Photosymbiosisis a type ofsymbiosiswhere one of theorganismsis capable ofphotosynthesis.[1]
Examples of photosymbiotic relationships include those inlichens,plankton,ciliates,and manymarineorganisms includingcorals,fire corals,giant clams,andjellyfish.[2][3][4]
Photosymbiosis is important in the development, maintenance, andevolutionofterrestrialandaquaticecosystems,for example inbiological soil crusts,soil formation,supporting highly diverse microbial populations insoilandwater,andcoral reefgrowth and maintenance.[5][6]
When one organism lives within another symbiotically it’s calledendosymbiosis.Photosymbiotic relationships wheremicroalgaeand/orcyanobacterialive within aheterotrophichostorganism, are believed to have led toeukaryotesacquiring photosynthesis and to theevolutionofplants.[7][8]
Occurrence
editLichens
editLichensrepresent an association between one or morefungalmycobionts and one or more photosynthetic algal or cyanobacterial photobionts. The mycobiont provides protection from predation and desiccation, while the photobiont provides energy in the form of fixed carbon. Cyanobacterial partners are also capable offi xing nitrogenfor the fungal partner.[9]Recent work suggests that non-photosynthetic bacterialmicrobiomesassociated with lichens may also have functional significance to lichens.[10]
Most mycobiont partners derive from theascomycetes,and the largest class of lichenized fungi isLecanoromycetes.[11]The vast majority of lichens derive photobionts fromChlorophyta(green algae).[9]The co-evolutionary dynamics between mycobionts and photobionts are still unclear, as many photobionts are capable of free-living, and many lichenized fungi display traits adaptive to lichenization such as the capacity to withstand higher levels ofreactive oxygen species(ROS), the conversion of sugars topolypolsthat help withstand dedication, and the downregulation of fungalvirulence.However, it is still unclear whether these are derived or ancestral traits.[9]
Currently described photobiont species number about 100, far less than the 19,000 described species of fungal mycobionts, and factors such as geography can predominate over mycobiont preference.[12][13]Phylogenetic analyses in lichenized fungi have suggested that, throughout evolutionary history, there has been repeated loss of photosymbionts, switching of photosymbionts, and independent lichenization events in previously unrelated fungal taxa.[11][14]Loss of lichenization has likely led to the coexistence of non-lichenized fungi and lichenized fungi in lichens.[14]
Sponges
editSponges(phylum Porifera) have a large diversity of photosymbiote associations. Photosymbiosis is found in four classes of Porifera (Demospongiae,Hexactinellida,Homoscleromorpha,andCalcarea), and known photosynthetic partners are cyanobacteria,chloroflexi,dinoflagellates,and red (Rhodophyta) and green (Chlorophyta) algae. Relatively little is known about the evolutionary history of sponge photosymbiois due to a lack ofgenomicdata.[15]However, it has been shown that photosymbiotes are acquiredvertically(transmission from parent to offspring) and/orhorizontally(acquired from the environment).[16]Photosymbiotes can supply up to half of the host sponge’s respiratory demands and can support sponges during times of nutrient stress.[17]
Cnidaria
editMembers of certain classes in phylumCnidariaare known for photosymbiotic partnerships. Members of corals (ClassAnthozoa) in the ordersHexacoralliaandOctocoralliaform well-characterized partnerships with the dinoflagellate genusSymbiodinium.Some jellyfish (classScyphozoa) in the genusCassiopea(upside-down jellyfish) also possess Symbiodinium. Certain species in the genusHydra(classHydrozoa) also harbor green algae and form a stable photosymbiosis.[15]
The evolution of photosymbiosis in corals was likely critical for the global establishment ofcoral reefs.[18]Corals are likewise adapted to eject damaged photosymbionts that generate high levels of toxic reactive oxygen species, a process known asbleaching.[19]The identity of the Symbiodinium photosymbiont can change in corals, although this depends largely on the mode of transmission: some species vertically transmit their algal partners through their eggs,[20]while other species acquire environmental dinoflagellates as newly-released eggs.[21]Since algae are not preserved in the coral fossil record, understanding the evolutionary history of the symbiosis is difficult.[22]
Bilaterians
editIn basalbilaterians,photosymbiosis in marine or brackish systems is present only in the familyConvolutidae.[23]In the groupAcoelathere is limited knowledge on the symbionts present, and they have been vaguely identified aszoochlorellaorzooxanthella.[24][25]Some species have a symbiotic relationship with the chlorophyteTetraselmisconvolutae while others have a symbiotic relationship with the dinoflagellatesSymbiodinium,Amphidiniumklebsii, ordiatomsin the genus Licomorpha.[26][27][28][29][30][31][32][33]
In freshwater systems, photosymbiosis is present inplatyhelminthsbelonging to theRhabdocoelagroup.[34]In this group, members of theProvorticidae,Dalyeliidae,andTyphloplanidaefamilies are symbiotic.[35]Members of Provorticidae likely feed on diatoms and retain their symbionts.[36]Typhloplanidae have symbiotic relationships with the chlorophytes in the genusChlorella.[37]
Molluscs
editPhotosymbiosis is taxonomically restricted inMollusca.[38]Tropical marinebivalvesin theCardiidaefamily form a symbiotic relationship with the dinoflagellateSymbiodinium.[39]This family boasts large organisms often referred to asgiant clamsand their large size is attributed to the establishment of these symbiotic relationships. Additionally, the Symbiodinium are hosted extracellularly, which is relatively rare.[40]The only known freshwater bivalve with a symbiotic relationship are in the genusAnodontawhich hosts the chlorophyte Chlorella in the gills and mantle of the host.[41]In bivalves, photosymbiosis is thought to have evolved twice, in the genus Anodonta and in the family Cardiidae.[42]However, how it has evolved in Cardiidae could have occurred through different gains or losses in the family.[43]
Gastropods
editIngastropods,photosymbiosis can be found in several genera.
The speciesStrombus gigashostsSymbiodiniumwhich is acquired during the larval stage, at which point it is amutualisticrelationship.[44]However, during the adult stage, Symbiodinium becomesparasiticas the shell prevents photosynthesis.[45]
Another group of gastropods,heterobranchsea slugs, have two different systems for symbiosis. The first,Nudibranchia,acquire their symbionts through feeding oncnidarianprey that are in symbiotic relationships.[46]In Nudibranchs, photosymbiosis has evolved twice, inMelibeandAeolidida.[47]In Aeolidida it is likely there have been several gains and losses of photosymbiosis as most genera include both photosymbiotic and non-photosymbiotic species.[48]The second,Sacoglossa,removeschloroplastsfrom macroalgae when feeding and sequesters them into their digestive tract at which point they are calledkleptoplasts.[49]Whether these kleptoplasts maintain their photosynthetic capabilities depends on the host species ability to digest them properly.[50]In this group, functional kleptoplasy has been acquired twice, inCostasiellidaeandPlakobranchacea.[51]
Chordates
editPhotosymbiosis is relatively uncommon inchordatespecies.[52]One such example of photosymbiosis is inascidians,the sea squirts. In the genusDidemnidae,30 species establish symbiotic relationships.[53]The photosynthetic ascidians are associated withcyanobacteriain the genus ofProchloronas well as, in some cases, the speciesSynechocystistrididemni.[54]The 30 species with a symbiotic relationship span four genera where the congeners are primarily non-symbiotic, suggesting multiple origins of photosymbiosis in ascidians.[55]
In addition to sea squirts, embryos of someamphibianspecies (Ambystoma maculatum,Ambystoma gracile,Ambystoma jeffersonium,Ambystoma trigrinum,Hynobius nigrescens,Lithobates sylvaticus,and Lithobates aurora) form symbiotic relationships with thegreen algain the genus of Oophila.[56][57][58]This algae is present in the egg masses of the species, causing them to appear green and providing oxygen and carbohydrates to the embryos.[59]Similarly, little is known about the evolution of symbiosis in amphibians, but there appears to be multiple origins.
Protists
editPhotosymbiosis has evolved multiple times in the protist taxaCiliophora,Foraminifera,Radiolaria,Dinoflagellata,anddiatoms.[60]Foraminifera and Radiolaria areplanktonictaxa that serve asprimary producersin open ocean communities.[61]Photosynthetic plankton species associate with the symbiotes of dinoflagellates, diatoms,rhodophytes,chlorophytes,andcyanophytesthat can be transferred bothverticallyandhorizontally.[62]In Foraminifera,benthicspecies will either have a symbiotic relationship withSymbiodiniumor retain the chloroplasts present in algal prey species.[63]The planktonic species of Foraminifera associate primarily withPelagodinium.[64]These species are often considered indicator species due to their bleaching in response to environmental stressors.[65]In the Radiolarian groupAcantharia,photosynthetic species inhabit surface waters whereas non-photosynthetic species inhabit deeper waters. Photosynthetic Acantharia are associated with similar microalgae as the Foraminifera groups, but were also found to be associated withPhaeocystis,Heterocapsa,Scrippsiella, andAzadiniumwhich were not previously known to be involved in photosynthetic relationships.[66]In addition, several of the species present in symbiotic relationships with Acantharia were oftentimes identical to the free-living species, suggesting horizontal transfer of symbiotes.[67]This provides insight into the evolutionary patterns responsible for these symbiotic relationships, suggesting that the selection for symbiosis is relatively weak and symbiosis is likely a result of the adaptive capacity of the host plankton species.
References
edit- ^"photosymbiosis".Oxford Reference.
- ^Gault J, Bentlage B, Huang D, Kerr A (2021)."Lineage-specific variation in the evolutionary stability of coral photosymbiosis".Science Advances.7(39): eabh4243.Bibcode:2021SciA....7.4243G.doi:10.1126/sciadv.abh4243.PMC8457658.PMID34550731.
- ^Decelle, Johan (2013)."New perspectives on the functioning and evolution of photosymbiosis in plankton: Mutualism or parasitism?".Communicative & Integrative Biology.6(4): e24560.doi:10.4161/cib.24560.PMC3742057.PMID23986805.
- ^Enrique-Navarro A, Huertas E, Flander-Putrle V, Bartual A, Navarro G, Ruiz J, Malej A, Prieto L."Living Inside a Jellyfish: The Symbiosis Case Study of Host-Specialized Dinoflagellates," Zooxanthellae ", and the Scyphozoan Cotylorhiza tuberculata".Retrieved2023-06-18.
- ^Gault J, Bentlage B, Huang D, Kerr A (2021)."Lineage-specific variation in the evolutionary stability of coral photosymbiosis".Science Advances.7(39): eabh4243.Bibcode:2021SciA....7.4243G.doi:10.1126/sciadv.abh4243.PMC8457658.PMID34550731.
- ^Stanley Jr G, Lipps J (2011)."Photosymbiosis: The Driving Force for Reef Success and Failure".The Paleontological Society Papers.17:33–59.doi:10.1017/S1089332600002436.Retrieved2023-06-18.
- ^Decelle, Johan (2013)."New perspectives on the functioning and evolution of photosymbiosis in plankton: Mutualism or parasitism?".Communicative & Integrative Biology.6(4): e24560.doi:10.4161/cib.24560.PMC3742057.PMID23986805.
- ^Basic Biology (18 March 2016)."Bacteria".
- ^abcSpribille, Toby; Resl, Philipp; Stanton, Daniel E.; Tagirdzhanova, Gulnara (June 2022)."Evolutionary biology of lichen symbioses".New Phytologist.234(5):1566–1582.Bibcode:2022NewPh.234.1566S.doi:10.1111/nph.18048.ISSN0028-646X.PMID35302240.
- ^Grube, Martin; Cernava, Tomislav; Soh, Jung; Fuchs, Stephan; Aschenbrenner, Ines; Lassek, Christian; Wegner, Uwe; Becher, Dörte; Riedel, Katharina; Sensen, Christoph W; Berg, Gabriele (2015-02-01)."Exploring functional contexts of symbiotic sustain within lichen-associated bacteria by comparative omics".The ISME Journal.9(2):412–424.Bibcode:2015ISMEJ...9..412G.doi:10.1038/ismej.2014.138.ISSN1751-7362.PMC4303634.PMID25072413.
- ^abMiadlikowska, Jolanta; Kauff, Frank; Högnabba, Filip; Oliver, Jeffrey C.; Molnár, Katalin; Fraker, Emily; Gaya, Ester; Hafellner, Josef; Hofstetter, Valérie; Gueidan, Cécile; Otálora, Mónica A.G.; Hodkinson, Brendan; Kukwa, Martin; Lücking, Robert; Björk, Curtis (October 2014)."A multigene phylogenetic synthesis for the class Lecanoromycetes (Ascomycota): 1307 fungi representing 1139 infrageneric taxa, 317 genera and 66 families".Molecular Phylogenetics and Evolution.79:132–168.Bibcode:2014MolPE..79..132M.doi:10.1016/j.ympev.2014.04.003.hdl:11336/11976.PMC4185256.PMID24747130.
- ^Yahr, Rebecca; Vilgalys, Rytas; DePriest, Paula T. (September 2006)."Geographic variation in algal partners of Cladonia subtenuis (Cladoniaceae) highlights the dynamic nature of a lichen symbiosis".New Phytologist.171(4):847–860.Bibcode:2006NewPh.171..847Y.doi:10.1111/j.1469-8137.2006.01792.x.ISSN0028-646X.PMID16918555.
- ^Sanders, William B.; Masumoto, Hiroshi (September 2021)."Lichen algae: the photosynthetic partners in lichen symbioses".The Lichenologist.53(5):347–393.Bibcode:2021ThLic..53..347S.doi:10.1017/S0024282921000335.ISSN0024-2829.
- ^abNelsen, Matthew P.; Lücking, Robert; Boyce, C. Kevin; Lumbsch, H. Thorsten; Ree, Richard H. (September 2020)."The macroevolutionary dynamics of symbiotic and phenotypic diversification in lichens".Proceedings of the National Academy of Sciences.117(35):21495–21503.Bibcode:2020PNAS..11721495N.doi:10.1073/pnas.2001913117.ISSN0027-8424.PMC7474681.PMID32796103.
- ^abMelo Clavijo, Jenny; Donath, Alexander; Serôdio, João; Christa, Gregor (November 2018)."Polymorphic adaptations in metazoans to establish and maintain photosymbioses".Biological Reviews.93(4):2006–2020.doi:10.1111/brv.12430.ISSN1464-7931.PMID29808579.
- ^de Oliveira, Bruno Francesco Rodrigues; Freitas-Silva, Jéssyca; Sánchez-Robinet, Claudia; Laport, Marinella Silva (December 2020)."Transmission of the sponge microbiome: moving towards a unified model".Environmental Microbiology Reports.12(6):619–638.Bibcode:2020EnvMR..12..619D.doi:10.1111/1758-2229.12896.ISSN1758-2229.PMID33048474.
- ^Hudspith, Meggie; de Goeij, Jasper M; Streekstra, Mischa; Kornder, Niklas A; Bougoure, Jeremy; Guagliardo, Paul; Campana, Sara; van der Wel, Nicole N; Muyzer, Gerard; Rix, Laura (2022-06-02)."Harnessing solar power: photoautotrophy supplements the diet of a low-light dwelling sponge".The ISME Journal.16(9):2076–2086.Bibcode:2022ISMEJ..16.2076H.doi:10.1038/s41396-022-01254-3.ISSN1751-7362.PMC9381825.PMID35654830.
- ^Muscatine, Leonard; Goiran, Claire; Land, Lynton; Jaubert, Jean; Cuif, Jean-Pierre; Allemand, Denis (February 2005)."Stable isotopes (δ 13 C and δ 15 N) of organic matrix from coral skeleton".Proceedings of the National Academy of Sciences.102(5):1525–1530.doi:10.1073/pnas.0408921102.ISSN0027-8424.PMC547863.PMID15671164.
- ^Weis, Virginia M. (2008-10-01)."Cellular mechanisms of Cnidarian bleaching: stress causes the collapse of symbiosis".Journal of Experimental Biology.211(19):3059–3066.Bibcode:2008JExpB.211.3059W.doi:10.1242/jeb.009597.ISSN1477-9145.PMID18805804.
- ^Padilla-Gamiño, Jacqueline L.; Pochon, Xavier; Bird, Christopher; Concepcion, Gregory T.; Gates, Ruth D. (2012-06-06)."From Parent to Gamete: Vertical Transmission of Symbiodinium (Dinophyceae) ITS2 Sequence Assemblages in the Reef Building Coral Montipora capitata".PLOS ONE.7(6): e38440.Bibcode:2012PLoSO...738440P.doi:10.1371/journal.pone.0038440.ISSN1932-6203.PMC3368852.PMID22701642.
- ^van Oppen, Madeleine J. H.; Medina, Mónica (2020-09-28)."Coral evolutionary responses to microbial symbioses".Philosophical Transactions of the Royal Society B: Biological Sciences.375(1808): 20190591.doi:10.1098/rstb.2019.0591.ISSN0962-8436.PMC7435167.PMID32772672.
- ^Stanley, G. D.; van de Schootbrugge, B. (2009), van Oppen, Madeleine J. H.; Lough, Janice M. (eds.),"The Evolution of the Coral–Algal Symbiosis",Coral Bleaching,vol. 205, Berlin, Heidelberg: Springer Berlin Heidelberg, pp.7–19,doi:10.1007/978-3-540-69775-6_2,ISBN978-3-540-69774-9,retrieved2024-05-08
- ^Paps, J.; Baguna, J.; Riutort, M. (2009-07-14)."Bilaterian Phylogeny: A Broad Sampling of 13 Nuclear Genes Provides a New Lophotrochozoa Phylogeny and Supports a Paraphyletic Basal Acoelomorpha".Molecular Biology and Evolution.26(10):2397–2406.doi:10.1093/molbev/msp150.ISSN0737-4038.PMID19602542.
- ^SHANNON, THOMAS; ACHATZ, JOHANNES G. (2007-07-12)."Convolutriloba macropyga sp. nov., an uncommonly fecund acoel (Acoelomorpha) discovered in tropical aquaria".Zootaxa.1525(1).doi:10.11646/zootaxa.1525.1.1.ISSN1175-5334.
- ^Ax, P. (April 1970)."Neue Pogaina-Arten (Turbellaria, Dalyellioda) mit Zooxanthellen aus dem Mesopsammal der Nordsee- und Mittelmeerküste".Marine Biology.5(4):337–340.Bibcode:1970MarBi...5..337A.doi:10.1007/bf00346899.ISSN0025-3162.
- ^Gschwentner, Robert; Mueller, Johann; Ladurner, Peter; Rieger, Reinhard; Tyler, Seth (2003-02-12)."Unique patterns of longitudinal body-wall musculature in the Acoela (Plathelminthes): the ventral musculature of Convolutriloba longifissura".Zoomorphology.122(2):87–94.doi:10.1007/s00435-003-0074-3.ISSN0720-213X.
- ^Serôdio, João; Silva, Raquel; Ezequiel, João; Calado, Ricardo (2010-07-14)."Photobiology of the symbiotic acoel flatwormSymsagittifera roscoffensis:algal symbiont photoacclimation and host photobehaviour ".Journal of the Marine Biological Association of the United Kingdom.91(1):163–171.doi:10.1017/s0025315410001001.ISSN0025-3154.
- ^Taylor, D. L. (May 1971)."On the symbiosis betweenAmphidinium klebsii[Dinophyceae] andAmphiscolops langerhansi[Turbellaria: Acoela] ".Journal of the Marine Biological Association of the United Kingdom.51(2):301–313.Bibcode:1971JMBUK..51..301T.doi:10.1017/s0025315400031799.ISSN0025-3154.
- ^Lopes, Rubens Mendes; Silveira, Marina (July 1994)."Symbiosis between a pelagic flatworm and a dinoflagellate from a tropical area: structural observations".Hydrobiologia.287(3):277–284.Bibcode:1994HyBio.287..277L.doi:10.1007/bf00006376.ISSN0018-8158.
- ^Barneah, Orit; Brickner, Itzchak; Hooge, Matthew; Weis, Virginia M.; Benayahu, Yehuda (2007-08-14)."First evidence of maternal transmission of algal endosymbionts at an oocyte stage in a triploblastic host, with observations on reproduction inWaminoa brickneri(Acoelomorpha) ".Invertebrate Biology.126(2):113–119.doi:10.1111/j.1744-7410.2007.00082.x.ISSN1077-8306.
- ^Hikosaka-Katayama, Tomoe; Koike, Kanae; Yamashita, Hiroshi; Hikosaka, Akira; Koike, Kazuhiko (September 2012)."Mechanisms of Maternal Inheritance of Dinoflagellate Symbionts in the Acoelomorph WormWaminoa litus".Zoological Science.29(9):559–567.doi:10.2108/zsj.29.559.ISSN0289-0003.PMID22943779.
- ^Apelt, G. (June 1969)."Die Symbiose zwischen dem acoelen Turbellar Convoluta convoluta und Diatomeen der Gattung Licmophora".Marine Biology.3(2):165–187.Bibcode:1969MarBi...3..165A.doi:10.1007/bf00353437.ISSN0025-3162.
- ^Ax, Peter; Apelt, Gieselbert (1965)."Die?Zooxanthellen? vonConvoluta convoluta (Turbellaria Acoela) entstehen aus Diatomeen".Die Naturwissenschaften.52(15):444–446.doi:10.1007/bf00627043.ISSN0028-1042.
- ^Melo Clavijo, Jenny; Donath, Alexander; Serôdio, João; Christa, Gregor (November 2018)."Polymorphic adaptations in metazoans to establish and maintain photosymbioses".Biological Reviews.93(4):2006–2020.doi:10.1111/brv.12430.ISSN1464-7931.PMID29808579.
- ^Ax, P. (April 1970)."Neue Pogaina-Arten (Turbellaria, Dalyellioda) mit Zooxanthellen aus dem Mesopsammal der Nordsee- und Mittelmeerküste".Marine Biology.5(4):337–340.Bibcode:1970MarBi...5..337A.doi:10.1007/bf00346899.ISSN0025-3162.
- ^Ax, P. (April 1970)."Neue Pogaina-Arten (Turbellaria, Dalyellioda) mit Zooxanthellen aus dem Mesopsammal der Nordsee- und Mittelmeerküste".Marine Biology.5(4):337–340.Bibcode:1970MarBi...5..337A.doi:10.1007/bf00346899.ISSN0025-3162.
- ^Douglas, Angela E. (June 1987)."Experimental studies on symbioticChlorellain the Neorhabdocoel TurbellariaDalyellia viridisandTyphloplana viridata".British Phycological Journal.22(2):157–161.doi:10.1080/00071618700650181.ISSN0007-1617.
- ^Melo Clavijo, Jenny; Donath, Alexander; Serôdio, João; Christa, Gregor (November 2018)."Polymorphic adaptations in metazoans to establish and maintain photosymbioses".Biological Reviews.93(4):2006–2020.doi:10.1111/brv.12430.ISSN1464-7931.PMID29808579.
- ^HERNAWAN, UDHI EKO (2008-12-06)."REVIEW: Symbiosis between the Giant Clams (Bivalvia: Cardiidae) and Zooxanthellae (Dinophyceae)".Biodiversitas Journal of Biological Diversity.9(1).doi:10.13057/biodiv/d090112.ISSN2085-4722.
- ^Septiadi, Angga; Hernawan, Hernawan; Widiastuti, Widiastuti (2019-11-10).Journal Sport Area.4(2): 285.doi:10.25299/sportarea.2019.vol4(2).1803.ISSN2528-584Xhttps://doi.org/10.25299%2Fsportarea.2019.vol4%282%29.1803.
{{cite journal}}
:Missing or empty|title=
(help) - ^PARDY, R. L. (June 1980)."SYMBIOTIC ALGAE AND14C INCORPORATION IN THE FRESHWATER CLAM,ANODONTA".The Biological Bulletin.158(3):349–355.doi:10.2307/1540861.ISSN0006-3185.JSTOR1540861.
- ^PARDY, R. L. (June 1980)."SYMBIOTIC ALGAE AND14C INCORPORATION IN THE FRESHWATER CLAM,ANODONTA".The Biological Bulletin.158(3):349–355.doi:10.2307/1540861.ISSN0006-3185.JSTOR1540861.
- ^Maruyama, T.; Ishikura, M.; Yamazaki, S.; Kanai, S. (August 1998)."Molecular Phylogeny of Zooxanthellate Bivalves".The Biological Bulletin.195(1):70–77.doi:10.2307/1542777.ISSN0006-3185.JSTOR1542777.PMID9739550.
- ^Drewett, Peter L. (2014-03-04),"Strombus gigas (Queen Conch)",Encyclopedia of Caribbean Archaeology,University Press of Florida, pp.329–330,doi:10.2307/j.ctvx1hst1.172,retrieved2024-05-08
- ^Banaszak, Anastazia T.; García Ramos, Maribel; Goulet, Tamar L. (November 2013)."The symbiosis between the gastropod Strombus gigas and the dinoflagellate Symbiodinium: An ontogenic journey from mutualism to parasitism".Journal of Experimental Marine Biology and Ecology.449:358–365.Bibcode:2013JEMBE.449..358B.doi:10.1016/j.jembe.2013.10.027.ISSN0022-0981.
- ^BURGHARDT, I (2008-03-27)."Symbiosis between Symbiodinium (Dinophyceae) and various taxa of Nudibranchia (Mollusca: Gastropoda), with analyses of long-term retention".Organisms Diversity & Evolution.8(1):66–76.Bibcode:2008ODivE...8...66B.doi:10.1016/j.ode.2007.01.001.ISSN1439-6092.
- ^Melo Clavijo, Jenny; Donath, Alexander; Serôdio, João; Christa, Gregor (November 2018)."Polymorphic adaptations in metazoans to establish and maintain photosymbioses".Biological Reviews.93(4):2006–2020.doi:10.1111/brv.12430.ISSN1464-7931.PMID29808579.
- ^Melo Clavijo, Jenny; Donath, Alexander; Serôdio, João; Christa, Gregor (November 2018)."Polymorphic adaptations in metazoans to establish and maintain photosymbioses".Biological Reviews.93(4):2006–2020.doi:10.1111/brv.12430.ISSN1464-7931.PMID29808579.
- ^Händeler, Katharina; Grzymbowski, Yvonne P; Krug, Patrick J; Wägele, Heike (2009)."Functional chloroplasts in metazoan cells - a unique evolutionary strategy in animal life".Frontiers in Zoology.6(1): 28.doi:10.1186/1742-9994-6-28.ISSN1742-9994.PMC2790442.PMID19951407.
- ^Christa, Gregor; Gould, Sven B.; Franken, Johanna; Vleugels, Manja; Karmeinski, Dario; Händeler, Katharina; Martin, William F.; Wägele, Heike (2014-05-23)."Functional kleptoplasty in a limapontioidean genus: phylogeny, food preferences and photosynthesis inCostasiella,with a focus onC. ocellifera(Gastropoda: Sacoglossa) ".Journal of Molluscan Studies.80(5):499–507.doi:10.1093/mollus/eyu026.ISSN0260-1230.
- ^Christa, Gregor; Gould, Sven B.; Franken, Johanna; Vleugels, Manja; Karmeinski, Dario; Händeler, Katharina; Martin, William F.; Wägele, Heike (December 2014)."Functional kleptoplasty in a limapontioidean genus: phylogeny, food preferences and photosynthesis in Costasiella, with a focus on C. ocellifera (Gastropoda: Sacoglossa)".Journal of Molluscan Studies.80(5):499–507.doi:10.1093/mollus/eyu026.ISSN0260-1230.
- ^Melo Clavijo, Jenny; Donath, Alexander; Serôdio, João; Christa, Gregor (November 2018)."Polymorphic adaptations in metazoans to establish and maintain photosymbioses".Biological Reviews.93(4):2006–2020.doi:10.1111/brv.12430.ISSN1464-7931.PMID29808579.
- ^Hirose, Euichi (2014-04-15)."Ascidian photosymbiosis: Diversity of cyanobacterial transmission during embryogenesis".Genesis.53(1):121–131.doi:10.1002/dvg.22778.ISSN1526-954X.PMID24700539.
- ^Hirose, Euichi (2014-04-15)."Ascidian photosymbiosis: Diversity of cyanobacterial transmission during embryogenesis".Genesis.53(1):121–131.doi:10.1002/dvg.22778.ISSN1526-954X.PMID24700539.
- ^Yokobori, Shin-ichi; Kurabayashi, Atsushi; Neilan, Brett A.; Maruyama, Tadashi; Hirose, Euichi (July 2006)."Multiple origins of the ascidian-Prochloron symbiosis: Molecular phylogeny of photosymbiotic and non-symbiotic colonial ascidians inferred from 18S rDNA sequences".Molecular Phylogenetics and Evolution.40(1):8–19.Bibcode:2006MolPE..40....8Y.doi:10.1016/j.ympev.2005.11.025.ISSN1055-7903.PMID16531073.
- ^Gilbert, Perry W. (July 1944)."The Alga-Egg Relationship in Ambystoma Maculatum, A Case of Symbiosis".Ecology.25(3):366–369.Bibcode:1944Ecol...25..366G.doi:10.2307/1931284.ISSN0012-9658.JSTOR1931284.
- ^Muto, Kiyoaki; Nishikawa, Kanto; Kamikawa, Ryoma; Miyashita, Hideaki (April 2017)."Symbiotic green algae in eggs ofHynobius nigrescens,an amphibian endemic to Japan ".Phycological Research.65(2):171–174.doi:10.1111/pre.12173.ISSN1322-0829.
- ^Kerney, Ryan; Kim, Eunsoo; Hangarter, Roger P.; Heiss, Aaron A.; Bishop, Cory D.; Hall, Brian K. (2011-04-04)."Intracellular invasion of green algae in a salamander host".Proceedings of the National Academy of Sciences.108(16):6497–6502.Bibcode:2011PNAS..108.6497K.doi:10.1073/pnas.1018259108.ISSN0027-8424.PMC3080989.PMID21464324.
- ^Marco, Adolfo; Blaustein, Andrew R. (December 2000)."Symbiosis with Green Algae Affects Survival and Growth of Northwestern Salamander Embryos".Journal of Herpetology.34(4): 617.doi:10.2307/1565283.hdl:10261/48328.JSTOR1565283.
- ^Decelle, Johan; Colin, Sébastien; Foster, Rachel A. (2015),"Photosymbiosis in Marine Planktonic Protists",Marine Protists,Tokyo: Springer Japan, pp.465–500,doi:10.1007/978-4-431-55130-0_19,ISBN978-4-431-55129-4,retrieved2024-05-08
- ^Decelle, Johan (2013-07-30)."New perspectives on the functioning and evolution of photosymbiosis in plankton: Mutualism or parasitism?".Communicative & Integrative Biology.6(4): e24560.doi:10.4161/cib.24560.ISSN1942-0889.PMC3742057.PMID23986805.
- ^Fay, S. A.; Weber, M. X.; Lipps, J. H. (2009-06-05)."The distribution of Symbiodinium diversity within individual host foraminifera".Coral Reefs.28(3):717–726.Bibcode:2009CorRe..28..717F.doi:10.1007/s00338-009-0511-y.ISSN0722-4028.
- ^Decelle, Johan; Colin, Sébastien; Foster, Rachel A. (2015),"Photosymbiosis in Marine Planktonic Protists",Marine Protists,Tokyo: Springer Japan, pp.465–500,doi:10.1007/978-4-431-55130-0_19,ISBN978-4-431-55129-4,retrieved2024-05-08
- ^Decelle, Johan; Colin, Sébastien; Foster, Rachel A. (2015),"Photosymbiosis in Marine Planktonic Protists",Marine Protists,Tokyo: Springer Japan, pp.465–500,doi:10.1007/978-4-431-55130-0_19,ISBN978-4-431-55129-4,retrieved2024-05-08
- ^Hallock, Pamela; Williams, D. E; Fisher, E. M; Toler, S. K (2006-01-01)."Bleaching in foraminifera with algal symbionts: implications for reef monitoring and risk asessment".Anuário do Instituto de Geociências.29(1):108–128.doi:10.11137/2006_1_108-128.ISSN1982-3908.
- ^Decelle, Johan (2013-07-30)."New perspectives on the functioning and evolution of photosymbiosis in plankton: Mutualism or parasitism?".Communicative & Integrative Biology.6(4): e24560.doi:10.4161/cib.24560.ISSN1942-0889.PMC3742057.PMID23986805.
- ^Decelle, Johan (2013-07-30)."New perspectives on the functioning and evolution of photosymbiosis in plankton: Mutualism or parasitism?".Communicative & Integrative Biology.6(4): e24560.doi:10.4161/cib.24560.ISSN1942-0889.PMC3742057.PMID23986805.