Naproxen,sold under the brand nameAleveamong others, is anonsteroidal anti-inflammatory drug(NSAID) used to treat pain,menstrual cramps,andinflammatory diseasessuch asrheumatoid arthritis,goutandfever.[8]It istaken orally.[8]It is available in immediate anddelayed releaseformulations.[8]Onset of effects is within an hour and lasts for up to twelve hours.[8]Naproxen is also available insalt form,naproxen sodium,which has bettersolubilitywhen taken orally.[9]

Naproxen
Clinical data
Pronunciation/nəˈprɒksən/
Trade namesAleve, Naprosyn, others[1][2]
AHFS/DrugsMonograph
MedlinePlusa681029
License data
Pregnancy
category
Routes of
administration
By mouth
ATC code
Legal status
Legal status
  • AU:S2(Pharmacy medicine) when in preparations that contain no more than 15 days' supply. Otherwise it is Schedule 4 (Prescription only).[5]
  • CA:OTC
  • UK:POM(Prescription only) / P[6]
  • US:WARNING[4]OTC / Rx-only
Pharmacokineticdata
Bioavailability95% (by mouth)
Protein binding99%
MetabolismLiver(to 6-desmethylnaproxen)
Eliminationhalf-life12–17 hours (adults)[7]
ExcretionKidney
Identifiers
  • (+)-(S)-2-(6-Methoxynaphthalen-2-yl)propanoic acid
CAS Number
PubChemCID
DrugBank
ChemSpider
UNII
KEGG
ChEBI
ChEMBL
PDB ligand
CompTox Dashboard(EPA)
ECHA InfoCard100.040.747Edit this at Wikidata
Chemical and physical data
FormulaC14H14O3
Molar mass230.263g·mol−1
3D model (JSmol)
Melting point152–154 °C (306–309 °F)
  • COc1cc2ccc(cc2cc1)[C@H](C)C(=O)O
  • InChI=1S/C14H14O3/c1-9(14(15)16)10-3-4-12-8-13(17-2)6-5-11(12)7-10/h3-9H,1-2H3,(H,15,16)/t9-/m0/s1checkY
  • Key:CMWTZPSULFXXJA-VIFPVBQESA-NcheckY
(verify)

Common side effects includedizziness,headache,bruising,allergic reactions,heartburn,and stomach pain.[8]Severe side effects include an increased risk ofheart disease,stroke,gastrointestinal bleeding,andstomach ulcers.[8]The heart disease risk may be lower than with other NSAIDs.[8]It is not recommended in people withkidney problems.[8]Use is not recommended in thethird trimester of pregnancy.[8]

Naproxen is a nonselectiveCOXinhibitor.[8]As an NSAID, naproxen appears to exert its anti-inflammatory action by reducing the production of inflammatory mediators calledprostaglandins.[10]It is metabolized by the liver to inactive metabolites.[8]

Naproxen was patented in 1967, and approved for medical use in the United States in 1976.[11][8][12]In the United States it is availableover the counterand as ageneric medication.[8][13]In 2022, it was the 88th most commonly prescribed medication in the United States, with more than 7million prescriptions.[14][15]

Medical uses

edit

Naproxen's medical uses are related to its mechanism of action as an anti-inflammatory compound.[11]Naproxen is used to treat a variety of inflammatory conditions and symptoms that are due to excessiveinflammation,such aspainandfever(naproxen has fever-reducing, orantipyretic,properties in addition to its anti-inflammatory activity).[11]Naproxen's anti-inflammatory properties may relieve pain caused by inflammatory conditions such asmigraine,osteoarthritis,kidney stones,rheumatoid arthritis,psoriatic arthritis,gout,ankylosing spondylitis,menstrual cramps,tendinitis,andbursitis.[1]

Naproxen sodium is used as a "bridge therapy" inmedication-overuse headacheto slowly take patients off other medications.[16]

Available formulations

edit

Naproxen sodium is available as both an immediate release and as an extended release tablet. The extended release formulations (sometimes called "sustained release", or "enteric coated" ) take longer to take effect than the immediate release formulations, and therefore are less useful when immediate pain relief is desired. Extended release formulations are more useful for the treatment of chronic, or long-lasting, conditions, in which long-term pain relief is desirable.[17]

Pregnancy and lactation

edit

As with all non-steroidal anti-inflammatory medications (NSAIDs), naproxen use should be avoided in pregnancy due to the importance of prostaglandins in vascular and renal function in the fetus. NSAIDs should especially be avoided in the third trimester. Small amounts of naproxen are excreted in breast milk.[1]However, adverse effects are uncommon in infants breastfed from a mother taking naproxen.[18]

Adverse effects

edit

Common adverse effects include dizziness, drowsiness, headache, rash, bruising, and gastrointestinal upset.[11][1]Heavy use is associated with increased risk of end-stage renal disease and kidney failure.[11][19]Naproxen may causemuscle crampsin the legs in 3% of people.[20]

In October 2020, the U.S.Food and Drug Administration(FDA) required thedrug labelto be updated for all nonsteroidal anti-inflammatory medications to describe the risk of kidney problems in unborn babies that result in low amniotic fluid.[21][22]They recommend avoiding NSAIDs in pregnant women at 20 weeks or later in pregnancy.[21][22]

Gastrointestinal

edit

As with other non-COX-2selective NSAIDs, naproxen can causegastrointestinal problems,such as heartburn, constipation, diarrhea, ulcers and stomach bleeding.[23]Naproxen should be taken orally with, or just after food, to decrease the risk ofgastrointestinalside effects.[24]Persons with a history ofulcersorinflammatory bowel diseaseshould consult a doctor before taking naproxen.[24]In U.S. markets, naproxen is sold withboxed warningsabout the risk of gastrointestinal ulceration or bleeding.[1]Naproxen poses an intermediate risk of stomach ulcers compared withibuprofen,which is low-risk, andindometacin,which is high-risk.[25]To reduce stomach ulceration risk, it is often combined with aproton-pump inhibitor(a medication that reducesstomach acidproduction) during long-term treatment of those with pre-existing stomach ulcers or a history of developing stomach ulcers while on NSAIDs.[26][27]

Cardiovascular

edit

COX-2selective and nonselectiveNSAIDshave been linked to increases in the number of serious and potentially fatal cardiovascular events, such asmyocardial infarctionsandstrokes.[28]Naproxen is, however, associated with the smallest overall cardiovascular risks.[29][30]Cardiovascular risk must be considered when prescribing any nonsteroidal anti-inflammatory drug. The drug had roughly 50% of the associated risk of stroke compared withibuprofen,and was also associated with a reduced number of myocardial infarctions compared withcontrol groups.[29]

A study found that high-dose naproxen induced near-complete suppression of plateletthromboxanethroughout the dosing interval and appeared not to increasecardiovascular disease(CVD) risk, whereas other non-aspirin high-dose NSAID regimens had only transient effects on plateletCOX-1and were associated with a small but definite vascular hazard. Conversely, naproxen was associated with higher rates of upper gastrointestinal bleeding complications compared with other NSAIDs.[30]

Interactions

edit

Drug–drug interactions

edit

Naproxen mayinteractwithantidepressants,lithium,methotrexate,probenecid,warfarinand otherblood thinners,heart or blood pressure medications, includingdiuretics,or steroid medicines such asprednisone.[1]

NSAIDs such as naproxen may interfere with and reduce the efficacy ofSSRIantidepressants,[31]as well as increase the risk of bleeding greater than the individual bleeding risk of either class of agent, when taken together.[32]Naproxen is not contraindicated in the presence of SSRIs, though concomitant use of the medications should be done with caution.[32]Alcoholconsumption increases the risk ofgastrointestinal bleedingwhen combined with NSAIDs like naproxen in adose-dependentmanner (that is, the higher the dose of naproxen, the higher the risk of bleeding).[33]The risk is highest for people who are heavy drinkers.[33]

Pharmacology

edit

Mechanism of action

edit

Naproxen works byreversibly inhibitingboth theCOX-1andCOX-2enzymesas a non-selectivecoxib.[34][35][36][37][38]

Pharmacokinetics

edit

Naproxen is a minor substrate ofCYP1A2andCYP2C9.It is extensively metabolized in the liver to 6-O-desmethylnaproxen, and both the parent drug and the desmethyl metabolite undergo further metabolism to their respective acylglucuronide conjugated metabolites.[39]An analysis of twoclinical trialsshows that naproxen's time topeak plasma concentrationoccurs between 2 and 4 hours after oral administration, though naproxen sodium reaches peak plasma concentrations within 1–2 hours.[7][clarification needed]

Pharmacogenetics

edit

Thepharmacogeneticsof naproxen has been studied in an effort to better understand its adverse effects.[40]In 1998, a smallpharmacokinetic(PK) study failed to show that differences in a patient's ability toclearnaproxen from the body could account for differences in a patient's risk of experiencing the adverse effect of a serious gastrointestinal bleed while taking naproxen.[40]However, the study failed to account for differences in the activity ofCYP2C9,a drug-metabolizing enzyme that is necessary for clearing naproxen.[40]Studies on the relationship between CYP2C9genotypeand NSAID-induced gastrointestinal bleeds have shown that genetic variants in CYP2C9 that reduce the clearance of major CYP2C9 substrates (like naproxen) increase the risk of NSAID-induced gastrointestinal bleeds, especially forhomozygousdefective variants.[40]

Chemistry

edit

Naproxen is a member of the2-arylpropionic acid(profen) family of NSAIDs.[41]The free acid is an odorless, white to off-white crystalline substance.[citation needed]Naproxen free base islipid-soluble and practically insoluble in water, while naproxen sodium and many other salts are freely soluble in water, often soluble in methanol, and sparingly soluble in alcohol; check the specific solubility of each salt before use. Naproxen has amelting pointof 152–155°C,while naproxen salts tend to have higher melting points.[citation needed]

Synthesis

edit

Naproxen has been industrially produced bySyntexstarting from2-naphtholas follows:[42]

"Pope-Peach" should read "Pope-Peachey"

Society and culture

edit

Brand names

edit

Naproxen and naproxen sodium are marketed under variousbrand names,including Accord, Aleve, Anaprox, Antalgin, Apranax, Feminax Ultra, Flanax, Inza, Maxidol, Nalgesin, Naposin, Naprelan, Naprogesic, Naprosyn, Narocin, Pronaxen, Proxen, and Soproxen.[2]It is also available as the combinationnaproxen/esomeprazole magnesiumin delayed release tablets under the brand name Vimovo.[2][43]

Access restrictions

edit

Syntexfirst marketed naproxen in 1976, as theprescription drugNaprosyn. They first marketed naproxen sodium under the brand name Anaprox in 1980. It remains a prescription-only drug in much of the world.[citation needed]In the United States, theFood and Drug Administration(FDA) approved it as anover-the-counter (OTC) drugin 1994. OTC preparations of naproxen in the U.S. are mainly marketed byBayer HealthCareunder the brand name Aleve and genericstore brandformulations in 220mg tablets.[44]In Australia, packets of 275mg tablets of naproxen sodium areSchedule 2 pharmacy medicines,with a maximum daily dose of five tablets or 1375mg. In the United Kingdom, 250mg tablets of naproxen were approved for OTC sale under the brand name Feminax Ultra in 2008, for the treatment of primarydysmenorrhoeain women aged 15 to 50.[45]In the Netherlands, 220mg and 275mg tablets are available OTC in drugstores, 550mg is OTC only at pharmacies. Aleve became available over the counter in some provinces in Canada[46]on 14 July 2009, but notBritish Columbia,QuebecorNewfoundland and Labrador;[47]it subsequently became available OTC in British Columbia in January 2010.[48]

Toxicology scandal

edit

Naproxen was one of the four substances named in the prosecution ofIndustrial Bio-Test Laboratories(IBT) for fraudulent toxicology testing.[49]Naproxen passed subsequent legitimate toxicology testing.[citation needed]

Ecological effects

edit

Naproxen has been found in groundwater and drinking water in concentrations high enough to have adverse effects on invertebrates including fungi, algae, bacteria and fishes.[50]Naproxen is not thoroughly removed by conventional water treatment methods,[51]and its degradation pathways in the environment are limited.[52][53]Some methods more successfully remove naproxen from wastewater, includingmetal-organic complexesandporous carbon.[54]Although the levels are generally low enough to not be acutely toxic, sub-lethal effects may still occur,[55]such as reduced photosynthetic ability.[56]

Research

edit

Naproxen may have antiviral activity againstinfluenza.In laboratory research, it blocks the RNA-binding groove of the nucleoprotein of the virus, preventing formation of the ribonucleoprotein complex—thus taking the viral nucleoproteins out of circulation.[57]

Veterinary use

edit

Horses

edit

Naproxen is given by mouth to horses at a dose of 10mg/kg, and has shown to have a wide safety margin (no toxicity when given at three times the recommended dose for 42 days).[58]It is more effective formyositisthan the commonly used NSAIDphenylbutazone,and has shown especially good results for treatment ofequine exertional rhabdomyolysis,[59]a disease of muscle breakdown; it is less commonly used formusculoskeletal disease.[medical citation needed]

References

edit
  1. ^abcdef"Naproxen".Drugs. 2017.Retrieved7 February2017.
  2. ^abc"Naproxen international".Drugs.7 December 2020.Retrieved3 January2021.
  3. ^"Naproxen Use During Pregnancy".Drugs.13 August 2019.Retrieved27 December2019.
  4. ^"FDA-sourced list of all drugs with black box warnings (Use Download Full Results and View Query links.)".nctr-crs.fda.gov.FDA.Retrieved22 October2023.
  5. ^Gill, A, ed. (July 2013).Standard for the Uniform Scheduling of Medicines and Poisons No. 4(PDF).Therapeutic Goods Administration.ISBN978-1-74241-895-7.
  6. ^"Boots Period Pain Relief 250 mg Gastro-Resistant Tablets - Summary of Product Characteristics (SmPC)".(emc).4 February 2013.Retrieved12 February2023.
  7. ^abAngiolillo DJ,Weisman SM (April 2017)."Clinical Pharmacology and Cardiovascular Safety of Naproxen".American Journal of Cardiovascular Drugs.17(2): 97–107.doi:10.1007/s40256-016-0200-5.PMC5340840.PMID27826802.
  8. ^abcdefghijklm"Naproxen Monograph for Professionals".Drugs.AHFS.Retrieved19 December2018.
  9. ^Derry C, Derry S, Moore RA, McQuay HJ (January 2009)."Single dose oral naproxen and naproxen sodium for acute postoperative pain in adults".The Cochrane Database of Systematic Reviews.2009(1): CD004234.doi:10.1002/14651858.CD004234.pub3.PMC6483469.PMID19160232.
  10. ^McEvoy GK (2000).AHFS Drug Information, 2000.American Society of Health-System Pharmacists. p. 1854.ISBN9781585280049.
  11. ^abcde"Naprosyn- naproxen tablet EC-Naprosyn- naproxen tablet, delayed release Anaprox DS- naproxen sodium tablet".DailyMed.1 July 2019.Retrieved27 December2019.
  12. ^Fischer J, Ganellin CR (2006).Analogue-based Drug Discovery.John Wiley & Sons. p. 520.ISBN9783527607495.
  13. ^"Medicines A to Z - Naproxen".NHS.National Health Service. 24 October 2018.Retrieved11 March2020.
  14. ^"The Top 300 of 2022".ClinCalc.Archivedfrom the original on 30 August 2024.Retrieved30 August2024.
  15. ^"Naproxen Drug Usage Statistics, United States, 2013 - 2022".ClinCalc.Retrieved30 August2024.
  16. ^Garza I, Schwedt TJ (April 2010)."Diagnosis and management of chronic daily headache".Seminars in Neurology.30(2). WebMD LLC: 154–166.doi:10.1055/s-0030-1249224.PMID20352585.
  17. ^ab"L490 (Naproxen 220 mg)".drugs.Retrieved17 May2017.
  18. ^"LACTMED: NAPROXEN".TOXNET.NIH.Retrieved21 July2017.
  19. ^Perneger TV, Whelton PK, Klag MJ (December 1994)."Risk of kidney failure associated with the use of acetaminophen, aspirin, and nonsteroidal antiinflammatory drugs".The New England Journal of Medicine.331(25): 1675–1679.doi:10.1056/nejm199412223312502.PMID7969358.
  20. ^Allen RE, Kirby KA (August 2012). "Nocturnal leg cramps".American Family Physician.86(4): 350–355.PMID22963024.
  21. ^ab"FDA Warns that Using a Type of Pain and Fever Medication in Second Half of Pregnancy Could Lead to Complications".U.S.Food and Drug Administration(FDA)(Press release). 15 October 2020.Retrieved15 October2020.This article incorporates text from this source, which is in thepublic domain.
  22. ^ab"NSAIDs may cause rare kidney problems in unborn babies".U.S. Food and Drug Administration.21 July 2017.Retrieved15 October2020.This article incorporates text from this source, which is in thepublic domain.
  23. ^"Naproxen".PubMed Health.1 September 2008. Archived fromthe originalon 22 July 2010.
  24. ^ab"How to take it".NHS.Gov.20 January 2022.
  25. ^Richy F, Bruyere O, Ethgen O, Rabenda V, Bouvenot G, Audran M, et al. (July 2004)."Time dependent risk of gastrointestinal complications induced by non-steroidal anti-inflammatory drug use: a consensus statement using a meta-analytic approach".Annals of the Rheumatic Diseases.63(7): 759–766.doi:10.1136/ard.2003.015925.PMC1755051.PMID15194568.
  26. ^Rossi S, ed. (2013).Australian Medicines Handbook(2013 ed.). Adelaide: The Australian Medicines Handbook Unit Trust.ISBN978-0-9805790-9-3.
  27. ^Joint Formulary Committee (2013).British National Formulary (BNF)(65 ed.). London, UK: Pharmaceutical Press. pp.665, 673.ISBN978-0-85711-084-8.
  28. ^Nissen SE, Yeomans ND, Solomon DH, Lüscher TF, Libby P, Husni ME, et al. (December 2016)."Cardiovascular Safety of Celecoxib, Naproxen, or Ibuprofen for Arthritis".The New England Journal of Medicine.375(26): 2519–2529.doi:10.1056/NEJMoa1611593.PMID27959716.
  29. ^abTrelle S, Reichenbach S, Wandel S, Hildebrand P, Tschannen B, Villiger PM, et al. (January 2011)."Cardiovascular safety of non-steroidal anti-inflammatory drugs: network meta-analysis".BMJ.342:c7086.doi:10.1136/bmj.c7086.PMC3019238.PMID21224324.c7086.
  30. ^abBhala N, Emberson J, Merhi A, Abramson S, Arber N, Baron JA, et al. (August 2013)."Vascular and upper gastrointestinal effects of non-steroidal anti-inflammatory drugs: meta-analyses of individual participant data from randomised trials".Lancet.382(9894): 769–779.doi:10.1016/S0140-6736(13)60900-9.PMC3778977.PMID23726390.
  31. ^Warner-Schmidt JL, Vanover KE, Chen EY, Marshall JJ, Greengard P (May 2011)."Antidepressant effects of selective serotonin reuptake inhibitors (SSRIs) are attenuated by antiinflammatory drugs in mice and humans".Proceedings of the National Academy of Sciences of the United States of America.108(22): 9262–9267.Bibcode:2011PNAS..108.9262W.doi:10.1073/pnas.1104836108.PMC3107316.PMID21518864.
  32. ^abTurner MS, May DB, Arthur RR, Xiong GL (March 2007)."Clinical impact of selective serotonin reuptake inhibitors therapy with bleeding risks".Journal of Internal Medicine.261(3): 205–213.doi:10.1111/j.1365-2796.2006.01720.x.PMID17305643.S2CID41772614.
  33. ^abPfau PR, Lichenstein GR (November 1999)."NSAIDs and alcohol: never the twain shall mix?".The American Journal of Gastroenterology.94(11): 3098–3101.doi:10.1111/j.1572-0241.1999.03098.x.PMID10566697.S2CID41310743.
  34. ^Duggan KC, Walters MJ, Musee J, Harp JM, Kiefer JR, Oates JA, et al. (November 2010)."Molecular basis for cyclooxygenase inhibition by the non-steroidal anti-inflammatory drug naproxen".The Journal of Biological Chemistry.285(45): 34950–34959.doi:10.1074/jbc.M110.162982.PMC2966109.PMID20810665.
  35. ^Hinz B, Cheremina O, Besz D, Zlotnick S, Brune K (April 2008). "Impact of naproxen sodium at over-the-counter doses on cyclooxygenase isoforms in human volunteers".International Journal of Clinical Pharmacology and Therapeutics.46(4): 180–186.doi:10.5414/CPP46180.PMID18397691.
  36. ^Van Hecken A, Schwartz JI, Depré M, De Lepeleire I, Dallob A, Tanaka W, et al. (October 2000)."Comparative inhibitory activity of rofecoxib, meloxicam, diclofenac, ibuprofen, and naproxen on COX-2 versus COX-1 in healthy volunteers".Journal of Clinical Pharmacology.40(10): 1109–1120.doi:10.1177/009127000004001005.PMID11028250.S2CID24736336.Archived fromthe originalon 23 February 2020.Retrieved23 February2020.
  37. ^Gross GJ, Moore J (July 2004). "Effect of COX-1/COX-2 inhibition versus selective COX-2 inhibition on coronary vasodilator responses to arachidonic acid and acetylcholine".Pharmacology.71(3): 135–142.doi:10.1159/000077447.PMID15161995.S2CID34018223.
  38. ^Hawkey CJ (October 2001). "COX-1 and COX-2 inhibitors".Best Practice & Research. Clinical Gastroenterology.15(5): 801–820.doi:10.1053/bega.2001.0236.PMID11566042.
  39. ^Vree TB, van den Biggelaar-Martea M, Verwey-van Wissen CP, Vree JB, Guelen PJ (August 1993). "Pharmacokinetics of naproxen, its metabolite O-desmethylnaproxen, and their acyl glucuronides in humans".Biopharmaceutics & Drug Disposition.14(6): 491–502.doi:10.1002/bdd.2510140605.PMID8218967.S2CID35920001.
  40. ^abcdRodrigues AD (November 2005). "Impact of CYP2C9 genotype on pharmacokinetics: are all cyclooxygenase inhibitors the same?".Drug Metabolism and Disposition.33(11): 1567–1575.doi:10.1124/dmd.105.006452.PMID16118328.S2CID5754183.
  41. ^el Mouelhi M, Ruelius HW, Fenselau C, Dulik DM (1987). "Species-dependent enantioselective glucuronidation of three 2-arylpropionic acids. Naproxen, ibuprofen, and benoxaprofen".Drug Metabolism and Disposition.15(6): 767–772.PMID2893700.
  42. ^Harrington PJ, Lodewijk E (1997). "Twenty Years of Naproxen Technology".Org. Process Res. Dev.1(1): 72–76.doi:10.1021/op960009e.
  43. ^"Vimovo- naproxen and esomeprazole magnesium tablet, delayed release".DailyMed.2 August 2019.Retrieved27 December2019.
  44. ^"Aleve- naproxen sodium tablet".DailyMed.4 November 2019.Retrieved27 December2019.
  45. ^"Medicines regulator approves availability of a new OTC medicine for period pain"(Press release). Medicines and Healthcare products Regulatory Agency (MHRA). 1 April 2008. Archived fromthe original(PDF)on 21 September 2013.
  46. ^"Aleve products released in Canada".
  47. ^"Aleve – Welcome to Canada, Eh!"(PDF)(Press release). Bayer Health Care. 14 July 2009.Retrieved24 March2012.
  48. ^"Aleve – Helping British Columbians with Joint and Arthritis Pain Get Back to Doing the Activities They Love".newswire.ca.28 January 2010. Archived fromthe originalon 21 September 2013.Retrieved27 September2012.
  49. ^"Industry Documents Library".
  50. ^Wojcieszyńska D, Guzik U (March 2020)."Naproxen in the environment: its occurrence, toxicity to nontarget organisms and biodegradation".Applied Microbiology and Biotechnology.104(5): 1849–1857.doi:10.1007/s00253-019-10343-x.PMC7007908.PMID31925484.
  51. ^Rodríguez-Serin H, Gamez-Jara A, De La Cruz-Noriega M, Rojas-Flores S, Rodriguez-Yupanqui M, Gallozzo Cardenas M, et al. (October 2022)."Literature Review: Evaluation of Drug Removal Techniques in Municipal and Hospital Wastewater".International Journal of Environmental Research and Public Health.19(20): 13105.doi:10.3390/ijerph192013105.PMC9602914.PMID36293682.
  52. ^Moreno Ríos AL, Gutierrez-Suarez K, Carmona Z, Ramos CG, Silva Oliveira LF (March 2022). "Pharmaceuticals as emerging pollutants: Case naproxen an overview".Chemosphere.291(Pt 1): 132822.Bibcode:2022Chmsp.29132822M.doi:10.1016/j.chemosphere.2021.132822.hdl:11323/9007.PMID34767851.
  53. ^Mulkiewicz E, Wolecki D, Świacka K, Kumirska J, Stepnowski P, Caban M (October 2021). "Metabolism of non-steroidal anti-inflammatory drugs by non-target wild-living organisms".The Science of the Total Environment.791:148251.Bibcode:2021ScTEn.79148251M.doi:10.1016/j.scitotenv.2021.148251.PMID34139498.
  54. ^Huynh NC, Nguyen TT, Nguyen DT, Tran TV (November 2023). "Occurrence, toxicity, impact and removal of selected non-steroidal anti-inflammatory drugs (NSAIDs): A review".The Science of the Total Environment.898:165317.Bibcode:2023ScTEn.89865317H.doi:10.1016/j.scitotenv.2023.165317.PMID37419350.
  55. ^Parolini M (October 2020). "Toxicity of the Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) acetylsalicylic acid, paracetamol, diclofenac, ibuprofen and naproxen towards freshwater invertebrates: A review".The Science of the Total Environment.740:140043.Bibcode:2020ScTEn.74040043P.doi:10.1016/j.scitotenv.2020.140043.hdl:2434/747078.PMID32559537.
  56. ^Mojiri A, Zhou JL, Ratnaweera H, Rezania S, Nazari VM (February 2022). "Pharmaceuticals and personal care products in aquatic environments and their removal by algae-based systems".Chemosphere.288(Pt 2): 132580.Bibcode:2022Chmsp.28832580M.doi:10.1016/j.chemosphere.2021.132580.PMID34687686.
  57. ^Lejal N, Tarus B, Bouguyon E, Chenavas S, Bertho N, Delmas B, et al. (May 2013)."Structure-based discovery of the novel antiviral properties of naproxen against the nucleoprotein of influenza A virus".Antimicrobial Agents and Chemotherapy.57(5): 2231–2242.doi:10.1128/AAC.02335-12.PMC3632891.PMID23459490.
    Lay summary at:"Pain reliever shows anti-viral activity against flu".EurekAlert!.
  58. ^McIlwraith CW, Frisbie DD, Kawcak CE (2001). "Nonsteroidal Anti-Inflammatory Drugs".Proceedings of the Annual Convention of the American Association of Equine Practitioners.47:182–187.ISSN0065-7182.
  59. ^May SA, Lees P (1996). "Nonsteroidal anti-inflammatory drugs". In McIlwraith CW, Trotter GW (eds.).Joint disease in the horse.Philadelphia: WB Saunders. pp. 223–237.ISBN0-7216-5135-6.
edit