Low density lipoprotein receptor-related protein 1(LRP1), also known asAlpha -2-macroglobulin receptor(A2MR),apolipoprotein E receptor(APOER) orcluster of differentiation 91(CD91), is aproteinforming areceptorfound in theplasma membraneofcellsinvolved in receptor-mediatedendocytosis.In humans, the LRP1 protein is encoded by theLRP1gene.[5][6][7]LRP1 is also a keysignallingprotein and, thus, involved in various biological processes, such aslipoproteinmetabolismandcell motility,anddiseases,such asneurodegenerative diseases,atherosclerosis,andcancer.[8][9]

LRP1
Available structures
PDBOrtholog search:PDBeRCSB
Identifiers
AliasesLRP1,A2MR, APOER, APR, CD91, IGFBP3R, LRP, LRP1A, TGFBR5, low density lipoprotein receptor-related protein 1, LDL receptor related protein 1, KPA, IGFBP3R1, IGFBP-3R
External IDsOMIM:107770;MGI:96828;HomoloGene:1744;GeneCards:LRP1;OMA:LRP1 - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_002332

NM_008512

RefSeq (protein)

NP_002323

NP_032538

Location (UCSC)Chr 12: 57.13 – 57.21 MbChr 10: 127.37 – 127.46 Mb
PubMedsearch[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Structure

edit

TheLRP1gene encodes a 600 kDaprecursor proteinthat is processed byfurinin the trans-Golgi complex,resulting in a 515 kDa Alpha -chain and an 85 kDa beta-chain associated noncovalently.[8][10][11]As a member of theLDLRfamily, LRP1 contains cysteine-rich complement-type repeats,EGF (gene)repeats, β-propeller domains, atransmembranedomain, and acytoplasmicdomain.[9]The extracellular domain of LRP1 is the Alpha -chain, which comprises fourligand-binding domains (numbered I-IV) containing two, eight, ten, and eleven cysteine-rich complement-type repeats, respectively.[8][9][10][11]These repeats bindextracellular matrixproteins,growth factors,proteases,protease inhibitorcomplexes,and other proteins involved inlipoproteinmetabolism.[8][9]Of the four domains, II and IV bind the majority of the protein's ligands.[11]The EGF repeats and β-propeller domains serve to releaseligandsin lowpHconditions, such as insideendosomes,with the β-propeller postulated to displace the ligand at the ligand binding repeats.[9]The transmembrane domain is the β-chain, which contains a 100-residuecytoplasmictail. This tail contains two NPxY motifs that are responsible for the protein's function inendocytosisandsignal transduction.[8]

Function

edit

LRP1 is a member of the LDLR family and ubiquitously expressed in multipletissues,though it is most abundant invascularsmooth muscle cells(SMCs),hepatocytes,andneurons.[8][9]LRP1 plays a key role in intracellular signaling and endocytosis, which implicates it in many cellular and biological processes, includinglipidandlipoproteinmetabolism,proteasedegradation,platelet derived growth factor receptorregulation,integrinmaturation and recycling, regulation of vascular tone, regulation ofblood brain barrierpermeability,cell growth,cell migration,inflammation,andapoptosis,as well asdiseasessuch as neurodegenerative diseases, atherosclerosis, and cancer.[7][8][9][10][11]To elaborate, LRP1 mainly contributes to regulate protein activity by binding target proteins as aco-receptor,in conjunction withintegral membrane proteinsor adaptor proteins likeuPA,to thelysosomefor degradation.[9][10][11]In lipoprotein metabolism, the interaction between LRP1 andAPOEstimulates a signaling pathway that leads to elevated intracellularcAMPlevels, increasedprotein kinase Aactivity, inhibited SMC migration, and ultimately, protection againstvascular disease.[9] Whilemembrane-boundLRP1 performs endocytic clearance of proteases and inhibitors,proteolytic cleavageof itsectodomainallows the free LRP1 to compete with the membrane-bound form and prevent their clearance.[8]Several sheddases have been implicated in the proteolytic cleavage of LRP1 such as ADAM10,[12]ADAM12,[13]ADAM17[14]and MT1-MMP.[13]LRP1 is also continuously endocytosed from the membrane and recycled back to the cell surface.[9]Though the role of LRP1 in apoptosis is unclear, it is required for tPA to bind LRP1 in order to trigger the ERK1/2 signal cascade and promote cell survival.[15]

Clinical significance

edit

Alzheimer's disease

edit

Neuronsrequirecholesterolto function. Cholesterol is imported into the neuron by apolipoprotein E (apoE) via LRP1 receptors on the cell surface. It has been theorized that a causal factor inAlzheimer'sis the decrease of LRP1 mediated by the metabolism of the amyloid precursor protein, leading to decreased neuronal cholesterol and increased amyloid beta.[16]

LRP1 is also implicated in the effective clearance of Aβ from the brain to the periphery across theblood-brain barrier.[17][18]LRP1 mediates pathways that interact with astrocytes and pericytes, which are associated with the blood-brain barrier. In support of this, LRP1 expression is reduced in endothelial cells as a result of normal aging and Alzheimer's disease in humans and animal models of the disease.[19][20]This clearance mechanism is modulated by theapoEisoforms, with the presence of the apoE4 isoform resulting in reduced transcytosis of Aβ in in vitro models of the blood-brain barrier.[21]The reduced clearance appears to be, at least in part, as a result of an increase in the ectodomain shedding of LRP1 by sheddases, resulting in the formation of soluble LRP1 which is no longer able to transcytose the Aβ peptides.[22]

In addition, over-accumulation ofcopperin the brain is associated with reduced LRP1 mediated clearance ofamyloid betaacross theblood brain barrier.This defective clearance may contribute to the buildup of neurotoxic amyloid-beta thatis thought to contributeto Alzheimer's disease.[23]

Cardiovascular disease

edit

Studies have elucidated different roles for LRP1 in cellular processes relevant for cardiovascular disease.Atherosclerosisis the primary cause of cardiovascular disease such as stroke and heart attacks. In the liver LRP1 is important for the removal of atherogeniclipoproteins(Chylomicron remnants, VLDL) and other proatherogenic ligands from the circulation.[24][25]LRP1 has a cholesterol-independent role in atherosclerosis by modulating the activity and cellular localization of thePDGFR-βin vascularsmooth muscle cells.[26][27]Finally, LRP1 inmacrophageshas an effect on atherosclerosis through the modulation of the extracellular matrix and inflammatory responses.[28][29]

Cancer

edit

LRP1 is involved in tumorigenesis, and is proposed to be a tumor suppressor. Notably, LRP1 functions in clearing proteases such asplasmin,urokinase-type plasminogen activator,andmetalloproteinases,which contributes to prevention ofcancer invasion,while its absence is linked to increased cancer invasion. However, the exact mechanisms require further study, as other studies have shown that LRP1 may also promote cancer invasion. One possible mechanism for the inhibitory function of LRP1 in cancer involves the LRP1-dependent endocytosis of 2′-hydroxycinnamaldehyde (HCA), resulting in decreasedpepsinlevels and, consequently, tumor progression.[9]Alternatively, LRP1 may regulatefocal adhesiondisassembly of cancer cells through theERKandJNKpathways to aid invasion.[8]Moreover, LRP1 interacts withPAI-1to recruitmast cells(MCs) and induce theirdegranulation,resulting in the release of MC mediators, activation of an inflammatory response, and development ofglioma.[10]

Interactions

edit

LRP1 has been shown tointeractwith:

Interactive pathway map

edit

Click on genes, proteins and metabolites below to link to respective articles.[§ 1]

[[File:
go to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to article
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
go to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to article
|alt=Statin pathwayedit]]
Statin pathwayedit
  1. ^The interactive pathway map can be edited at WikiPathways:"Statin_Pathway_WP430".

See also

edit

References

edit
  1. ^abcGRCh38: Ensembl release 89: ENSG00000123384Ensembl,May 2017
  2. ^abcGRCm38: Ensembl release 89: ENSMUSG00000040249Ensembl,May 2017
  3. ^"Human PubMed Reference:".National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^"Mouse PubMed Reference:".National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^Herz J, Hamann U, Rogne S, Myklebost O, Gausepohl H, Stanley KK (Dec 1988)."Surface location and high affinity for calcium of a 500-kd liver membrane protein closely related to the LDL-receptor suggest a physiological role as lipoprotein receptor".The EMBO Journal.7(13): 4119–27.doi:10.1002/j.1460-2075.1988.tb03306.x.PMC455121.PMID3266596.
  6. ^Myklebost O, Arheden K, Rogne S, Geurts van Kessel A, Mandahl N, Herz J, et al. (Jul 1989). "The gene for the human putative apoE receptor is on chromosome 12 in the segment q13-14".Genomics.5(1): 65–9.doi:10.1016/0888-7543(89)90087-6.PMID2548950.
  7. ^ab"Entrez Gene: LRP1 low density lipoprotein receptor-related protein 1".
  8. ^abcdefghijklmnopqrstEtique N, Verzeaux L, Dedieu S, Emonard H (2013)."LRP-1: a checkpoint for the extracellular matrix proteolysis".BioMed Research International.2013:152163.doi:10.1155/2013/152163.PMC3723059.PMID23936774.
  9. ^abcdefghijklmnopqrstuvwxyzaaabacadaeafagahaiajakalamanaoapaqarasatauavawaxayazLillis AP, Mikhailenko I, Strickland DK (Aug 2005)."Beyond endocytosis: LRP function in cell migration, proliferation and vascular permeability".Journal of Thrombosis and Haemostasis.3(8): 1884–93.doi:10.1111/j.1538-7836.2005.01371.x.PMID16102056.S2CID20991690.
  10. ^abcdefRoy A, Coum A, Marinescu VD, Põlajeva J, Smits A, Nelander S, et al. (Jun 2015)."Glioma-derived plasminogen activator inhibitor-1 (PAI-1) regulates the recruitment of LRP1 positive mast cells".Oncotarget.6(27): 23647–61.doi:10.18632/oncotarget.4640.PMC4695142.PMID26164207.
  11. ^abcdeKang HS, Kim J, Lee HJ, Kwon BM, Lee DK, Hong SH (Aug 2014). "LRP1-dependent pepsin clearance induced by 2'-hydroxycinnamaldehyde attenuates breast cancer cell invasion".The International Journal of Biochemistry & Cell Biology.53:15–23.doi:10.1016/j.biocel.2014.04.021.PMID24796846.
  12. ^Shackleton B, Crawford F, Bachmeier C (August 2016)."Inhibition of ADAM10 promotes the clearance of Aβ across the BBB by reducing LRP1 ectodomain shedding".Fluids and Barriers of the CNS.13(1): 14.doi:10.1186/s12987-016-0038-x.PMC4977753.PMID27503326.
  13. ^abSelvais C, D'Auria L, Tyteca D, Perrot G, Lemoine P, Troeberg L, et al. (August 2011)."Cell cholesterol modulates metalloproteinase-dependent shedding of low-density lipoprotein receptor-related protein-1 (LRP-1) and clearance function".FASEB Journal.25(8): 2770–2781.doi:10.1096/fj.10-169508.PMC3470721.PMID21518850.
  14. ^Liu Q, Zhang J, Tran H, Verbeek MM, Reiss K, Estus S, et al. (April 2009)."LRP1 shedding in human brain: roles of ADAM10 and ADAM17".Molecular Neurodegeneration.4:17.doi:10.1186/1750-1326-4-17.PMC2672942.PMID19371428.
  15. ^Hu K, Lin L, Tan X, Yang J, Bu G, Mars WM, et al. (March 2008)."tPA protects renal interstitial fibroblasts and myofibroblasts from apoptosis".Journal of the American Society of Nephrology.19(3): 503–514.doi:10.1681/ASN.2007030300.PMC2391054.PMID18199803.
  16. ^Liu Q, Zerbinatti CV, Zhang J, Hoe HS, Wang B, Cole SL, et al. (Oct 2007)."Amyloid precursor protein regulates brain apolipoprotein E and cholesterol metabolism through lipoprotein receptor LRP1".Neuron.56(1): 66–78.doi:10.1016/j.neuron.2007.08.008.PMC2045076.PMID17920016.
  17. ^Deane R, Bell RD, Sagare A, Zlokovic BV (March 2009)."Clearance of amyloid-beta peptide across the blood-brain barrier: implication for therapies in Alzheimer's disease".CNS & Neurological Disorders Drug Targets.8(1): 16–30.doi:10.2174/187152709787601867.PMC2872930.PMID19275634.
  18. ^Storck SE, Meister S, Nahrath J, Meißner JN, Schubert N, Di Spiezio A, et al. (January 2016)."Endothelial LRP1 transports amyloid-β(1-42) across the blood-brain barrier".The Journal of Clinical Investigation.126(1): 123–136.doi:10.1172/JCI81108.PMC4701557.PMID26619118.
  19. ^Kang DE, Pietrzik CU, Baum L, Chevallier N, Merriam DE, Kounnas MZ, et al. (November 2000)."Modulation of amyloid beta-protein clearance and Alzheimer's disease susceptibility by the LDL receptor-related protein pathway".The Journal of Clinical Investigation.106(9): 1159–1166.doi:10.1172/JCI11013.PMC301422.PMID11067868.
  20. ^Shibata M, Yamada S, Kumar SR, Calero M, Bading J, Frangione B, et al. (December 2000)."Clearance of Alzheimer's amyloid-ss(1-40) peptide from brain by LDL receptor-related protein-1 at the blood-brain barrier".The Journal of Clinical Investigation.106(12): 1489–1499.doi:10.1172/JCI10498.PMC387254.PMID11120756.
  21. ^Bachmeier C, Paris D, Beaulieu-Abdelahad D, Mouzon B, Mullan M, Crawford F (2013-01-01). "A multifaceted role for apoE in the clearance of beta-amyloid across the blood-brain barrier".Neuro-Degenerative Diseases.11(1): 13–21.doi:10.1159/000337231.PMID22572854.S2CID30189180.
  22. ^Bachmeier C, Shackleton B, Ojo J, Paris D, Mullan M, Crawford F (December 2014)."Apolipoprotein E isoform-specific effects on lipoprotein receptor processing".Neuromolecular Medicine.16(4): 686–696.doi:10.1007/s12017-014-8318-6.PMC4280344.PMID25015123.
  23. ^Singh I, Sagare AP, Coma M, Perlmutter D, Gelein R, Bell RD, et al. (Sep 2013)."Low levels of copper disrupt brain amyloid-β homeostasis by altering its production and clearance".Proceedings of the National Academy of Sciences of the United States of America.110(36): 14771–6.Bibcode:2013PNAS..11014771S.doi:10.1073/pnas.1302212110.PMC3767519.PMID23959870.
  24. ^Gordts PL, Reekmans S, Lauwers A, Van Dongen A, Verbeek L, Roebroek AJ (Sep 2009)."Inactivation of the LRP1 intracellular NPxYxxL motif in LDLR-deficient mice enhances postprandial dyslipidemia and atherosclerosis".Arteriosclerosis, Thrombosis, and Vascular Biology.29(9): 1258–64.doi:10.1161/ATVBAHA.109.192211.PMID19667105.
  25. ^Rohlmann A, Gotthardt M, Hammer RE, Herz J (Feb 1998)."Inducible inactivation of hepatic LRP gene by cre-mediated recombination confirms role of LRP in clearance of chylomicron remnants".The Journal of Clinical Investigation.101(3): 689–95.doi:10.1172/JCI1240.PMC508614.PMID9449704.
  26. ^Boucher P, Gotthardt M, Li WP, Anderson RG, Herz J (Apr 2003). "LRP: role in vascular wall integrity and protection from atherosclerosis".Science.300(5617): 329–32.Bibcode:2003Sci...300..329B.doi:10.1126/science.1082095.PMID12690199.S2CID2070128.
  27. ^Boucher P, Li WP, Matz RL, Takayama Y, Auwerx J, Anderson RG, et al. (2007)."LRP1 functions as an atheroprotective integrator of TGFbeta and PDFG signals in the vascular wall: implications for Marfan syndrome".PLOS ONE.2(5): e448.Bibcode:2007PLoSO...2..448B.doi:10.1371/journal.pone.0000448.PMC1864997.PMID17505534.
  28. ^Yancey PG, Ding Y, Fan D, Blakemore JL, Zhang Y, Ding L, et al. (Jul 2011)."Low-density lipoprotein receptor-related protein 1 prevents early atherosclerosis by limiting lesional apoptosis and inflammatory Ly-6Chigh monocytosis: evidence that the effects are not apolipoprotein E dependent".Circulation.124(4): 454–64.doi:10.1161/CIRCULATIONAHA.111.032268.PMC3144781.PMID21730304.
  29. ^Overton CD, Yancey PG, Major AS, Linton MF, Fazio S (Mar 2007)."Deletion of macrophage LDL receptor-related protein increases atherogenesis in the mouse".Circulation Research.100(5): 670–7.doi:10.1161/01.RES.0000260204.40510.aa.PMID17303763.
  30. ^Trommsdorff M, Borg JP, Margolis B, Herz J (Dec 1998)."Interaction of cytosolic adaptor proteins with neuronal apolipoprotein E receptors and the amyloid precursor protein".The Journal of Biological Chemistry.273(50): 33556–60.doi:10.1074/jbc.273.50.33556.PMID9837937.
  31. ^Poswa M (Mar 1977). "[Team growth by acquiring an apprentice]".Quintessenz Journal.7(3): 21–3.PMID277965.
  32. ^Kowal RC, Herz J, Goldstein JL, Esser V, Brown MS (Aug 1989)."Low density lipoprotein receptor-related protein mediates uptake of cholesteryl esters derived from apoprotein E-enriched lipoproteins".Proceedings of the National Academy of Sciences of the United States of America.86(15): 5810–4.Bibcode:1989PNAS...86.5810K.doi:10.1073/pnas.86.15.5810.PMC297720.PMID2762297.
  33. ^Orr AW, Pedraza CE, Pallero MA, Elzie CA, Goicoechea S, Strickland DK, et al. (Jun 2003)."Low density lipoprotein receptor-related protein is a calreticulin coreceptor that signals focal adhesion disassembly".The Journal of Cell Biology.161(6): 1179–89.doi:10.1083/jcb.200302069.PMC2172996.PMID12821648.
  34. ^abcdefgGotthardt M, Trommsdorff M, Nevitt MF, Shelton J, Richardson JA, Stockinger W, et al. (Aug 2000)."Interactions of the low density lipoprotein receptor gene family with cytosolic adaptor and scaffold proteins suggest diverse biological functions in cellular communication and signal transduction".The Journal of Biological Chemistry.275(33): 25616–24.doi:10.1074/jbc.M000955200.PMID10827173.
  35. ^Basu S, Binder RJ, Ramalingam T, Srivastava PK (Mar 2001)."CD91 is a common receptor for heat shock proteins gp96, hsp90, hsp70, and calreticulin".Immunity.14(3): 303–13.doi:10.1016/s1074-7613(01)00111-x.PMID11290339.
  36. ^Williams SE, Inoue I, Tran H, Fry GL, Pladet MW, Iverius PH, et al. (Mar 1994)."The carboxyl-terminal domain of lipoprotein lipase binds to the low density lipoprotein receptor-related protein/ Alpha 2-macroglobulin receptor (LRP) and mediates binding of normal very low density lipoproteins to LRP".The Journal of Biological Chemistry.269(12): 8653–8.doi:10.1016/S0021-9258(17)37017-5.PMID7510694.
  37. ^Nykjaer A, Nielsen M, Lookene A, Meyer N, Røigaard H, Etzerodt M, et al. (Dec 1994)."A carboxyl-terminal fragment of lipoprotein lipase binds to the low density lipoprotein receptor-related protein and inhibits lipase-mediated uptake of lipoprotein in cells".The Journal of Biological Chemistry.269(50): 31747–55.doi:10.1016/S0021-9258(18)31759-9.PMID7989348.
  38. ^Chappell DA, Fry GL, Waknitz MA, Iverius PH, Williams SE, Strickland DK (Dec 1992)."The low density lipoprotein receptor-related protein/ Alpha 2-macroglobulin receptor binds and mediates catabolism of bovine milk lipoprotein lipase".The Journal of Biological Chemistry.267(36): 25764–7.doi:10.1016/S0021-9258(18)35675-8.PMID1281473.
  39. ^Barnes H, Ackermann EJ, van der Geer P (Jun 2003)."v-Src induces Shc binding to tyrosine 63 in the cytoplasmic domain of the LDL receptor-related protein 1".Oncogene.22(23): 3589–97.doi:10.1038/sj.onc.1206504.PMID12789267.
  40. ^Loukinova E, Ranganathan S, Kuznetsov S, Gorlatova N, Migliorini MM, Loukinov D, et al. (May 2002)."Platelet-derived growth factor (PDGF)-induced tyrosine phosphorylation of the low density lipoprotein receptor-related protein (LRP). Evidence for integrated co-receptor function between LRP and the PDGF".The Journal of Biological Chemistry.277(18): 15499–506.doi:10.1074/jbc.M200427200.PMID11854294.
  41. ^Wang S, Herndon ME, Ranganathan S, Godyna S, Lawler J, Argraves WS, et al. (Mar 2004). "Internalization but not binding of thrombospondin-1 to low density lipoprotein receptor-related protein-1 requires heparan sulfate proteoglycans".Journal of Cellular Biochemistry.91(4): 766–76.doi:10.1002/jcb.10781.PMID14991768.S2CID12198474.
  42. ^Mikhailenko I, Krylov D, Argraves KM, Roberts DD, Liau G, Strickland DK (Mar 1997)."Cellular internalization and degradation of thrombospondin-1 is mediated by the amino-terminal heparin binding domain (HBD). High affinity interaction of dimeric HBD with the low density lipoprotein receptor-related protein".The Journal of Biological Chemistry.272(10): 6784–91.doi:10.1074/jbc.272.10.6784.PMID9045712.
  43. ^Godyna S, Liau G, Popa I, Stefansson S, Argraves WS (Jun 1995)."Identification of the low density lipoprotein receptor-related protein (LRP) as an endocytic receptor for thrombospondin-1".The Journal of Cell Biology.129(5): 1403–10.doi:10.1083/jcb.129.5.1403.PMC2120467.PMID7775583.
  44. ^Zhuo M, Holtzman DM, Li Y, Osaka H, DeMaro J, Jacquin M, et al. (Jan 2000)."Role of tissue plasminogen activator receptor LRP in hippocampal long-term potentiation".The Journal of Neuroscience.20(2): 542–9.doi:10.1523/JNEUROSCI.20-02-00542.2000.PMC6772406.PMID10632583.
  45. ^Orth K, Madison EL, Gething MJ, Sambrook JF, Herz J (Aug 1992)."Complexes of tissue-type plasminogen activator and its serpin inhibitor plasminogen-activator inhibitor type 1 are internalized by means of the low density lipoprotein receptor-related protein/ Alpha 2-macroglobulin receptor".Proceedings of the National Academy of Sciences of the United States of America.89(16): 7422–6.Bibcode:1992PNAS...89.7422O.doi:10.1073/pnas.89.16.7422.PMC49722.PMID1502153.
  46. ^Czekay RP, Kuemmel TA, Orlando RA, Farquhar MG (May 2001)."Direct binding of occupied urokinase receptor (uPAR) to LDL receptor-related protein is required for endocytosis of uPAR and regulation of cell surface urokinase activity".Molecular Biology of the Cell.12(5): 1467–79.doi:10.1091/mbc.12.5.1467.PMC34598.PMID11359936.

Further reading

edit
edit