Multiplication table

(Redirected fromMultiplication tables)

Inmathematics,amultiplication table(sometimes, less formally, atimes table) is amathematical tableused to define amultiplicationoperationfor an algebraic system.

Multiplication table from 1 to 10 drawn to scale with the upper-right half labeled with prime factorisations

Thedecimalmultiplication table was traditionally taught as an essential part of elementary arithmetic around the world, as it lays the foundation for arithmetic operations with base-ten numbers. Many educators believe it is necessary to memorize the table up to 9 × 9.[1]

History

edit

Pre-modern times

edit
TheTsinghua Bamboo Slips,ChineseWarring Statesera decimal multiplication table of 305 BC

The oldest known multiplication tables were used by theBabyloniansabout 4000 years ago.[2]However, they used a base of 60.[2]The oldest known tables using a base of 10 are theChinesedecimal multiplication table on bamboo stripsdating to about 305 BC, during China'sWarring Statesperiod.[2]

"Table of Pythagoras" onNapier's bones[3]

The multiplication table is sometimes attributed to the ancient Greek mathematicianPythagoras(570–495 BC). It is also called the Table of Pythagoras in many languages (for example French, Italian and Russian), sometimes in English.[4]TheGreco-RomanmathematicianNichomachus(60–120 AD), a follower ofNeopythagoreanism,included a multiplication table in hisIntroduction to Arithmetic,whereas the oldest survivingGreekmultiplication table is on a wax tablet dated to the 1st century AD and currently housed in theBritish Museum.[5]

In 493 AD,Victorius of Aquitainewrote a 98-column multiplication table which gave (inRoman numerals) the product of every number from 2 to 50 times and the rows were "a list of numbers starting with one thousand, descending by hundreds to one hundred, then descending by tens to ten, then by ones to one, and then the fractions down to 1/144."[6]

Modern times

edit

In his 1820 bookThe Philosophy of Arithmetic,[7]mathematicianJohn Lesliepublished a multiplication table up to 1000 × 1000, which allows numbers to be multiplied in triplets of digits at a time. Leslie also recommended that young pupils memorize the multiplication table up to 50 × 50.

The illustration below shows a table up to 12 × 12, which is a size commonly used nowadays in English-world schools.

× 1 2 3 4 5 6 7 8 9 10 11 12
1 1 2 3 4 5 6 7 8 9 10 11 12
2 2 4 6 8 10 12 14 16 18 20 22 24
3 3 6 9 12 15 18 21 24 27 30 33 36
4 4 8 12 16 20 24 28 32 36 40 44 48
5 5 10 15 20 25 30 35 40 45 50 55 60
6 6 12 18 24 30 36 42 48 54 60 66 72
7 7 14 21 28 35 42 49 56 63 70 77 84
8 8 16 24 32 40 48 56 64 72 80 88 96
9 9 18 27 36 45 54 63 72 81 90 99 108
10 10 20 30 40 50 60 70 80 90 100 110 120
11 11 22 33 44 55 66 77 88 99 110 121 132
12 12 24 36 48 60 72 84 96 108 120 132 144

Because multiplication of integers iscommutative,many schools use a smaller table as below. Some schools even remove the first column since 1 is themultiplicative identity.[citation needed]

1 1
2 2 4
3 3 6 9
4 4 8 12 16
5 5 10 15 20 25
6 6 12 18 24 30 36
7 7 14 21 28 35 42 49
8 8 16 24 32 40 48 56 64
9 9 18 27 36 45 54 63 72 81
× 1 2 3 4 5 6 7 8 9

The traditionalrote learningof multiplication was based on memorization of columns in the table, arranged as follows.

0 × 0 = 0
1 × 0 = 0
2 × 0 = 0
3 × 0 = 0
4 × 0 = 0
5 × 0 = 0
6 × 0 = 0
7 × 0 = 0
8 × 0 = 0
9 × 0 = 0
10 × 0 = 0
11 × 0 = 0
12 × 0 = 0

0 × 1 = 0
1 × 1 = 1
2 × 1 = 2
3 × 1 = 3
4 × 1 = 4
5 × 1 = 5
6 × 1 = 6
7 × 1 = 7
8 × 1 = 8
9 × 1 = 9
10 × 1 = 10
11 × 1 = 11
12 × 1 = 12

0 × 2 = 0
1 × 2 = 2
2 × 2 = 4
3 × 2 = 6
4 × 2 = 8
5 × 2 = 10
6 × 2 = 12
7 × 2 = 14
8 × 2 = 16
9 × 2 = 18
10 × 2 = 20
11 × 2 = 22
12 × 2 = 24

0 × 3 = 0
1 × 3 = 3
2 × 3 = 6
3 × 3 = 9
4 × 3 = 12
5 × 3 = 15
6 × 3 = 18
7 × 3 = 21
8 × 3 = 24
9 × 3 = 27
10 × 3 = 30
11 × 3 = 33
12 × 3 = 36

0 × 4 = 0
1 × 4 = 4
2 × 4 = 8
3 × 4 = 12
4 × 4 = 16
5 × 4 = 20
6 × 4 = 24
7 × 4 = 28
8 × 4 = 32
9 × 4 = 36
10 × 4 = 40
11 × 4 = 44
12 × 4 = 48

0 × 5 = 0
1 × 5 = 5
2 × 5 = 10
3 × 5 = 15
4 × 5 = 20
5 × 5 = 25
6 × 5 = 30
7 × 5 = 35
8 × 5 = 40
9 × 5 = 45
10 × 5 = 50
11 × 5 = 55
12 × 5 = 60

0 × 6 = 0
1 × 6 = 6
2 × 6 = 12
3 × 6 = 18
4 × 6 = 24
5 × 6 = 30
6 × 6 = 36
7 × 6 = 42
8 × 6 = 48
9 × 6 = 54
10 × 6 = 60
11 × 6 = 66
12 × 6 = 72

0 × 7 = 0
1 × 7 = 7
2 × 7 = 14
3 × 7 = 21
4 × 7 = 28
5 × 7 = 35
6 × 7 = 42
7 × 7 = 49
8 × 7 = 56
9 × 7 = 63
10 × 7 = 70
11 × 7 = 77
12 × 7 = 84

0 × 8 = 0
1 × 8 = 8
2 × 8 = 16
3 × 8 = 24
4 × 8 = 32
5 × 8 = 40
6 × 8 = 48
7 × 8 = 56
8 × 8 = 64
9 × 8 = 72
10 × 8 = 80
11 × 8 = 88
12 × 8 = 96

0 × 9 = 0
1 × 9 = 9
2 × 9 = 18
3 × 9 = 27
4 × 9 = 36
5 × 9 = 45
6 × 9 = 54
7 × 9 = 63
8 × 9 = 72
9 × 9 = 81
10 × 9 = 90
11 × 9 = 99
12 × 9 = 108

0 × 10 = 0
1 × 10 = 10
2 × 10 = 20
3 × 10 = 30
4 × 10 = 40
5 × 10 = 50
6 × 10 = 60
7 × 10 = 70
8 × 10 = 80
9 × 10 = 90
10 × 10 = 100
11 × 10 = 110
12 × 10 = 120

0 × 11 = 0
1 × 11 = 11
2 × 11 = 22
3 × 11 = 33
4 × 11 = 44
5 × 11 = 55
6 × 11 = 66
7 × 11 = 77
8 × 11 = 88
9 × 11 = 99
10 × 11 = 110
11 × 11 = 121
12 × 11 = 132

0 × 12 = 0
1 × 12 = 12
2 × 12 = 24
3 × 12 = 36
4 × 12 = 48
5 × 12 = 60
6 × 12 = 72
7 × 12 = 84
8 × 12 = 96
9 × 12 = 108
10 × 12 = 120
11 × 12 = 132
12 × 12 = 144

This form of writing the multiplication table in columns with complete number sentences is still used in some countries, such as Bosnia and Herzegovina,[citation needed]instead of the modern grids above.

Patterns in the tables

edit

There is a pattern in the multiplication table that can help people to memorize the table more easily. It uses the figures below:

1 2 3 2 4
4 5 6
7 8 9 6 8
0 5 0
Figure 1: Odd Figure 2: Even
Cycles of the unit digit of multiples of integers ending in 1, 3, 7 and 9 (upper row), and 2, 4, 6 and 8 (lower row) on atelephone keypad

Figure 1 is used for multiples of 1, 3, 7, and 9. Figure 2 is used for the multiples of 2, 4, 6, and 8. These patterns can be used to memorize the multiples of any number from 0 to 10, except 5. As you would start on the number you are multiplying, when you multiply by 0, you stay on 0 (0 is external and so the arrows have no effect on 0, otherwise 0 is used as a link to create a perpetual cycle). The pattern also works with multiples of 10, by starting at 1 and simply adding 0, giving you 10, then just apply every number in the pattern to the "tens" unit as you would normally do as usual to the "ones" unit.

For example, to recall all the multiples of 7:

  1. Look at the 7 in the first picture and follow the arrow.
  2. The next number in the direction of the arrow is 4. So think of the next number after 7 that ends with 4, which is 14.
  3. The next number in the direction of the arrow is 1. So think of the next number after 14 that ends with 1, which is 21.
  4. After coming to the top of this column, start with the bottom of the next column, and travel in the same direction. The number is 8. So think of the next number after 21 that ends with 8, which is 28.
  5. Proceed in the same way until the last number, 3, corresponding to 63.
  6. Next, use the 0 at the bottom. It corresponds to 70.
  7. Then, start again with the 7. This time it will correspond to 77.
  8. Continue like this.

In abstract algebra

edit

Tables can also define binary operations ongroups,fields,rings,and otheralgebraic systems.In such contexts they are calledCayley tables.

For every natural numbern,addition and multiplication inZn,the ring of integers modulon,is described by annbyntable. (SeeModular arithmetic.) For example, the tables forZ5are:

For other examples, seegroup.

Hypercomplex numbers

edit

Hypercomplex numbermultiplication tables show the non-commutativeresults of multiplying two hypercomplex imaginary units. The simplest example is that of thequaternionmultiplication table.

Quaternion multiplication table
↓ × → 1 i j k
1 1 i j k
i i −1 k j
j j k −1 i
k k j i −1

For further examples, seeOctonion § Multiplication,Sedenion § Multiplication,andTrigintaduonion § Multiplication.

Chinese and Japanese multiplication tables

edit

Mokkandiscovered atHeijō Palacesuggest that the multiplication table may have been introduced to Japan through Chinese mathematical treatises such as theSunzi Suanjing,because their expression of the multiplication table share the characterNhưin products less than ten.[8]Chinese and Japanese share a similar system of eighty-one short, easily memorable sentences taught to students to help them learn the multiplication table up to 9 × 9. In current usage, the sentences that express products less than ten include an additional particle in both languages. In the case of modern Chinese, this isĐến(); and in Japanese, this is(ga). This is useful for those who practice calculation with asuanpanor asoroban,because the sentences remind them to shift one column to the right when inputting a product that does not begin with atens digit.In particular, the Japanese multiplication table uses non-standard pronunciations for numbers in some specific instances (such as the replacement ofsan rokuwithsaburoku).

The Japanese multiplication table
× 1ichi 2ni 3san 4shi 5go 6roku 7shichi 8ha 9ku
1in in'ichi ga ichi inni ga ni insan ga san inshi ga shi ingo ga go inroku ga roku inshichi ga shichi inhachi ga hachi inku ga ku
2ni ni ichi ga ni ni nin ga shi ni san ga roku ni shi ga hachi ni go jū ni roku jūni ni shichi jūshi ni hachi jūroku ni ku jūhachi
3san san ichi ga san san ni ga roku sazan ga ku san shi jūni san go jūgo saburoku jūhachi san shichi nijūichi sanpa nijūshi san ku nijūshichi
4shi shi ichi ga shi shi ni ga hachi shi san jūni shi shi jūroku shi go nijū shi roku nijūshi shi shichi nijūhachi shi ha sanjūni shi ku sanjūroku
5go go ichi ga go go ni jū go san jūgo go shi nijū go go nijūgo go roku sanjū go shichi sanjūgo go ha shijū gokku shijūgo
6roku roku ichi ga roku roku ni jūni roku san jūhachi roku shi nijūshi roku go sanjū roku roku sanjūroku roku shichi shijūni roku ha shijūhachi rokku gojūshi
7shichi shichi ichi ga shichi shichi ni jūshi shichi san nijūichi shichi shi nijūhachi shichi go sanjūgo shichi roku shijūni shichi shichi shijūku shichi ha gojūroku shichi ku rokujūsan
8hachi hachi ichi ga hachi hachi ni jūroku hachi san nijūshi hachi shi sanjūni hachi go shijū hachi roku shijūhachi hachi shichi gojūroku happa rokujūshi hakku shichijūni
9ku ku ichi ga ku ku ni jūhachi ku san nijūshichi ku shi sanjūroku ku go shijūgo ku roku gojūshi ku shichi rokujūsan ku ha shichijūni ku ku hachijūichi

Warring States decimal multiplication bamboo slips

edit

A bundle of 21 bamboo slips dated 305 BC in theWarring Statesperiod in theTsinghua Bamboo Slips( Thanh Hoa giản ) collection is the world's earliest known example of a decimal multiplication table.[9]

A modern representation of the Warring States decimal multiplication table used to calculate 12 × 34.5

Standards-based mathematics reform in the US

edit

In 1989, theNational Council of Teachers of Mathematics(NCTM) developed new standards which were based on the belief that all students should learn higher-order thinking skills, which recommended reduced emphasis on the teaching of traditional methods that relied on rote memorization, such as multiplication tables. Widely adopted texts such asInvestigations in Numbers, Data, and Space(widely known asTERCafter its producer, Technical Education Research Centers) omitted aids such as multiplication tables in early editions. NCTM made it clear in their 2006Focal Pointsthat basic mathematics facts must be learned, though there is no consensus on whether rote memorization is the best method. In recent years, a number of nontraditional methods have been devised to help children learn multiplication facts, including video-game style apps and books that aim to teach times tables through character-based stories.

See also

edit
  • Vedic square
  • IBM 1620,an early computer that used tables stored in memory to perform addition and multiplication

References

edit
  1. ^Trivett, John (1980), "The Multiplication Table: To Be Memorized or Mastered!",For the Learning of Mathematics,1(1): 21–25,JSTOR40247697.
  2. ^abcQiu, Jane(January 7, 2014)."Ancient times table hidden in Chinese bamboo strips".Nature News.doi:10.1038/nature.2014.14482.S2CID130132289.
  3. ^Wikisource:Page:Popular Science Monthly Volume 26.djvu/467
  4. ^for example inAn Elementary Treatise on ArithmeticbyJohn Farrar
  5. ^David E. Smith (1958),History of Mathematics, Volume I: General Survey of the History of Elementary Mathematics.New York: Dover Publications (a reprint of the 1951 publication),ISBN0-486-20429-4,pp. 58, 129.
  6. ^David W. Maher and John F. Makowski. "Literary evidence for Roman arithmetic with fractions".Classical Philology,96/4 (October 2001), p. 383.
  7. ^Leslie, John (1820).The Philosophy of Arithmetic; Exhibiting a Progressive View of the Theory and Practice of Calculation, with Tables for the Multiplication of Numbers as Far as One Thousand.Edinburgh: Abernethy & Walker.
  8. ^"“Cửu cửu” は Trung Quốc vân tới... Bình thành cung tích から mộc trốn tránh thổ ".Yomiuri Shimbun. December 4, 2010. Archived fromthe originalon December 7, 2010.
  9. ^NaturearticleThe 2,300-year-old matrix is the world's oldest decimal multiplication table