TheLeblanc processwas an earlyindustrial processfor makingsoda ash(sodium carbonate) used throughout the 19th century, named after its inventor,Nicolas Leblanc.It involved two stages: makingsodium sulfatefromsodium chloride,followed by reacting the sodium sulfate withcoalandcalcium carbonateto make sodium carbonate. The process gradually became obsolete after the development of theSolvay process.

Leblanc process
Process typeChemical
Industrial sector(s)Chlor-alkali industry
Feedstocksodium chloride,sulfuric acid,coal,calcium carbonate
Product(s)soda ash,hydrochloric acid,calcium sulfide,carbon dioxide
InventorNicolas Leblanc
Year of invention1791
Developer(s)William Losh,James Muspratt,Charles Tennant

Background

edit

Soda ash(sodium carbonate) andpotash(potassium carbonate), collectively termedalkali,are vital chemicals in theglass,textile,soap,andpaperindustries. The traditional source of alkali in western Europe had been potash obtained fromwoodashes. However, by the 13th century,deforestationhad rendered this means of production uneconomical, and alkali had to be imported. Potash was imported from North America, Scandinavia, and Russia, where large forests still stood. Soda ash was imported from Spain and the Canary Islands, where it was produced from the ashes ofglasswortplants (calledbarillaashes in Spain), or imported from Syria.[1]The soda ash from glasswort plant ashes was mainly a mixture of sodium carbonate and potassium carbonate. In addition in Egypt, naturally occurring sodium carbonate, the mineralnatron,was mined from dry lakebeds. In Britain, the only local source of alkali was fromkelp,which washed ashore in Scotland and Ireland.[2][3]

In 1783, KingLouis XVI of Franceand theFrench Academy of Sciencesoffered a prize of 2400livresfor a method to produce alkali from sea salt (sodium chloride). In 1791,Nicolas Leblanc,physician toLouis Philip II, Duke of Orléans,patented a solution. That same year he built the first Leblanc plant for the Duke atSaint-Denis,and this began to produce 320tonsof soda per year.[4]He was denied his prize money because of theFrench Revolution.[5]

For more recent history, seeindustrial historybelow.

Chemistry

edit
Reaction scheme of the Leblanc process (green = reactants, black = intermediates, red = products)

In the first step, sodium chloride is treated withsulfuric acidin theMannheim process.This reaction producessodium sulfate(called thesalt cake) andhydrogen chloride:

2 NaCl + H2SO4→ Na2SO4+ 2 HCl

Thischemical reactionhad been discovered in 1772 by theSwedishchemistCarl Wilhelm Scheele.Leblanc's contribution was the second step, in which a mixture of the salt cake and crushedlimestone(calcium carbonate) was reduced by heating withcoal.[6]This conversion entails two parts. First is thecarbothermic reactionwhereby the coal, a source ofcarbon,reducesthesulfatetosulfide:

Na2SO4+ 2 C → Na2S + 2 CO2

In the second stage, is the reaction to producesodium carbonateandcalcium sulfide.This mixture is calledblack ash.[citation needed]

Na2S + CaCO3→ Na2CO3+ CaS

The soda ash is extracted from the black ash with water. Evaporation of this extract yields solid sodium carbonate. This extraction process was termed lixiviation.[citation needed]

In response to theAlkali Act,the noxious calcium sulfide was converted into calcium carbonate:

CaS(s) + CO2(g) + H2O(l) → CaCO3(s) + H2S(g)

Thehydrogen sulfidecan be used as a sulfur source for thelead chamber processto produce thesulfuric acidused in the first step of the Leblanc process.

Likewise, by 1874 theDeacon processwas invented, oxidizing the hydrochloric acid over a copper catalyst:

4 HCl(g) + O_2(g) → H2O(g) + Cl2(g)

The chlorine would be sold for bleach in paper and textile manufacturing. Eventually, the chlorine sales became the purpose of the Leblanc process. The inexpensive chlorine was a contributor to the development of the [chloralkali] process.[citation needed]

Process detail

edit

The sodium chloride is initially mixed with concentrated sulfuric acid and the mixture exposed to low heat. The hydrogen chloride gas bubbles off and was discarded to atmosphere before gas absorption towers were introduced. This continues until all that is left is a fused mass. This mass still contains enough chloride to contaminate the later stages of the process. The mass is then exposed to direct flame, which evaporates nearly all of the remaining chloride.[7][8]

The coal used in the next step must be low in nitrogen to avoid the formation ofcyanide.The calcium carbonate, in the form of limestone or chalk, should be low in magnesia and silica. The weight ratio of the charge is 2:2:1 of salt cake, calcium carbonate, and carbon respectively. It is fired in areverberatory furnaceat about 1000 °C.[9]Sometimes the reverberatory furnace rotated and thus was called a "revolver".[10]

The black-ash product of firing must belixiviatedright away to prevent oxidation of sulfides back to sulfate.[9]In the lixiviation process, the black-ash is completely covered in water, again to prevent oxidation. To optimize the leaching of soluble material, the lixiviation is done in cascaded stages. That is, pure water is used on the black-ash that has already been through prior stages. The liquor from that stage is used to leach an earlier stage of the black-ash, and so on.[9]

The final liquor is treated by blowingcarbon dioxidethrough it. This precipitates dissolved calcium and other impurities. It also volatilizes the sulfide, which is carried off as H2S gas. Any residual sulfide can be subsequently precipitated by addingzinc hydroxide.The liquor is separated from the precipitate and evaporated using waste heat from the reverberatory furnace. The resulting ash is then redissolved into concentrated solution in hot water. Solids that fail to dissolve are separated. The solution is then cooled to recrystallize nearly pure sodium carbonate decahydrate.[9]

Industrial history

edit

Leblanc established the first Leblanc process plant in 1791 inSt. Denis.However,French Revolutionariesseized the plant, along with the rest of Louis Philip's estate, in 1794, and publicized Leblanc'strade secrets.Napoleon Ireturned the plant to Leblanc in 1801, but lacking the funds to repair it and compete against other soda works that had been established in the meantime, Leblanc committedsuicidein 1806.[5]

By the early 19th century, French soda ash producers were making 10,000 - 15,000 tons annually. However, it was in Britain that the Leblanc process became most widely practiced.[5]The first British soda works using the Leblanc process was built bythe Losh family of iron foundersat theLosh, Wilson and Bellworks in Walker on theRiver Tynein 1816, but steep Britishtariffson salt production hindered the economics of the Leblanc process and kept such operations on a small scale until 1824. Following the repeal of the salt tariff, the British soda industry grew dramatically. TheBonnington Chemical Workswas possibly the earliest production,[11]and the chemical works established byJames MusprattinLiverpoolandFlint,and byCharles TennantnearGlasgowbecame some of the largest in the world. Muspratt's Liverpool works enjoyed proximity and transport links to the Cheshire salt mines, the St Helens coalfields and the North Wales and Derbyshire limestone quarries.[12]By 1852, annual soda production had reached 140,000 tons in Britain and 45,000 tons in France.[5]By the 1870s, the British soda output of 200,000 tons annually exceeded that of all other nations in the world combined.[citation needed]

Obsolescence

edit

In 1861, theBelgianchemistErnest Solvaydeveloped a more direct process for producing soda ash from salt and limestone through the use ofammonia.The only waste product of thisSolvay processwascalcium chloride,and so it was both more economical and less polluting than the Leblanc method. From the late 1870s, Solvay-based soda works on theEuropeancontinent provided stiff competition in their home markets to the Leblanc-based British soda industry. Additionally theBrunner MondSolvay plant which opened in 1874 atWinningtonnearNorthwichprovided fierce competition nationally. Leblanc producers were unable to compete with Solvay soda ash, and their soda ash production was effectively an adjunct to their still profitable production of chlorine, bleaching powder etc. (The unwanted by-products had become the profitable products). The development of electrolytic methods ofchlorineproduction removed that source of profits as well, and there followed a decline moderated only by "gentlemen's' agreements" with Solvay producers.[13]By 1900, 90% of the world's soda production was through the Solvay method, or on the North American continent, through the mining oftrona,discovered in 1938, which caused the closure of the last North American Solvay plant in 1986.

The last Leblanc-based soda ash plant in the West closed in the early 1920s,[3]but when during WWII Nationalist China had to evacuate its industry to the inland rural areas, the difficulties in importing and maintaining complex equipment forced them to temporarily re-establish the Leblanc process.[14]

However, the Solvay process does not work for the manufacture ofpotassium carbonate,because it relies on the low solubility of the correspondingbicarbonate.Thus, the Leblanc process continued in limited use for K2CO3manufacture until much later.[citation needed]

Pollution issues

edit

The Leblanc process plants were quite damaging to the local environment. The process of generating salt cake from salt and sulfuric acid releasedhydrochloric acid gas,and because this acid was industrially useless in the early 19th century, it was simply vented into the atmosphere. Also, an insoluble smelly solid waste was produced. For every 8 tons of soda ash, the process produced 5.5 tons ofhydrogen chlorideand 7 tons of calcium sulfide waste. This solid waste (known as galligu) had no economic value, and was piled in heaps and spread on fields near the soda works, where it weathered to releasehydrogen sulfide,the toxic gas responsible for the odor of rotten eggs.[citation needed]

Because of their noxious emissions, Leblanc soda works became targets of lawsuits and legislation. An 1839 suit against soda works alleged, "the gas from these manufactories is of such a deleterious nature as to blight everything within its influence, and is alike baneful to health and property. The herbage of the fields in their vicinity is scorched, the gardens neither yield fruit nor vegetables; many flourishing trees have lately become rotten naked sticks. Cattle and poultry droop and pine away. It tarnishes the furniture in our houses, and when we are exposed to it, which is of frequent occurrence, we are afflicted with coughs and pains in the head... all of which we attribute to the Alkali works."[15]

In 1863, the British Parliament passed theAlkali Act 1863,the first of severalAlkali Acts,the first modernair pollutionlegislation. This act allowed that no more than 5% of the hydrochloric acid produced by alkali plants could be vented to the atmosphere. To comply with the legislation, soda works passed the escaping hydrogen chloride gas up through a tower packed withcharcoal,where it was absorbed by water flowing in the other direction. The chemical works usually dumped the resultinghydrochloric acidsolution into nearby bodies of water, killingfishand other aquatic life.[citation needed]

The Leblanc process also meant very unpleasant working conditions for the operators. It originally required careful operation and frequent operator interventions (some involving heavy manual labour) into processes giving off hot noxious chemicals.[16] Sometimes, workmen cleaning the reaction products out of the reverberatory furnace wore cloth mouth-and-nosegagsto keep dust andaerosolsout of the lungs.[17][18]

This improved somewhat later as processes were more heavily mechanised to improve economics and uniformity of product.[citation needed]

By the 1880s, methods for converting the hydrochloric acid tochlorinegas for the manufacture ofbleachingpowder and for reclaiming the sulfur in the calcium sulfide waste had been discovered, but the Leblanc process remained more wasteful and more polluting than theSolvay process.The same is true when it is compared with the later electrolytical processes which eventually replaced it for chlorine production.[citation needed]

Biodiversity

edit

There is a strong case for arguing that Leblanc process waste is the most endangered habitat in the UK, since the waste weathers down tocalcium carbonateand produces a haven for plants that thrive in lime-rich soils, known ascalcicoles.Only four such sites have survived the new millennium; three are protected as local nature reserves of which the largest, atNob EndnearBolton,is anSSSIandLocal Nature Reserve- largely for its sparse orchid-calcicole flora, most unusual in an area with acid soils. This alkaline island contains within it an acid island, where acid boiler slag was deposited, which now shows up as a zone dominated by heather,Calluna vulgaris.[19]

References

edit
  1. ^Ashtor, Eliyahu; Cevidalli, Guidobaldo (1983). "Levantine Alkali Ashes and European Industries".Journal of European Economic History.12:475–522.
  2. ^ Clow, Archibald and Clow, Nan L. (1952).Chemical Revolution,(Ayer Co Pub, June 1952), pp. 65–90.ISBN0-8369-1909-2.
  3. ^abKiefer, David M. (2002)."It was all about alkali".Today's Chemist at Work.11(1). American Chemical Society: 45–6.Retrieved22 April2007.
  4. ^Aftalion, Fred (1991).A History of the International Chemical Industry.Philadelphia: University of Pennsylvania Press. pp. 11–13.ISBN978-0-8122-1297-6.
  5. ^abcdAftalion, Fred (1991).A History of the International Chemical Industry.Philadelphia: University of Pennsylvania Press. pp. 14–16.ISBN978-0-8122-1297-6.
  6. ^Christian Thieme (2000). "Sodium Carbonates".Ullmann's Encyclopedia of Industrial Chemistry.Weinheim: Wiley-VCH.doi:10.1002/14356007.a24_299.ISBN978-3527306732.
  7. ^"Hydrochloric Acid and Sodium Sulphate".Lenntech.Retrieved22 April2007.
  8. ^Chisholm, Hugh,ed. (1911)."Alkali Manufacture".Encyclopædia Britannica.Vol. 1 (11th ed.). Cambridge University Press. pp. 674–685.
  9. ^abcd"The Soda Industries".Lenntech.Retrieved22 April2007.
  10. ^Museum, Victoria and Albert (1908).Catalogue of the mechanical engineering collection in the Science Division of the Victoria and Albert Museum, South Kensington, with descriptive and historical notes.Vol. 2. H.M.S.O. p. 107.OCLC608086021.
  11. ^Ronalds, B.F. (2019). "Bonnington Chemical Works (1822-1878): Pioneer Coal Tar Company".International Journal for the History of Engineering & Technology.89(1–2): 73–91.doi:10.1080/17581206.2020.1787807.S2CID221115202.
  12. ^Peter Reed, Acid Rain and the Rise of the Environmental Chemist in Nineteenth Century Britain, (2014), p. 94
  13. ^Reader W JImperial Chemical Industries; A History Volume 1 The Forerunners 1870-1926Oxford University Press 1970 SBN 19 215937 2
  14. ^Reardon-Anderson, James (1991).The Study of Change: Chemistry in China, 1840-1949.Cambridge University Press.ISBN978-0-521-53325-6.
  15. ^Newcastle upon Tyne (England). Town Council (1840).Newcastle Council Reports.pp. 2–.
  16. ^Russell. Colin Archibald, Chemistry, society and environment: a new history of the British chemical industry, Royal Society of Chemistry, 2000.ISBN0-85404-599-6
  17. ^Described, and called a "gag", in a recorded commentary inthe Catalyst chemical industry museumin Runcorn (Cheshire, England), to keep alkali dust out of workers' lungs in the early years of thechemical industryin Britain.
  18. ^Beeby, Ann (September 2017)."What did our Ancestors do?"(PDF).Dig This! The Newsletter of 3D Archaeological Society.p. 7. Archived fromthe original(PDF)on 2019-04-17.Retrieved2022-08-11.
  19. ^Shaw, PJA & Halton W. (1998). Classic sites: Nob End, Bolton.British Wildlife10, 13-17.
edit

See also

edit