 43°00′S2°42′W/ 43.0°S 2.7°W,w= 1 az= 068° ±3°[19]
- Bouvethotspot (51)
- Shona/Meteor hotspot(27)
- 51°24′S1°00′W/ 51.4°S 1.0°W,w=.3 az= 074° ±6°[19]
- Réunion hotspot(33)
- 21°12′S55°42′E/ 21.2°S 55.7°E,w=.8 az= 047° ±10° rate= 40 ±10 mm/yr[19]
- Possibly related to theDeccan Traps(main events: 68.5–66 Ma)
- Comoroshotspot (21)
- 11°30′S43°18′E/ 11.5°S 43.3°E,w=.5 az=118 ±10° rate=35 ±10 mm/yr[19]
Antarctic plate
edit- Marionhotspot (25)
- 46°54′S37°36′E/ 46.9°S 37.6°E,w=.5 az= 080° ±12°[19]
- Crozethotspot (52)
- 46°06′S50°12′E/ 46.1°S 50.2°E,w=.8 az= 109° ±10° rate= 25 ±13 mm/yr[19]
- Possibly related to theKaroo-Ferrargeologic province (183 Ma)
- Kerguelen hotspot(20)
- 49°36′S69°00′E/ 49.6°S 69.0°E,w=.2 az= 050° ±30° rate= 3 ±1 mm/yr[19]
- Related to theKerguelen Plateau(130 Ma)
- Heardhotspot (53), possibly part of Kerguelen hotspot[14]
- 53°06′S73°30′E/ 53.1°S 73.5°E,w=.2 az= 030° ±20°[19]
- Île Saint-PaulandÎle Amsterdamcould be part of the Kerguelen hotspot trail (St. Paul is possibly not another hotspot)[14]
- Balleny hotspot(2)
- 67°36′S164°48′E/ 67.6°S 164.8°E,w=.2 az= 325° ±7°[19]
- Erebus hotspot(54)
South American plate
edit- Trindade/Martin Vaz hotspot(41)
- 20°30′S28°48′W/ 20.5°S 28.8°W,w= 1 az= 264° ±5°[19]
- Fernando hotspot(9)
- 3°48′S32°24′W/ 3.8°S 32.4°W,w= 1 az= 266° ±7°[19]
- Possibly related to theCentral Atlantic Magmatic Province(c. 200 Ma)
- Ascensionhotspot (55)
North American plate
edit- Bermuda hotspot(56)
- 32°36′N64°18′W/ 32.6°N 64.3°W,w=.3 az= 260° ±15°[19]
- Yellowstone hotspot(44)
- 44°30′N110°24′W/ 44.5°N 110.4°W,w=.8 az= 235° ±5° rate= 26 ±5 mm/yr[19]
- Possibly related to theColumbia River Basalt Group(17–14 Ma).[23]
- Raton hotspot(32)
- 36°48′N104°06′W/ 36.8°N 104.1°W,w= 1 az= 240°±4° rate= 30 ±20 mm/yr[19]
- Anahim hotspot(45)
Australian plate
edit- Lord Howehotspot (22)
- 34°42′S159°48′E/ 34.7°S 159.8°E,w=.8 az= 351° ±10°[19]
- Tasmantid hotspot(39)
- 40°24′S155°30′E/ 40.4°S 155.5°E,w=.8 az= 007° ±5° rate= 63 ±5 mm/yr[19]
- East Australia hotspot(30)
- 40°48′S146°00′E/ 40.8°S 146.0°E,w=.3 az= 000° ±15° rate= 65 ±3 mm/yr[19]
Nazca plate
edit- Juan Fernández hotspot(16)
- 33°54′S81°48′W/ 33.9°S 81.8°W,w= 1 az= 084° ±3° rate= 80 ±20 mm/yr[19]
- San Felixhotspot (36)
- 26°24′S80°06′W/ 26.4°S 80.1°W,w=.3 az= 083° ±8°[19]
- Easter hotspot(7)
- 26°24′S106°30′W/ 26.4°S 106.5°W,w= 1 az= 087° ±3° rate= 95 ±5 mm/yr[19]
- Galápagos hotspot(10)
- 0°24′S91°36′W/ 0.4°S 91.6°W[19]
- Nazca Plate, w= 1 az= 096° ±5° rate= 55 ±8 mm/yr
- Cocos Plate, w=.5 az= 045° ±6°
- Possibly related to theCaribbean large igneous province(main events: 95–88 Ma).
- 0°24′S91°36′W/ 0.4°S 91.6°W[19]
Pacific plate
edit- Louisville hotspot(23)
- 53°36′S140°36′W/ 53.6°S 140.6°W,w= 1 az= 316° ±5° rate= 67 ±5 mm/yr[19]
- Possibly related to theOntong Java Plateau(125–120 Ma).
- Foundation hotspot/Ngatemato seamounts(57)
- 37°42′S111°06′W/ 37.7°S 111.1°W,w= 1 az= 292° ±3° rate= 80 ±6 mm/yr[19]
- Macdonald hotspot(24)
- 29°00′S140°18′W/ 29.0°S 140.3°W,w= 1 az= 289° ±6° rate= 105 ±10 mm/yr[19]
- North Austral/President Thiers (President Thiers Bank,58)
- 25°36′S143°18′W/ 25.6°S 143.3°W,w= (1.0) azim= 293° ± 3° rate= 75 ±15 mm/yr[19]
- Arago hotspot(Arago Seamount, 59)
- 23°24′S150°42′W/ 23.4°S 150.7°W,w= 1 azim= 296° ±4° rate= 120 ±20 mm/yr[19]
- Maria/Southern Cookhotspot (Îles Maria,60)
- 20°12′S153°48′W/ 20.2°S 153.8°W,w= 0.8 az= 300° ±4°[19]
- Samoa hotspot(35)
- 14°30′S168°12′W/ 14.5°S 168.2°W,w=.8 az= 285°±5° rate= 95 ±20 mm/yr[19]
- Crough hotspot (Crough Seamount,61)
- 26°54′S114°36′W/ 26.9°S 114.6°W,w=.8 az= 284° ± 2°[19]
- Pitcairn hotspot(31)
- 25°24′S129°18′W/ 25.4°S 129.3°W,w= 1 az= 293° ±3° rate= 90 ±15 mm/yr[19]
- Society/Tahiti hotspot(38)
- 18°12′S148°24′W/ 18.2°S 148.4°W,w=.8 az= 295°±5° rate= 109 ±10 mm/yr[19]
- Marquesas hotspot(26)
- 10°30′S139°00′W/ 10.5°S 139.0°W,w=.5 az= 319° ±8° rate= 93 ±7 mm/yr[19]
- Carolinehotspot (4)
- 4°48′N164°24′E/ 4.8°N 164.4°E,w= 1 az= 289° ±4° rate= 135 ±20 mm/yr[19]
- Hawaii hotspot(12)
- 19°00′N155°12′W/ 19.0°N 155.2°W,w= 1 az= 304° ±3° rate= 92 ±3 mm/yr[19]
- Socorro/Revillagigedoshotspot (37)
- Guadalupehotspot (11)
- 27°42′N114°30′W/ 27.7°N 114.5°W,w=.8 az= 292° ±5° rate= 80 ±10 mm/yr[19]
- Cobb hotspot(5)
- 46°00′N130°06′W/ 46.0°N 130.1°W,w= 1 az= 321° ±5° rate= 43 ±3 mm/yr[19]
- Bowie/Pratt-Welker hotspot(3)
- 53°00′N134°48′W/ 53.0°N 134.8°W,w=.8 az= 306° ±4° rate= 40 ±20 mm/yr[19]
Former hotspots
edit- Euterpe/Musicians hotspot (Musicians Seamounts)[19]
- Mackenzie hotspot
- Matachewan hotspot
See also
edit
References
edit- ^"The source of Yellowstone's heat".USGS.16 April 2018.Retrieved14 June2021.
- ^abW. J. Morgan (5 March 1971)."Convection Plumes in the Lower Mantle".Nature.230(5288):42–43.Bibcode:1971Natur.230...42M.doi:10.1038/230042a0.S2CID4145715.
- ^"Do plumes exist?".Retrieved25 April2010.
- ^abcFoulger, G.R. (2010).Plates vs. Plumes: A Geological Controversy.Wiley-Blackwell.ISBN978-1-4051-6148-0.
- ^Wilson, J. Tuzo (1963)."A possible origin of the Hawaiian Islands"(PDF).Canadian Journal of Physics.41(6):863–870.Bibcode:1963CaJPh..41..863W.doi:10.1139/p63-094.
- ^"Hotspots: Mantle thermal plumes".United States Geological Survey.5 May 1999.Retrieved15 May2008.
- ^Wright, Laura (November 2000)."Earth's interior: Raising hot spots".Geotimes.American Geological Institute.Retrieved15 June2008.
- ^abcdefgKoppers, A.A.; Becker, T.W.; Jackson, M.G.; Konrad, K.; Müller, R.D.; Romanowicz, B.; Steinberger, B.; Whittaker, J.M. (2021)."Mantle plumes and their role in Earth processes"(PDF).Nature Reviews Earth & Environment.2(6):382–401.Bibcode:2021NRvEE...2..382K.doi:10.1038/s43017-021-00168-6.Retrieved21 November2023.
- ^abCourtillot, V.; Davaillie, A.; Besse, J.; Stock, J. (2003). "Three distinct types of hotspots in the Earth's mantle".Earth Planet. Sci. Lett.205(3–4):295–308.Bibcode:2003E&PSL.205..295C.CiteSeerX10.1.1.693.6042.doi:10.1016/S0012-821X(02)01048-8.
- ^Donald Hyndman; David Hyndman (1 January 2016). Natural Hazards and Disasters. Cengage Learning. pp. 44–.ISBN978-1-305-88818-0.
- ^Wolfgang Frisch; Martin Meschede; Ronald C. Blakey (2 November 2010). Plate Tectonics: Continental Drift and Mountain Building. Springer Science & Business Media. pp. 87–.ISBN978-3-540-76504-2.
- ^Holbek, Peter (November 1983)."Report on Preliminary Geology and Geochemistry of the Ilga Claim Group"(PDF).Archived fromthe original(PDF)on 12 January 2014.Retrieved15 June2008.
{{cite journal}}
:Cite journal requires|journal=
(help) - ^Mainak Choudhuri; Michal Nemčok (22 August 2016). Mantle Plumes and Their Effects. Springer. pp. 18–.ISBN978-3-319-44239-6.
- ^abcBredow, E; Steinberger, B (16 January 2018)."Variable melt production rate of the Kerguelen hotspot due to long-term plume-ridge interaction".Geophysical Research Letters.45(1):126–36.Bibcode:2018GeoRL..45..126B.doi:10.1002/2017GL075822.hdl:10852/70913.
- ^Sager, William W. (4 June 2007)."Insight into Motion of the Hawaiian Hotspot from Paleomagnetism".MantlePlumes.org.
- ^Wei, Songqiao Shawn; Shearer, Peter M.;Lithgow-Bertelloni, Carolina;Stixrude, Lars; Tian, Dongdong (20 November 2020)."Oceanic plateau of the Hawaiian mantle plume head subducted to the uppermost lower mantle".Science.370(6519):983–987.Bibcode:2020Sci...370..983W.doi:10.1126/science.abd0312.ISSN0036-8075.PMID33214281.S2CID227059993.
- ^E. V. Verzhbitsky (2003). "Geothermal regime and genesis of the Ninety-East and Chagos-Laccadive ridges".Journal of Geodynamics.35(3): 289.Bibcode:2003JGeo...35..289V.doi:10.1016/S0264-3707(02)00068-6.
- ^abCarracedo, Juan Carlos; Troll, Valentin R. (1 January 2021)."North-East Atlantic Islands: The Macaronesian Archipelagos".Encyclopedia of Geology.pp.674–699.doi:10.1016/B978-0-08-102908-4.00027-8.ISBN9780081029091.S2CID226588940.
- ^abcdefghijklmnopqrstuvwxyzaaabacadaeafagahaiajakalamanaoapaqarasatauavawaxayazbabbbcbdbebfbgbhbiW. J. Morgan and J. P. Morgan."Plate velocities in hotspot reference frame: electronic supplement"(PDF).Retrieved6 November2011.
- ^Nielsen, Søren B.; Stephenson, Randell; Thomsen, Erik (13 December 2007). "Letter:Dynamics of Mid-Palaeocene North Atlantic rifting linked with European intra-plate deformations".Nature.450(7172):1071–1074.Bibcode:2007Natur.450.1071N.doi:10.1038/nature06379.PMID18075591.S2CID4428980.
- ^O'Neill, C.; Müller, R. D.; Steinberger, B. (2003)."Revised Indian plate rotations based on the motion of Indian Ocean hotspots"(PDF).Earth and Planetary Science Letters.215(1–2):151–168.Bibcode:2003E&PSL.215..151O.CiteSeerX10.1.1.716.4910.doi:10.1016/S0012-821X(03)00368-6.Archived fromthe original(PDF)on 26 July 2011.
- ^O'Connor, J. M.; le Roex, A. P. (1992). "South Atlantic hot spot-plume systems. 1: Distribution of volcanism in time and space".Earth and Planetary Science Letters.113(3):343–364.Bibcode:1992E&PSL.113..343O.doi:10.1016/0012-821X(92)90138-L.
- ^Smith, Robert B.; Jordan, Michael; Steinberger, Bernhard; Puskas, Christine M.; Farrell, Jamie; Waite, Gregory P.; Husen, Stephan; Chang, Wu-Lung; O'Connell, Richard (20 November 2009)."Geodynamics of the Yellowstone hotspot and mantle plume: Seismic and GPS imaging, kinematics and mantle flow"(PDF).Journal of Volcanology and Geothermal Research.188(1–3):26–56.Bibcode:2009JVGR..188...26S.doi:10.1016/j.jvolgeores.2009.08.020.
- ^"Catalogue of Canadian volcanoes- Anahim volcanic belt".Natural Resources Canada.Geological Survey of Canada.Archived fromthe originalon 16 July 2011.Retrieved14 June2008.
Further reading
edit- "Plates vs. Plumes: A Geological Controversy".Wiley-Blackwell. October 2010.
- Boschi, L.; Becker, T.W.; Steinberger, B. (2007)."Mantle plumes: Dynamic models and seismic images"(PDF).Geochemistry, Geophysics, Geosystems.8(Q10006): Q10006.Bibcode:2007GGG.....810006B.doi:10.1029/2007GC001733.ISSN1525-2027.
- Clouard, Valérie; Gerbault, Muriel (2007)."Break-up spots: Could the Pacific open as a consequence of plate kinematics?"(PDF).Earth and Planetary Science Letters.265(1–2): 195.Bibcode:2008E&PSL.265..195C.doi:10.1016/j.epsl.2007.10.013.
- "Towards A Better Understanding Of Hot Spot Volcanism".ScienceDaily.4 February 2008.
External links
edit- Formation of Hotspots
- Raising Hot Spots
- Large Igneous Provinces (LIPs)
- Maria Antretter, PhD Thesis (2001):Moving hotspots – Evidence from paleomagnetism and modeling
- Do Plumes Exist?