Sir Humphry Davy, 1st Baronet,FRS,MRIA,FGS(17 December 1778 – 29 May 1829) was a Britishchemistand inventor who invented theDavy lampand a very early form ofarc lamp.He is also remembered for isolating, by using electricity, severalelementsfor the first time:potassiumandsodium[1]in 1807 andcalcium,strontium,barium,magnesiumandboronthe following year, as well as for discovering the elemental nature ofchlorineandiodine.Davy also studied the forces involved in these separations, inventing the new field ofelectrochemistry.Davy is also credited with discoveringclathrate hydrates.

Humphry Davy
Portrait byThomas Phillips,1821
Born(1778-12-17)17 December 1778
Penzance,Cornwall, England
Died29 May 1829(1829-05-29)(aged 50)
Geneva,Switzerland
Known for
Awards
Scientific career
FieldsChemistry
Institutions
23rdPresident of the Royal Society
In office
1820–1827
Preceded byWilliam Hyde Wollaston
Succeeded byDavies Gilbert
Signature

In 1799, he experimented withnitrous oxideand was astonished at how it made him laugh. He nicknamed it "laughing gas" and wrote about its potential as ananaestheticto relieve pain during surgery.

Davy was abaronet,President of the Royal Society(PRS),Member of the Royal Irish Academy(MRIA),Fellow of the Geological Society(FGS), and a member of theAmerican Philosophical Society(elected 1810).[2]Berzeliuscalled Davy's 1806Bakerian LectureOn Some Chemical Agencies of Electricity"one of the best memoirs which has ever enriched the theory of chemistry."

Early life: 1778–1798

edit

Education, apprenticeship and poetry

edit

Davy was born inPenzance,Cornwall,in theKingdom of Great Britainon 17 December 1778, the eldest of the five children of Robert Davy, a woodcarver, and his wife Grace Millett.[1]According to his brother and fellow chemistJohn Davy,their hometown was characterised by "an almost unbounded credulity respecting the supernatural and monstrous... Amongst the middle and higher classes, there was little taste for literature, and still less for science... Hunting, shooting, wrestling, cockfighting, generally ending in drunkenness, were what they most delighted in."[3]

Education

edit

At the age of six, Davy was sent to thegrammar schoolat Penzance. Three years later, his family moved toVarfell,nearLudgvan,and subsequently, in term-time, Davy boarded with John Tonkin, his godfather and later his guardian.[1]Upon Davy's leaving grammar school in 1793, Tonkin paid for him to attendTruro Grammar Schoolto finish his education under the Rev Dr Cardew, who, in a letter to the engineer andFellow of the Royal SocietyDavies Giddy(from 1817 calledDavies Gilbert), said dryly, "I could not discern the faculties by which he was afterwards so much distinguished." Davy entertained his school friends by writing poetry, composing Valentines, and telling stories fromOne Thousand and One Nights.Reflecting on his school days in a letter to his mother, Davy wrote, "Learning naturally is a true pleasure; how unfortunate then it is that in most schools it is made a pain."[4]"I consider it fortunate", he continued, "I was left much to myself as a child, and put upon no particular plan of study... What I am I made myself."[5]His brother said Davy possessed a "native vigour" and "the genuine quality of genius, or of that power of intellect which exalts its possessor above the crowd."[3]

Apothecary's apprentice

edit

After Davy's father died in 1794, Tonkin apprenticed him to John Bingham Borlase, a surgeon with a practice in Penzance. While becoming a chemist in theapothecary's dispensary, he began conducting his earliest experiments at home, much to the annoyance of his friends and family. His older sister, for instance, complained his corrosive substances were destroying her dresses, and at least one friend thought it likely the "incorrigible" Davy would eventually "blow us all into the air."[5]

In 1797, after he learnt French from a refugee priest, Davy readLavoisier'sTraité élémentaire de chimie.This exposure influenced much of his future work, which can be seen as reaction against Lavoisier's work and the dominance of French chemists.

Poetry

edit

As a poet, over one hundred and sixty manuscript poems were written by Davy, the majority of which are found in his personal notebooks. Most of his written poems were not published, and he chose instead to share a few of them with his friends. Eight of his known poems were published. His poems reflected his views on both his career and also his perception of certain aspects of human life. He wrote on human endeavours and aspects of life like death, metaphysics, geology, natural theology and chemistry.[6]

John Ayrton Parisremarked that poems written by the young Davy "bear the stamp of lofty genius". Davy's first preserved poem entitled "The Sons of Genius" is dated 1795 and marked by the usual immaturity[according to whom?]of youth. Other poems written in the following years, especially "On the Mount's Bay" and "St Michael's Mount", are descriptive verses.

Although he initially started writing his poems, albeit haphazardly, as a reflection of his views on his career and on life generally, most of his final poems concentrated on immortality and death. This was after he started experiencing failing health and a decline both in health and career.[6]

Painting

edit

Three of Davy's paintings from around 1796 have been donated to thePenlee Housemuseum at Penzance. One is of the view from aboveGulvalshowing the church,Mount's Bayandthe Mount,while the other two depictLoch Lomondin Scotland.[7][8]

Materiality of heat

edit
Lariggan River

At 17, he discussed the question of the materiality of heat with hisQuakerfriend and mentorRobert Dunkin.Dunkin remarked: 'I tell thee what, Humphry, thou art the most quibbling hand at a dispute I ever met with in my life.' One winter day he took Davy to the Lariggan River to show him that rubbing two plates of ice together developed sufficient energy by motion to melt them,[9]and that after the motion was suspended, the pieces were united by regelation. It was a crude form of analogous experiment exhibited by Davy in the lecture-room of theRoyal Institutionthat elicited considerable attention.[5]As professor at the Royal Institution, Davy repeated many of the ingenious experiments he learnt from Dunkin.

Early career: 1798–1802

edit

Davy's gift for chemistry is recognised

edit
Davies Giddy (later: Davies Gilbert)

Davies Giddy met Davy inPenzancecarelessly swinging on the half-gate of Dr Borlase's house, and interested by his talk invited him to his house at Tredrea and offered him the use of his library. This led to his introduction to Dr Edwards, who lived at Hayle Copper House. Edwards was a lecturer in chemistry in the school ofSt. Bartholomew's Hospital.He permitted Davy to use his laboratory and possibly directed his attention to the floodgates of the port ofHayle,which were rapidly decaying as a result of the contact between copper and iron under the influence ofseawater.Galvanic corrosionwas not understood at that time, but the phenomenon prepared Davy's mind for subsequent experiments on ships'copper sheathing.Gregory Watt, son ofJames Watt,visited Penzance for his health's sake, and while lodging at the Davys' house became a friend and gave him instructions in chemistry. Davy was acquainted with theWedgwoodfamily, who spent a winter at Penzance.[5]

Thomas Beddoes

edit
Thomas Beddoes

At this time, physician and scientific writerThomas Beddoesand geologistJohn Hailstonewere engaged in a geological controversy on the rival merits of thePlutonianandNeptunisthypotheses. They travelled together to examine the Cornish coast accompanied by Giddy—an intimate friend of Beddoes—and made Davy's acquaintance. Beddoes, who had established atBristolthe medical research facility the 'Pneumatic Institution,' needed an assistant to superintend the laboratory. Giddy recommended Davy, and in 1798 Gregory Watt showed Beddoes Davy'sYoung man's Researches on Heat and Light,which were subsequently published by him in the first volume ofWest-Country Contributions.After prolonged negotiations, mainly by Giddy, Mrs Davy and Borlase consented to Davy's departure, but Tonkin wished him to remain in his native town as a surgeon, and altered his will when he found that Davy insisted on going to Dr Beddoes.

Pneumatic Institution

edit
Site of the Pneumatic Institution, Bristol

On 2 October 1798, Davy joined the Pneumatic Institution at Bristol. It had been established to investigate the medical powers offactitious airsand gases (gases produced experimentally or artificially), and Davy was to superintend the various experiments. The arrangement agreed between Dr Beddoes and Davy was generous, and enabled Davy to give up all claims on his paternal property in favour of his mother. He did not intend to abandon the medical profession and was determined to study and graduate at Edinburgh, but he soon began to fill parts of the institution with voltaic batteries. While living in Bristol, Davy met theEarl of Durham,who was a resident in the institution for his health.

Anna Beddoes

edit

Davy threw himself energetically into the work of the laboratory and formed a long romantic friendship with Mrs Anna Beddoes, the novelistMaria Edgeworth'ssister, who acted as his guide on walks and other fine sights of the locality. The critic Maurice Hindle was the first to reveal that Davy and Anna had written poems for each other.[10]Wahida Amin has transcribed and discussed a number of poems written between 1803 and 1808 to "Anna" and one to her infant child.[11]

Non-existence of caloric

edit

In 1799, the first volume of theWest-Country Collectionswas issued. Half consisted of Davy's essaysOn Heat, Light, and the Combinations of Light,On Phos-oxygen and its Combinations,and on theTheory of Respiration.On 22 February 1799 Davy, wrote to Davies Giddy, "I am now as much convinced of the non-existence ofcaloricas I am of the existence of light. "

Nitrous oxide

edit
James Wattin 1792 byCarl Frederik von Breda
Robert Southey
Sir Humphry Davy'sResearches chemical and philosophical: chiefly concerning nitrous oxide(1800), pp. 556 and 557 (right), outlining potential anaesthetic properties ofnitrous oxidein relieving pain during surgery

In 1799, Davy became increasingly well known due to his experiments with the physiological action of some gases, including laughing gas (nitrous oxide).[12]The gas was first synthesised in 1772 by thenatural philosopherand chemistJoseph Priestley,who called itdephlogisticated nitrous air(seephlogiston).[13]Priestley described his discovery in the bookExperiments and Observations on Different Kinds of Air (1775),in which he described how to produce the preparation of "nitrous air diminished", by heating iron filings dampened withnitric acid.[14]In another letter to Giddy, on 10 April, Davy informs him: "I made a discovery yesterday which proves how necessary it is to repeat experiments. The gaseous oxide of azote (the laughing gas) is perfectly respirable when pure. It is never deleterious but when it contains nitrous gas. I have found a mode of making it pure." He said that he breathed sixteen quarts of it for nearly seven minutes, and that it "absolutely intoxicated me."[5]

In addition to Davy himself, his enthusiastic experimental subjects included his poet friendsRobert SoutheyandSamuel Taylor Coleridge,[15][16]as well as Gregory Watt and James Watt, other close friends. James Watt built a portable gas chamber to facilitate Davy's experiments with the inhalation of nitrous oxide. At one point the gas was combined with wine to judge its efficacy as a cure forhangover(his laboratory notebook indicated success). The gas was popular among Davy's friends and acquaintances, and he noted that it might be useful for performing surgical operations.[17]Anestheticswere not regularly used in medicine or dentistry until decades after Davy's death.[18]

Carbon monoxide

edit

In the gas experiments Davy ran considerable risks. His respiration ofnitric oxidewhich may have combined with air in the mouth to formnitric acid(HNO3),[15]severely injured the mucous membrane, and in Davy's attempt to inhale four quarts of "purehydrocarbonate"gas in an experiment withcarbon monoxidehe "seemed sinking into annihilation." On being removed into the open air, Davy faintly articulated, "I do not think I shall die,"[15]but some hours elapsed before the painful symptoms ceased.[5]Davy was able to take his own pulse as he staggered out of the laboratory and into the garden, and he described it in his notes as "threadlike and beating with excessive quickness".

Early publications

edit

During 1799, Beddoes and Davy publishedContributions to physical and medical knowledge, principally from the west of EnglandandEssays on heat, light, and the combinations of light, with a new theory of respiration. On the generation of oxygen gas, and the causes of the colors of organic beings.Their experimental work was poor, and the publications were harshly criticised.[19]In after years Davy regretted he had ever published these immature hypotheses, which he subsequently designated "the dreams of misemployed genius which the light of experiment and observation has never conducted to truth."[5]These criticisms, however, led Davy to refine and improve his experimental techniques,[19]spending his later time at the institution increasingly in experimentation.

In December 1799 Davy visited London for the first time and extended his circle of friends. Davy features in the diary of William Godwin, with their first meeting recorded for 4 December 1799.[20]

In 1800, Davy informed Giddy that he had been "repeating the galvanic experiments with success" in the intervals of the experiments on the gases, which "almost incessantly occupied him from January to April." In 1800, Davy published hisResearches, Chemical and Philosophical, chiefly concerning Nitrous Oxide and its Respiration,and received a more positive response.[19]

ProofreadingLyrical Ballads

edit
William Wordsworth at 28
Samuel Taylor Coleridge

William Wordsworthand Samuel Taylor Coleridge moved to theLake Districtin 1800, and asked Davy to deal with the Bristol publishers of theLyrical Ballads,Biggs & Cottle. Coleridge asked Davy to proofread the second edition, the first to contain Wordsworth's "Preface to the Lyrical Ballads",in a letter dated 16 July 1800:" Will you be so kind as just to look over the sheets of the lyrical Ballads ".[21]Wordsworth subsequently wrote to Davy on 29 July 1800, sending him the first manuscript sheet of poems and asking him specifically to correct: "any thing you find amiss in the punctuation a business at which I am ashamed to say I am no adept".[22]Wordsworth was ill in the autumn of 1800 and slow in sending poems for the second edition; the volume appeared on 26 January 1801 even though it was dated 1800.[23]While it is impossible to know whether Davy was at fault, this edition of the Lyrical Ballads contained many errors, including the poem"Michael"being left incomplete.[24]In a personal notebook marked on the front cover "Clifton 1800 From August to Novr", Davy wrote his own Lyrical Ballad: "As I was walking up the street".[25]Wordsworth features in Davy's poem as the recorder of ordinary lives in the line: "By poet Wordsworths Rymes" [sic].

Royal Institution

edit

In 1799,Benjamin Thompson(Count Rumford) had proposed the establishment in London of an 'Institution for Diffusing Knowledge', i.e. theRoyal Institution.The house inAlbemarle Streetwas bought in April 1799.[26]Rumford became secretary to the institution, and DrThomas Garnettwas the first lecturer.

In February 1801 Davy was interviewed by the committee of the Royal Institution, comprisingJoseph Banks,Benjamin Thompson andHenry Cavendish.Davy wrote to Davies Giddy on 8 March 1801 about the offers made by Banks and Thompson, a possible move to London and the promise of funding for his work in galvanism. He also mentioned that he might not be collaborating further with Beddoes on therapeutic gases. The next day Davy left Bristol to take up his new post at the Royal Institution,[18]it having been resolved 'that Humphry Davy be engaged in the service of the Royal Institution in the capacity of assistant lecturer in chemistry, director of the chemical laboratory, and assistant editor of the journals of the institution, and that he be allowed to occupy a room in the house, and be furnished with coals and candles, and that he be paid a salary of 100l. per annum.'[5]

On 25 April 1801, Davy gave his first lecture on the relatively new subject of 'Galvanism'. He and his friend Coleridge had had many conversations about the nature of human knowledge and progress, and Davy's lectures gave his audience a vision of human civilisation brought forward by scientific discovery. "It [science] has bestowed on him powers which may almost be called creative; which have enabled him to modify and change the beings surrounding him, and by his experiments to interrogate nature with power, not simply as a scholar, passive and seeking only to understand her operations, but rather as a master, active with his own instruments."[18]The first lecture garnered rave reviews, and by the June lecture Davy wrote to John King that his last lecture had attendance of nearly 500 people. "There was Respiration, Nitrous Oxide, and unbounded Applause. Amen!"[18]Davy revelled in his public status.

Chemical lectures– etching by Thomas Rowlandson

Women's scientific education

edit
1802 satirical cartoon byJames Gillrayshowing aRoyal Institutionlecture on pneumatics, with Davy holding the bellows andCount Rumfordlooking on at extreme right. DrThomas Garnettis the lecturer, holding the victim's nose.

Davy's lectures included spectacular and sometimes dangerous chemical demonstrations along with scientific information, and were presented with considerable showmanship by the young and handsome man.[27] Davy also included both poetic and religious commentary in his lectures, emphasizing that God's design was revealed by chemical investigations. Religious commentary was in part an attempt to appeal to women in his audiences. Davy, like many of his enlightenment contemporaries, supported female education and women's involvement in scientific pursuits, even proposing that women be admitted to evening events at the Royal Society. Davy acquired a large female following around London. In a satirical cartoon by Gillray, nearly half of the attendees pictured are female. His support of women caused Davy to be subjected to considerable gossip and innuendo, and to be criticised as unmanly.[28]

Incandescent light and arc light

edit
An electric arc between two nails

In 1802, Humphry Davy had what was then the most powerful electrical battery in the world at the Royal Institution. With it, Davy created the firstincandescent lightby passing electric current through a thin strip of platinum, chosen because the metal had an extremely high melting point. It was neither sufficiently bright nor long lasting enough to be of practical use, but demonstrated the principle. By 1806 he was able to demonstrate a much more powerful form of electric lighting to theRoyal Societyin London. It was an early form ofarc lightwhich produced its illumination from an electric arc created between two charcoal rods.

Full lecturer at the Royal Institution

edit

When Davy's lecture series on Galvanism ended, he progressed to a new series onagricultural chemistry,and his popularity continued to skyrocket. By June 1802, after just over a year at the Institution and at the age of 23, Davy was nominated to full lecturer at theRoyal Institutionof Great Britain. Garnett quietly resigned, citing health reasons.[18]

Royal Society

edit

In November 1804 Davy became a Fellow of theRoyal Society,over which he would later preside. He was one of the founding members of theGeological Societyin 1807[29]and was elected a foreign member of theRoyal Swedish Academy of Sciencesin 1810 and a Foreign Honorary Member of theAmerican Academy of Arts and Sciencesin 1822.[30]

Mid-career: 1802–1820

edit

Photographic enlargements

edit

In June 1802 Davy published in the first issue of theJournals of the Royal Institution of Great BritainhisAn Account of a Method of Copying Paintings upon Glass, and of Making Profiles, by the Agency of Light upon Nitrate of Silver. Invented by T. Wedgwood, Esq. With Observations by H. Davyin which he described their experiments with the photosensitivity ofsilver nitrate.[31][32]

He recorded that "images of small objects, produced by means of the solar microscope, may be copied without difficulty on prepared paper."Josef Maria Eder,in hisHistory of Photography,though creditingWedgwood,because of his application of this quality of silver nitrate to the making of images, as "the first photographer in the world," proposes that it was Davy who realised the idea of photographicenlargementusing a solar microscope to project images onto sensitised paper. Neither found a means of fi xing their images, and Davy devoted no more of his time to furthering these early discoveries in photography.[33]

The principle of image projection using solar illumination was applied to the construction of the earliest form of photographic enlarger, the "solar camera".

Elements

edit
Avoltaic pile
Sodiummetal, about 10 g, under oil
Magnesiummetal crystals

Potassium and sodium

edit

Davy was a pioneer in the field ofelectrolysisusing thevoltaic pileto split common compounds and thus prepare many new elements. He went on to electrolyse molten salts and discovered several new metals, includingsodiumandpotassium,highly reactive elements known as thealkali metals.Davy discovered potassium in 1807, deriving it fromcaustic potash(KOH). Before the 19th century, no distinction had been made between potassium and sodium. Potassium was the first metal that was isolated by electrolysis. Davy isolated sodium in the same year by passing an electric current through moltensodium hydroxide.[27]

Barium, calcium, strontium, magnesium, and boron

edit

During the first half of 1808, Davy conducted a series of further electrolysis experiments on alkaline earths includinglime,magnesia, strontites and barytes. At the beginning of June, Davy received a letter from the Swedish chemistBerzeliusclaiming that he, in conjunction with Dr. Pontin, had successfully obtained amalgams of calcium and barium by electrolysing lime and barytes using a mercury cathode. Davy managed to successfully repeat these experiments almost immediately and expanded Berzelius' method to strontites and magnesia.[34]He noted that while these amalgams oxidised in only a few minutes when exposed to air they could be preserved for lengthy periods of time when submerged innaphthabefore becoming covered with a white crust.[35] On 30 June 1808 Davy reported to the Royal Society that he had successfully isolated four new metals which he namedbarium,calcium,strontiumand magnium (later changed tomagnesium) which were subsequently published in thePhilosophical Transactions.Although Davy conceded magnium was an "undoubtedly objectionable" name he argued the more appropriate name magnesium was already being applied to metallic manganese and wished to avoid creating an equivocal term.[36] The observations gathered from these experiments also led to Davy isolatingboronin 1809.[19]Berzeliuscalled Davy's 1806Bakerian LectureOn Some Chemical Agencies of Electricity[37]"one of the best memoirs which has ever enriched the theory of chemistry."[38]

Chlorine

edit
Chlorine

Chlorinewas discovered in 1774 by Swedish chemistCarl Wilhelm Scheele,who called it"dephlogisticated marine acid"(seephlogiston theory) and mistakenly thought it containedoxygen.Davy showed that the acid of Scheele's substance, called at the timeoxymuriatic acid,contained nooxygen.This discovery overturnedLavoisier'sdefinition of acids as compounds of oxygen.[27]In 1810, chlorine was given its current name by Humphry Davy, who insisted that chlorine was in fact anelement.[39]The name chlorine, chosen by Davy for "one of [the substance's] obvious and characteristic properties – its colour", comes from the Greek χλωρος (chlōros), meaning green-yellow.

Laboratory incident

edit

Davy seriously injured himself in a laboratory accident withnitrogen trichloride.[40]French chemistPierre Louis Dulonghad first prepared this compound in 1811, and had lost two fingers and an eye in two separate explosions with it. In a letter toJohn Children,on 16 November 1812, Davy wrote: "It must be used with great caution. It is not safe to experiment upon a globule larger than a pin's head. I have been severely wounded by a piece scarcely bigger. My sight, however, I am informed, will not be injured".[41]Davy's accident induced him to hireMichael Faradayas a co-worker, particularly for assistance with handwriting and record keeping. He had recovered from his injuries by April 1813.[41]

Travels

edit

European tour

edit
Sir Humphry Davy byThomas Lawrence
A diamond crystal in its matrix

In 1812, Davy wasknightedand gave up his lecturing position at the Royal Institution. He was given the title of Honorary Professor of Chemistry.[41]He gave a farewell lecture to the Institution, and married a wealthy widow,Jane Apreece.(While Davy was generally acknowledged as being faithful to his wife, their relationship was stormy, and in later years he travelled to continental Europe alone.)

Dedication page of an 1812 copy of "Elements of Chemical Philosophy,"which Davy dedicated to his wife.

Davy then published hisElements of Chemical Philosophy, part 1, volume 1,though other parts of this title were never completed. He made notes for a second edition, but it was never required.[41] In October 1813, he and his wife, accompanied byMichael Faradayas his scientific assistant (also treated as a valet), travelled to France to collect the second edition of theprix du Galvanisme,a medal thatNapoleon Bonapartehad awarded Davy for his electro-chemical work. Faraday noted "Tis indeed a strange venture at this time, to trust ourselves in a foreign and hostile country, where so little regard is had to protestations of honour, that the slightest suspicion would be sufficient to separate us for ever from England, and perhaps from life".[42]Davy's party sailed from Plymouth to Morlaix bycartel,where they were searched.[41]

Upon reaching Paris, Davy was a guest of honour at a meeting of the First Class of theInstitut de Franceand met withAndré-Marie Ampèreand other French chemists.[41]It was later reported that Davy's wife had thrown the medal onto the sea, near her Cornish home, "as it raised bad memories". The Royal Society of Chemistry has offered over £1,800 for the recovery of the medal.[43]

While in Paris, Davy attended lectures at theEcole Polytechnique,including those byJoseph Louis Gay-Lussacon a mysterious substance isolated byBernard Courtois.Davy wrote a paper for the Royal Society on the element, which is now callediodine.[44][45]This led to a dispute between Davy and Gay-Lussac on who had the priority on the research.[41]

Davy's party did not meet Napoleon in person, but they did visit the EmpressJoséphine de Beauharnaisat theChâteau de Malmaison.[41]The party left Paris in December 1813, travelling south to Italy.[46]They sojourned inFlorence,where using theburning glassof the Grand Duke of Tuscany[47]in a series of experiments conducted with Faraday's assistance, Davy succeeded in using the sun's rays to ignitediamond,proving it is composed of purecarbon.

Davy's party continued to Rome, where he undertook experiments on iodine and chlorine and on the colours used in ancient paintings. This was the first chemical research on the pigments used by artists.[41]

He also visitedNaplesandMount Vesuvius,where he collected samples of crystals. By June 1814, they were inMilan,where they metAlessandro Volta,and then continued north toGeneva.They returned to Italy viaMunichandInnsbruck,and when their plans to travel to Greece andIstanbulwere abandoned after Napoleon's escape fromElba,they returned to England.

After theBattle of Waterloo,Davy wrote toLord Liverpoolurging that the French be treated with severity:

My Lord, I need not say to Your Lordship that the capitulation of Paris not a treaty; lest everything belonging to the future state of that capital & of France is open to discussion & that France is a conquered country. It is the duty of the allies to give her more restricted boundaries which shall not encroach upon the natural limits of other nations. to weaken her on the side of Italy, Germany & Flanders. To take back from her by contributions the wealth she has acquired by them to suffer her to retain nothing that the republican or imperial armies have stolen: This last duty is demanded no less by policy than justice.

— Sir Humphry Davy, Letter to Lord Liverpool[41][48]

Davy lamp

edit
The Davy lamp
Statue of Davy inPenzance,Cornwall, holding his safety lamp

After his return to England in 1815, Davy began experimenting with lamps that could be used safely in coal mines. The Revd Dr Robert Gray ofBishopwearmouthin Sunderland, founder of the Society for Preventing Accidents in Coalmines, had written to Davy suggesting that he might use his 'extensive stores of chemical knowledge' to address the issue of mining explosions caused byfiredamp,ormethanemixed with oxygen, which was often ignited by the open flames of the lamps then used by miners. Incidents such as theFelling mine disasterof 1812 nearNewcastle,in which 92 men were killed, not only caused great loss of life among miners but also meant that their widows and children had to be supported by the public purse. The Revd Gray and a fellow clergyman also working in a north-east mining area, the Revd John Hodgson ofJarrow,were keen that action should be taken to improve underground lighting and especially the lamps used by miners.[49]

Davy conceived of using an iron gauze to enclose a lamp's flame, and so prevent the methane burning inside the lamp from passing out to the general atmosphere. Although the idea of thesafety lamphad already been demonstrated byWilliam Reid Clannyand by the then unknown (but later very famous) engineerGeorge Stephenson,Davy's use ofwire gauzeto prevent the spread of flame was used by many other inventors in their later designs. George Stephenson's lamp was very popular in the north-east coalfields, and used the same principle of preventing the flame reaching the general atmosphere, but by different means.[50]Unfortunately, although the new design of gauze lamp initially did seem to offer protection, it gave much less light, and quickly deteriorated in the wet conditions of most pits. Rusting of the gauze quickly made the lamp unsafe, and the number of deaths from firedamp explosions rose yet further.

There was some discussion as to whether Davy had discovered the principles behind his lamp without the help of the work ofSmithson Tennant,but it was generally agreed that the work of the two men had been independent. Davy refused to patent the lamp, and its invention led to his being awarded theRumford medalin 1816.[1]

Acid studies

edit

In 1815 Davy also suggested thatacidswere substances that contained replaceablehydrogenions;– hydrogen that could be partly or totally replaced byreactive metalswhich are placed above hydrogen in the reactivity series. When acids reacted with metals they formedsaltsand hydrogen gas.Baseswere substances that reacted with acids to form salts and water. These definitions worked well for most of the nineteenth century.[51]

Herculaneum papyri

edit

Davy experimented on fragments of the Herculaneum papyri before his departure to Naples in 1818. His early experiments showed hope of success. In his report to the Royal Society Davy writes that: 'When a fragment of a brownMS.in which the layers were strongly adhered, was placed in an atmosphere of chlorine, there was an immediate action, the papyrus smoked and became yellow, and the letters appeared much more distinct; and by the application of heat the layers separated from each other, giving fumes ofmuriatic acid.'[52][53]

The success of the early trials prompted Davy to travel to Naples to conduct further research on the Herculaneum papyri. Accompanied by his wife, they set off on 26 May 1818 to stay in Flanders where Davy was invited by the coal miners to speak.[54]They then traveled to Carniola (now Slovenia) which proved to become 'his favourite Alpine retreat' before finally arriving in Italy. In Italy, they befriended Lord Byron in Rome and then went on to travel to Naples.[55]

Initial experiments were again promising and his work resulted in 'partially unrolling 23 MSS., from which fragments of writing were obtained'[56]but after returning to Naples on 1 December 1819 from a summer in the Alps, Davy complained that 'the Italians at the museum [were] no longer helpful but obstructive'.[57]Davy decided to renounce further work on the papyri because 'the labour, in itself difficult and unpleasant, been made more so, by the conduct of the persons at the head of this department in the Museum'.[56]

Later life: 1820–1829

edit

President of the Royal Society

edit

Election to the presidency

edit
Joseph Banks

On 20 October 1818, Davy was created abaronet;[58][59]this was the first such honour conferred on a man of science in Britain. It was followed a year later with the presidency of theRoyal Society.The Society was in transition from a club for gentlemen interested in natural philosophy, connected with the political and social elite, to an academy representing increasingly specialised sciences. The previous president,Joseph Banks,had held the post for over 40 years and had presided autocratically over whatDavid Philip Millercalls the "Banksian Learned Empire", in which natural history was prominent.[60]Banks had groomedDavies Gilbertto succeed him and preserve the status quo, but Gilbert declined to stand. Fellows who thought royal patronage was important proposed Prince Leopold of Saxe-Coburg (laterLeopold I of Belgium), who also withdrew, as did the WhigEdward St Maur, 11th Duke of Somerset.Davy was the outstanding scientist but some fellows did not approve of his popularising work at the Royal Institution.

Elections took place on St Andrew's Day and Davy was elected on 30 November 1820. Although he was unopposed, other candidates had received initial backing. These candidates embodied the factional difficulties that beset Davy's presidency and which eventually defeated him. The strongest alternative had beenWilliam Hyde Wollaston,who was supported by the "Cambridge Network" of outstanding mathematicians such asCharles BabbageandJohn Herschel,who tried to block Davy. They were aware that Davy supported some modernisation, but thought that he would not sufficiently encourage aspiring young mathematicians, astronomers and geologists, who were beginning to form specialist societies. Davy was only 41, and reformers were fearful of another long presidency.

In his early years Davy was optimistic about reconciling the reformers and the Banksians. In his first speech as president he declared, "I trust that, with these new societies, we shall always preserve the most amicable relations... I am sure there is no desire in [the Royal Society] to exert anything like patriarchal authority in relation to these institutions".[61]

Protection of ships' bottoms

edit
New piece ofcopper sheathingsurrounded by old, corroded copper onUSSConstitution

From 1761 onwards, copper plating had been fitted to the undersides ofRoyal Navyships to protect the wood from attack byshipworms.[62]However, the copper bottoms were gradually corroded by exposure to the salt water. Between 1823 and 1825, Davy, assisted byMichael Faraday,attempted to protect the copper byelectrochemicalmeans. He attached to the copper sacrificial pieces ofzincoriron,which providedcathodic protectionto the host metal.[63]It was discovered, however, that protected copper became foul quickly, i.e. pieces of weed and/or marine creatures became attached to the hull, which had a detrimental effect on the handling of the ship.

TheNavy Boardapproached Davy in 1823, asking for help with the corrosion. Davy conducted a number of tests inPortsmouth Dockyard,which led to the Navy Board adopting the use of Davy's "protectors". By 1824, it had become apparent that fouling of the copper bottoms was occurring on the majority of protected ships. By the end of 1825, theAdmiraltyordered the Navy Board to cease fitting the protectors to sea-going ships, and to remove those that had already been fitted. Davy's scheme was seen as a public failure, despite success of the corrosion protection as such. As Frank A. J. L. James explains, "[Because] the poisonous salts from [corroding] copper were no longer entering the water, there was nothing to kill the barnacles and the like in the vicinity of a ship. This meant that barnacles [and the like] could now attach themselves to the bottom of a vessel, thus impeding severely its steerage, much to the anger of the captains who wrote to the Admiralty to complain about Davy's protectors."[64]

Presidency

edit
Humphry Davy

Davy spent much time juggling the factions but, as his reputation declined in the light of failures such as his research into copper-bottomed ships, he lost popularity and authority. This was compounded by a number of political errors. In 1825 his promotion of the new Zoological Society, of which he was a founding fellow, courted the landed gentry and alienated expert zoologists. He offended the mathematicians and reformers by failing to ensure that Babbage received one of the new Royal Medals (a project of his) or the vacant secretaryship of the Society in 1826. In 1826 Davy suffered a stroke from which he never fully recovered. In November 1826 the mathematician Edward Ryan recorded that: "The Society, every member almost... are in the greatest rage at the President's proceedings and nothing is now talked of but removing him."[65]

In the event he was again re-elected unopposed, but he was now visibly unwell. In January 1827 he set off to Italy for reasons of his health. It did not improve and, as the 1827 election loomed, it was clear that he would not stand again. He was succeeded byDavies Gilbert.

Final years

edit
Michael Faraday,portrait byThomas Phillipsc. 1841–1842[66]

Davy's laboratory assistant,Michael Faraday,went on to enhance Davy's work and would become the more famous and influential scientist. Davy is supposed to have even claimed Faraday as his greatest discovery. Davy later accused Faraday ofplagiarism,however, causing Faraday (the firstFullerian Professor of Chemistry) to cease all research inelectromagnetismuntil his mentor's death.

According to one of Davy's biographers,June Z. Fullmer,he was adeist.[67]

Of a sanguine, somewhat irritable temperament, Davy displayed characteristic enthusiasm and energy in all his pursuits. As is shown by his verses and sometimes by his prose, his mind was highly imaginative; the poet Coleridge declared that if he "had not been the first chemist, he would have been the first poet of his age", and Southey said that "he had all the elements of a poet; he only wanted the art." In spite of his ungainly exterior and peculiar manner, his happy gifts of exposition and illustration won him extraordinary popularity as a lecturer, his experiments were ingenious and rapidly performed, and Coleridge went to hear him "to increase his stock of metaphors." The dominating ambition of his life was to achieve fame; occasional petty jealousy did not diminish his concern for the "cause of humanity", to use a phrase often employed by him in connection with his invention of the miners' lamp. Careless about etiquette, his frankness sometimes exposed him to annoyances he might have avoided by the exercise of tact.[68]

Death

edit
Davy's grave atCimetière Plainpalaisin Geneva

Davy spent the last months of his life writingConsolations in Travel,an immensely popular, somewhat freeform compendium of poetry, thoughts on science and philosophy. Published posthumously, the work became a staple of both scientific and family libraries for several decades afterward. Davy spent the winter in Rome, hunting in theCampagnaon his fiftieth birthday. But on 20 February 1829 he had another stroke. After spending many months attempting to recuperate, Davy died in a room at L'Hotel de la Couronne, in the Rue du Rhone, inGeneva,Switzerland, on 29 May 1829.[69][1]An appendix to his will had included his last wishes; that there be no post-mortem, that he be buried where he died, and that there be an interval between the two, to ensure that he was not merelycomatose.But the ordinances of the city did not allow such an interval and his funeral took place on the following Monday, 1 June, in thePlainpalais Cemetery,outside the city walls.[69]

Honours

edit

Geographical locations

edit

Scientific and literary recognition

edit
  • in 1827, the mineraldavynewas named in his honour by W. Haidinger.[86]
  • Annually since 1877, theRoyal Society of Londonhas awarded theDavy Medal"for an outstandingly important recent discovery in any branch of chemistry."[87]
  • TheDavylunar crateris named after him. It has a diameter of 34 km and its coordinates are 11.8S, 8.1W.[88]
  • Davy's passion forfly-fishingearned him the informal title "the father of modern fly-fishing", and his bookSalmonia[89]is often considered to be "the fly-fisherman bible".
  • The poetSamuel Taylor Coleridgesaid he "attended Davy's lectures to enlarge my stock of metaphors".[90]
edit

Novels and poetry

edit
  • Davy is the subject of a humorous song byRichard Gendall,recorded in 1980 by folk-singerBrenda Woottonin the albumBoy Jan Cornishman,[91]the seven verses of which each recall a day of the week on which Davy purportedly made a particular discovery.[92]
  • English playwrightNick DarkewroteLaughing Gas(2005) a comedy script about the life of Sir Humphry Davy, unfinished at the time of Nick Darke's death; completed posthumously by actor and playwright Carl Grose and produced by the Truro-based production company O-region.
Sir Humphry Davy
Abominated gravy.
He lived in the odium
Of having discoveredsodium.[93]
  • There is a humorous rhyme of unknown origin about the statue in Penzance:
Sir Humphrey Davy's kindly face,
Is turned away from Market Place
TowardsSt Michael's Mount
So, if he do want to tell the time
He've got to wait till the clock do chime
Then he's forced to count.[94]

Television and film

edit
  • On the 2021 TV showAvenue 5,when asked who he is referring to, Captain Ryan, played byHugh Laurie,responds, "Who do you think? Sir Humphrey Davy?"
  • Davy and his arc lamp are briefly mentioned inBridgerton's season 3, episode 3.

Publications

edit

See Fullmer's work for a full list of Davy's articles.[95]

Humphry Davy's books are as follows:

  • — (1800).Researches, Chemical and Philosophical; Chiefly Concerning Nitrous Oxide, or Dephlogisticated Nitrous Air, and Its Respiration.Bristol: Biggs and Cottle. p.1.Retrieved18 September2016.
  • — (1812).Elements of Chemical Philosophy.London: Johnson and Co. p.1.ISBN978-0-217-88947-6.
  • — (1813).Elements of Agricultural Chemistry in a Course of Lectures.London: Longman.
  • — (1816).The Papers of Sir H. Davy.Newcastle: Emerson Charnley.(on Davy's safety lamp)
  • — (1827).Discourses to the Royal Society.London: John Murray.
  • — (1828).Salmonia or Days of Fly Fishing.London: John Murray. p.13.
  • — (1830).Consolations in Travel or The Last Days of a Philosopher.London: John Murray. p.1.

Davy also contributed articles on chemistry toRees's Cyclopædia,but the topics are not known.

His collected works were published in 1839–1840:

See also

edit

References

edit

Bibliography

edit
  1. ^abcdeDavid Knight(2004)"Davy, Sir Humphry, baronet (1778–1829)"Archived24 September 2015 at theWayback MachineinOxford Dictionary of National Biography,Oxford University Press
  2. ^"APS Member History".search.amphilsoc.org.Archivedfrom the original on 13 July 2021.Retrieved2 April2021.
  3. ^abDavy, John(1836).Memoirs of the Life of Sir Humphry Davy.Vol. 1. London: Longman, Rees, Orme, Brown, Green, & Longman.ISBN9780608378510.
  4. ^Knight, David(1992).Humphry Davy: Science and Power.Cambridge: Cambridge University Press.ISBN978-0-631-16816-4.
  5. ^abcdefghHunt, Robert(1888)."Davy, Humphry".Dictionary of National Biography.London: Smith, Elder & Co.
  6. ^abAmin, Wahida (2013)."The Poetry and Science of Humphry Davy"(PDF).Ultrasound in Medicine & Biology(Unpublished PhD thesis, University of Salford, UK).48(1): 35–46.doi:10.1016/j.ultrasmedbio.2021.09.011.PMID34702642.Archived(PDF)from the original on 16 May 2017.Retrieved4 May2017.
  7. ^Anon (22 September 2011). "Davy paintings donated to museum".The Cornishman.
  8. ^Davy's picture of Mounts Bay was included in the Penlee House exhibition "Penzance 400: A Celebration of the History of Penzance", 29 March – 7 June 2014
  9. ^The Larigan, or Laregan, river is a stream in Penzance.
  10. ^Hindle, Maurice."Nature, Power, and the Light of Suns: The Poetry of Humphry Davy"(PDF).Archived(PDF)from the original on 1 August 2020.Retrieved4 May2017.
  11. ^Amin, Wahida (2022)."The Poetry and Science of Humphry Davy"(PDF).Ultrasound in Medicine & Biology.48(1): 35–46.doi:10.1016/j.ultrasmedbio.2021.09.011.PMID34702642.Archived(PDF)from the original on 16 May 2017.Retrieved4 May2017.
  12. ^Hardman, Jonathan G. (2017).Oxford Textbook of Anaesthesia.Oxford University Press. p. 529.
  13. ^Keys TE (1941)."The Development of Anesthesia".Anesthesiology journal (Sep. 1941, vol. 2, is. 5, pp. 552–74).Archived fromthe originalon 12 January 2014.Retrieved24 June2010.
  14. ^Priestley J (1776).Experiments and Observations on Different Kinds of Air.Vol. 2. sec. 3.Archivedfrom the original on 12 May 2022.Retrieved24 June2010– via Erowid.org.
  15. ^abcJay, Mike (8 August 2014)."'O, Excellent Air Bag'p: Humphry Davy and Nitrous Oxide ".The Public Domain Review.4(16).Open Knowledge Foundation.Archivedfrom the original on 9 August 2014.Retrieved6 August2014.
  16. ^Roberts, Jacob (2017)."High Times".Distillations.2(4): 36–39.Archivedfrom the original on 8 April 2023.Retrieved22 March2018.
  17. ^In his 1800Researches, Chemical and Philosophical(p. 556), Davy commented: "As nitrous oxide in its extensive operation appears capable of destroying pain, it may probably be used with advantage during surgical operations in which no great effusion of blood takes place."
  18. ^abcdeHolmes, Richard (2008).The Age of Wonder.Pantheon Books.ISBN978-0-375-42222-5.
  19. ^abcdKenyon, T. K. (2008)."Science and Celebrity: Humphry Davy's Rising Star".Chemical Heritage Magazine.26(4): 30–35.Archivedfrom the original on 23 March 2018.Retrieved22 March2018.
  20. ^Godwin, William."William Godwin's Diary".Archivedfrom the original on 2 December 2016.Retrieved4 May2017.
  21. ^Coleridge, Samuel Taylor (1956–1971). Griggs, E. L. (ed.).The Collected Letters of Samuel Taylor Coleridge.Clarendon Press. pp. vol 1, 606.
  22. ^Wordsworth, William (1967). de Selincourt, E. (ed.).The Letters of William and Dorothy Wordsworth.Clarendon Press. pp. vol. 1, 289.
  23. ^Sharrock, Roger (1962). "The Chemist and the Poet: Sir Humphry Davy and the Preface to the Lyrical Ballads".Notes and Records of the Royal Society.17:57–76.doi:10.1098/rsnr.1962.0006.S2CID144053478.
  24. ^Wordsworth, William (1800).Lyrical Ballads.Biggs & Cottle. p. 210.
  25. ^Davy, Humphry.Royal Institution HD 20c.pp. 44, 46, 52.
  26. ^Holmes 2008,pp. 285.
  27. ^abcKnight, David (2017)."Left Behind".Distillations.2(4): 40–43.Archivedfrom the original on 23 March 2018.Retrieved22 March2018.
  28. ^Golinski, Jan (2016).The Experimental Self: Humphry Davy and the Making of a Man of Science.Chicago: The University of Chicago Press. pp. 70–85.ISBN9780226351360.
  29. ^History of the Geological SocietyArchived7 September 2012 at theWayback Machine,Geolsoc.org.uk
  30. ^"Book of Members, 1780–2010: Chapter D"(PDF).American Academy of Arts and Sciences.Archived(PDF)from the original on 9 August 2018.Retrieved8 September2016.
  31. ^Newhall, Beaumont(1980).Photography, essays & images: illustrated readings in the history of photography.New York: Museum of Modern Art.ISBN0-87070-385-4.OCLC7550618.
  32. ^International Congress: Pioneers of Photographic Science and Technology (1st: 1986: International Museum of Photography); Ostroff, Eugene (1987),Pioneers of photography: their achievements in science and technology,SPSE – The Society for Imaging Science and Technology; [Boston, Mass.]: Distributed by Northeastern University Press,ISBN978-0-89208-131-8{{citation}}:CS1 maint: numeric names: authors list (link)
  33. ^(1932). Josef Maria Eder,Geschichte der Photographie.Halle a. S: Knapp.
  34. ^Davy, Humphry (1808)."Electrochemical Researches, on the Decomposition of the Earths; With Observations in the Metals Obtained from the Alkaline Earths, and on the Amalgam Procured from Ammonia".Philosophical Transactions of the Royal Society.98:339–40.Bibcode:1808RSPT...98..333D.doi:10.1098/rstl.1808.0023.
  35. ^Davy, Humphry (1808)."Electro-Chemical Researches, on the Decomposition of the Earths; With Observations on the Metals Obtained from the Alkaline Earths, and on the Amalgam Procured from Ammonia".Philosophical Transactions of the Royal Society.98:340.Bibcode:1808RSPT...98..333D.doi:10.1098/rstl.1808.0023.
  36. ^Davy, Humphry (1808)."Electro-chemical Researches, on the Decomposition of the Earths; With Observations in the Metals Obtained from the Alkaline Earths, and on the Amalgam Procured from Ammonia".Philosophical Transactions of the Royal Society.98:346.Bibcode:1808RSPT...98..333D.doi:10.1098/rstl.1808.0023.
  37. ^"On Some Chemical Agencies of Electricity".Archived fromthe originalon 26 October 2007.Retrieved2 March2008.
  38. ^Berzelius, J. J.;trans. A. Jourdan and M. Esslinger.Traité de chimie(in French). Vol. 1 (trans., of experimental science ed.). p. 169.
  39. ^Davy, Humphry (1811)."On Some of the Combinations of Oxymuriatic Gas and Oxygene, and on the Chemical Relations of These Principles, to Inflammable Bodies".Philosophical Transactions of the Royal Society.101:1–35.Bibcode:1811RSPT..101....1D.doi:10.1098/rstl.1811.0001.Archivedfrom the original on 1 August 2020.Retrieved9 September2019.
  40. ^Humphry, Davy (1813)."On a New Detonating Compound".Philosophical Transactions of the Royal Society.103:1–7.doi:10.1098/rstl.1813.0002.JSTOR107383.
  41. ^abcdefghijKnight, David(1992).Humphry Davy: Science and Power.Cambridge, UK: Cambridge University Press.ISBN978-0-631-16816-4.
  42. ^Jones, H.B. (1870).The life and letters of Faraday, Vol. 1.p.75.
  43. ^"Napoleon's medal 'cast into sea'".News.bbc.co.uk.15 March 2008.Archivedfrom the original on 10 February 2021.Retrieved23 October2021.
  44. ^Davy, H. (1813). "Sur la nouvelle substance découverte par M. Courtois, dans le sel de Vareck".Annales de chimie.88:322.
  45. ^Davy, Humphry (1 January 1814)."Some Experiments and Observations on a New Substance Which Becomes a Violet Coloured Gas by Heat".Phil. Trans. R. Soc. Lond.104:74–93.doi:10.1098/rstl.1814.0007.
  46. ^For information on the continental tour of Davy and Faraday, seeWilliams, L. Pearce (1965).Michael Faraday: A Biography.New York: Basic Books. p.36.ISBN978-0-306-80299-7.
  47. ^*Faraday, Michael(1991). Bowers, Brian; Symons, Lenore (eds.).Curiosity Perfectly Satisfyed: Faraday's Travels in Europe, 1813–1815.London: Peregrinus.ISBN9780863412349.
  48. ^Davy, Humphry."Letter to Lord Liverpool, Summer 1815[?]".List of letters: Humphry Davy and his circle.Archived fromthe originalon 7 June 2017.Retrieved4 May2017.
  49. ^Knight, David (1992). Humphry Davy: Science and Power. Cambridge: Cambridge University Press, pp. 105–06.ISBN0-631-16816-8.
  50. ^Holmes 2008,pp. 364–73.
  51. ^HSC,Conquering ChemistryFourth Edition p. 146.
  52. ^Davy, 1821,page 193
  53. ^Davy, Humphry (January 1821)."Some Observations and Experiments on the Papyri Found in the Ruins of Herculaneum".Philosophical Transactions.111:191–208.Bibcode:1821RSPT..111..191D.doi:10.1098/rstl.1821.0016.JSTOR107613.
  54. ^Davy, John (1836).Memoirs of the life of Sir Humphry Davy.London: Longman, Rees, Orme, Brown, Green & Longman. p.97.
  55. ^Knight, David (1992).Humphry Davy: Science & Power.Cambridge: Cambridge University Press. p. 118.
  56. ^abDavy, 1821,page 203
  57. ^page 119 of Knight 1992
  58. ^"No. 17410".The London Gazette.20 October 1818. p. 1875.
  59. ^Burke, John; Burke, Bernard (1844).A Genealogical and Heraldic History of the Extinct and Dormant Baronetcies of England, Ireland and Scotland.J. R. Smith. p. 154.
  60. ^David Philip Miller,"Between hostile camps: Sir Humphry Davy's presidency of the Royal Society of London",British Journal for the History of Science(1983): 1–47.
  61. ^Cited in David Philip Miller, "Between hostile camps: Sir Humphry Davy's presidency of the Royal Society of London",British Journal for the History of Science(1983): 30–31.
  62. ^James, Frank A. J. L. (1992). "Davy in the Dockyard: Humphry Davy, the Royal Society and the Electro-chemical Protection of the Copper Sheeting of His Majesty's Ships in the mid 1820s".Physis.29:205–25.
  63. ^Knight, David (1992).Humphry Davy: Science and Power.Cambridge: Cambridge University Press. p. 145.
  64. ^James, Frank A. J. L. (2008).Complete dictionary of scientific biography, e-book, eds Charles Coulston Gillispie, Frederic Lawrence Holmes, and Noretta Koertge.Detroit, Michigan: Charles Scribner's Sons.
  65. ^Cited in David Philip Miller, "Between hostile camps: Sir Humphry Davy's presidency of the Royal Society of London",British Journal for the History of Science(1983): 39.
  66. ^"National Portrait gallery NPG 269".Npg.org.uk.Archived fromthe originalon 6 December 2008.Retrieved23 October2021.
  67. ^Fullmer, June Z.(2000).Young Humphry Davy: The Making of an Experimental Chemist, Volume 237.American Philosophical Society. p.158.ISBN9780871692375.In prominent alliance with his concept, Davy celebrated a natural-philosophic deism, for which his critics did not attack him, nor, indeed, did they bother to mention it. Davy never appeared perturbed by critical attacks on his "materialism" because he was well aware that his deism and his materialism went hand in hand; moreover, deism appeared to be the abiding faith of all around him.
  68. ^One or more of the preceding sentences incorporates text from a publication now in thepublic domain:Chisholm, Hugh,ed. (1911). "Davy, Sir Humphry".Encyclopædia Britannica.Vol. 7 (11th ed.). Cambridge University Press. pp. 871–73.
  69. ^abParis, John Ayrton(18 September 1831)."The Life of Sir Humphry Davy".H. Colburn and R. Bentley. p. 515.Retrieved18 September2021– via Google Books.
  70. ^'The Abbey Scientists' Hall, A.R. p59: London; Roger & Robert Nicholson; 1966
  71. ^Knight, David(1992).Humphry Davy: Science and Power.Cambridge: Cambridge University Press. p.168.ISBN978-0-631-16816-4.
  72. ^Davy is buried in plot 208 of the Plainpalais Cemetery, Rue des Rois, Geneva. For contemporary information on Davy's funeral service and memorials, seeParis, John Ayrton (1831).The Life of Sir Humphry Davy, Bart., LL.D.London: Henry Colburn and Richard Bentley. pp. 516–17.
  73. ^"Humphry Davy Statue – Penzance".Cornwalls.co.uk.16 February 2012.Archivedfrom the original on 17 February 2018.Retrieved16 February2018.
  74. ^"Humphry Davy slate plaque in Penzance | Blue Plaque Places".Archived fromthe originalon 20 March 2018.Retrieved19 March2018.
  75. ^"Welcome to Humphry Davy School".Humphry-davy.cornwall.sch.uk.Archivedfrom the original on 20 March 2018.Retrieved19 March2018.
  76. ^"Sir Humphry Davy pub –Penzance".Cornwalls.co.uk.9 June 2006.Archivedfrom the original on 17 February 2018.Retrieved16 February2018.
  77. ^"Sir Humphry Davy, Penzance".Whatpub.Archivedfrom the original on 17 February 2018.Retrieved16 February2018.
  78. ^"Building plaques".Plymouth.ac.uk.Archived fromthe originalon 17 February 2018.Retrieved16 February2018.
  79. ^"Britishstreets".Britishstreets.info.Archivedfrom the original on 20 March 2018.Retrieved19 March2018.
  80. ^"The story behind the SoL".Safc.19 July 2017.Archivedfrom the original on 17 February 2018.Retrieved16 February2018.
  81. ^"Humphry-Davy-STR., Cuxhaven Stadtplan".Meinestadt.de.Archivedfrom the original on 20 March 2018.Retrieved19 March2018.
  82. ^SMC Chartered Surveyors (2022)."For sale: Humphry Davy House"(PDF).Archived fromthe original(PDF)on 13 October 2022.
  83. ^"Place names, northern East Greenland".Data.geus.dk.Archivedfrom the original on 24 September 2018.Retrieved18 September2021.
  84. ^"Parc régional d'activité économiques Humphry Davy".Mairie de la grand combe(in French). 17 August 2017.Archivedfrom the original on 19 March 2022.Retrieved12 April2022.
  85. ^"Place name detail: Mount Davy".New Zealand Gazetteer.New Zealand Geographic Board.Retrieved21 August2022.
  86. ^Haidinger, W (1827)."Über den Davyn, eine neue Mineralspecies".Annalen der Physik und Chemie.87(11): 470–74.Bibcode:1828AnP....87..470H.doi:10.1002/andp.18270871111.Archivedfrom the original on 1 August 2020.Retrieved4 July2019.
  87. ^"Davy Medal".Royalsociety.org.30 November 2023.Archivedfrom the original on 26 September 2015.Retrieved16 February2018.
  88. ^"Humphry Davy".Gazetteer of Planetary Nomenclature.USGS Astrogeology Research Program.
  89. ^"Salmonia: Days of Fly Fishing. In a Series of Conversations; with Some Account of the Habits of..."Archive.org.Carey and Lea. 23 October 1832.Retrieved23 October2021.
  90. ^Holmes 2008,p. 288.
  91. ^"Brenda Wootton: Complete Discography".Brendawootton.eu.Archived fromthe originalon 17 February 2018.Retrieved16 February2018.
  92. ^"Brenda Wooton and Humphry Davy".Mudcat.org.Archivedfrom the original on 1 August 2020.Retrieved16 February2018.
  93. ^Bentley, E. Clerihew (1982).The First Clerihews.Oxford University Press.ISBN978-0-19-212980-2.
  94. ^Spiegel, Max."Brenda Wooton and Humphry Davy".Mudcat.org.Archivedfrom the original on 6 February 2022.Retrieved23 October2021.
  95. ^Fullmer, 1969

Sources

edit

Primary sources

edit
edit
Baronetage of the United Kingdom
New creation Baronet
(of Grosvenor Street)
1818–1829
Extinct
Preceded by
Davy baronets
of Grosvenor Street

30 November 1818
Succeeded by
Professional and academic associations
Preceded by 23rdPresident of the Royal Society
1820–1827
Succeeded by