Potassium channel

(Redirected fromPotassium channels)

Potassium channelsare the most widely distributed type ofion channelfound in virtually all organisms.[1]They formpotassium-selectiveporesthat spancell membranes.Potassium channels are found in mostcelltypes and control a wide variety of cell functions.[2][3]

Potassium channel Kv1.2, structure in a membrane-like environment. Calculated hydrocarbon boundaries of thelipid bilayerare indicated by red and blue lines.

Function

edit

Potassium channels function to conduct potassium ions down theirelectrochemical gradient,doing so both rapidly (up to thediffusion rateof K+ions in bulk water) and selectively (excluding, most notably,sodiumdespite thesub-angstromdifference in ionic radius).[4]Biologically, these channels act to set or reset theresting potentialin many cells. In excitable cells, such asneurons,the delayed counterflow of potassium ions shapes theaction potential.

By contributing to the regulation of thecardiac action potentialduration incardiac muscle,malfunction of potassium channels may cause life-threateningarrhythmias.Potassium channels may also be involved in maintainingvascular tone.

They also regulate cellular processes such as the secretion ofhormones(e.g.,insulinrelease frombeta-cellsin thepancreas) so their malfunction can lead to diseases (such asdiabetes).

Some toxins, such asdendrotoxin,are potent because they block potassium channels.[5]

Types

edit

There are four major classes of potassium channels:

The following table contains a comparison of the major classes of potassium channels with representative examples (for a complete list of channels within each class, see the respective class pages).

For more examples of pharmacological modulators of potassium channels, seepotassium channel blockerandpotassium channel opener.

Potassium channel classes, function, and pharmacology.[6]
Class Subclasses Function Blockers Activators
Calcium-activated
6T& 1P
  • inhibition in response to rising intracellular calcium
[citation needed]
Inwardly rectifying
2T& 1P
  • recycling and secretion of potassium innephrons
  • final repolarization phase and stabilising the resting potential of the action potential in cardiac myocytes[16]
  • mediate the inhibitory effect of manyGPCRs
[citation needed]
Tandem pore domain
4T& 2P
[citation needed]
Voltage-gated
6T& 1P

Structure

edit
Top view of a potassium channel with potassium ions (purple) moving through the pore (in the center). (PDB:1BL8​)

Potassium channels have atetramericstructure in which four identicalprotein subunitsassociate to form a fourfoldsymmetric(C4) complex arranged around a central ion conducting pore (i.e., a homotetramer). Alternatively four related but not identical protein subunits may associate to form heterotetrameric complexes with pseudo C4symmetry. All potassium channel subunits have a distinctive pore-loop structure that lines the top of the pore and is responsible for potassium selective permeability.

There are over 80mammaliangenesthat encode potassium channelsubunits.However potassium channels found inbacteriaare amongst the most studied of ion channels, in terms of their molecular structure. UsingX-ray crystallography,[55][56]profound insights have been gained into how potassium ions pass through these channels and why (smaller)sodiumions do not.[57]The 2003Nobel Prize for Chemistrywas awarded toRod MacKinnonfor his pioneering work in this area.[58]

Selectivity filter

edit
Crystallographic structure of the bacterialKcsA potassium channel(PDB:1K4C​).[59]In this figure, only two of the four subunits of the tetramer are displayed for the sake of clarity. The protein is displayed as a green cartoon diagram. In addition backbone carbonyl groups and threonine sidechain protein atoms (oxygen = red, carbon = green) are displayed. Finally potassium ions (occupying the S2 and S4 sites) and the oxygen atoms of water molecules (S1 and S3) are depicted as purple and red spheres respectively.

Potassium ion channels remove the hydration shell from the ion when it enters the selectivity filter. The selectivity filter is formed by a five residue sequence, TVGYG, termed the signature sequence, within each of the four subunits. This signature sequence is within a loop between the pore helix and TM2/6, historically termed the P-loop. This signature sequence is highly conserved, with the exception that a valine residue in prokaryotic potassium channels is often substituted with an isoleucine residue in eukaryotic channels. This sequence adopts a unique main chain structure, structurally analogous to anest protein structural motif.The four sets ofelectronegativecarbonyl oxygen atomsare aligned toward the center of the filter pore and form a square antiprism similar to a water-solvating shell around each potassium binding site. The distance between the carbonyl oxygens and potassium ions in the binding sites of the selectivity filter is the same as between water oxygens in the first hydration shell and a potassium ion in water solution, providing an energetically-favorable route for de-solvationof the ions. Sodium ions, however, are too small to fill the space between the carbonyl oxygen atoms. Thus, it is energetically favorable for sodium ions to remain bound with water molecules in the extracellular space, rather than to pass through the potassium-selective ion pore.[60]This width appears to be maintained byhydrogen bondingandvan der Waals forceswithin a sheet of aromatic amino acid residues surrounding the selectivity filter.[55][61]The selectivity filter opens towards the extracellular solution, exposing four carbonyl oxygens in a glycine residue (Gly79 inKcsA). The next residue toward the extracellular side of the protein is the negatively charged Asp80 (KcsA). This residue together with the five filter residues form the pore that connects the water-filled cavity in the center of the protein with the extracellular solution.[62]

Selectivity mechanism

edit

The mechanism of potassium channel selectivity remains under continued debate. The carbonyl oxygens are strongly electro-negative and cation-attractive. The filter can accommodate potassium ions at 4 sites usually labelled S1 to S4 starting at the extracellular side. In addition, one ion can bind in the cavity at a site called SC or one or more ions at the extracellular side at more or less well-defined sites called S0 or Sext. Several different occupancies of these sites are possible. Since the X-ray structures are averages over many molecules, it is, however, not possible to deduce the actual occupancies directly from such a structure. In general, there is some disadvantage due to electrostatic repulsion to have two neighboring sites occupied by ions. Proposals for the mechanism of selectivity have been made based onmolecular dynamicssimulations,[63]toy models of ion binding,[64]thermodynamic calculations,[65]topological considerations,[66][67]and structural differences[68]between selective and non-selective channels.

The mechanism for ion translocation in KcsA has been studied extensively by theoretical calculations and simulation.[62][69]The prediction of an ion conduction mechanism in which the two doubly occupied states (S1, S3) and (S2, S4) play an essential role has been affirmed by both techniques.Molecular dynamics(MD) simulations suggest the two extracellular states, Sextand S0,reflecting ions entering and leaving the filter, also are important actors in ion conduction.

Hydrophobic region

edit

This region neutralizes the environment around the potassium ion so that it is not attracted to any charges. In turn, it speeds up the reaction.

Central cavity

edit

A central pore, 10 Å wide, is located near the center of the transmembrane channel, where theenergy barrieris highest for the transversing ion due to the hydrophobity of the channel wall. The water-filled cavity and the polar C-terminus of the pore helices ease the energetic barrier for the ion. Repulsion by preceding multiple potassium ions is thought to aid the throughput of the ions. The presence of the cavity can be understood intuitively as one of the channel's mechanisms for overcoming the dielectric barrier, or repulsion by the low-dielectric membrane, by keeping the K+ion in a watery, high-dielectric environment.

Regulation

edit
Graphical representation of open and shut potassium channels (PDB:1lnq​ andPDB:1k4c​). Two simple bacterial channels are shown to compare the "open" channel structure on the right with the "closed" structure on the left. At top is the filter (selects potassium ions), and at bottom is the gating domain (controls opening and closing of channel).

The flux of ions through the potassium channel pore is regulated by two related processes, termedgatingand inactivation. Gating is the opening or closing of the channel in response to stimuli, while inactivation is the rapid cessation of current from an open potassium channel and the suppression of the channel's ability to resume conducting. While both processes serve to regulate channel conductance, each process may be mediated by a number of mechanisms.

Generally, gating is thought to be mediated by additional structural domains which sense stimuli and in turn open the channel pore. These domains include the RCK domains of BK channels,[70][71][72]and voltage sensor domains of voltage gated K+channels. These domains are thought to respond to the stimuli by physically opening the intracellular gate of the pore domain, thereby allowing potassium ions to traverse the membrane. Some channels have multiple regulatory domains or accessory proteins, which can act to modulate the response to stimulus. While the mechanisms continue to be debated, there are known structures of a number of these regulatory domains, including RCK domains of prokaryotic[73][74][75]and eukaryotic[70][71][72]channels, pH gating domain of KcsA,[76]cyclic nucleotide gating domains,[77]and voltage gated potassium channels.[78][79]

N-type inactivation is typically the faster inactivation mechanism, and is termed the"ball and chain" model.[80]N-type inactivation involves interaction of the N-terminus of the channel, or an associated protein, which interacts with the pore domain and occludes the ion conduction pathway like a "ball". Alternatively, C-type inactivation is thought to occur within the selectivity filter itself, where structural changes within the filter render it non-conductive. There are a number of structural models of C-type inactivated K+channel filters,[81][82][83]although the precise mechanism remains unclear.

Pharmacology

edit

Blockers

edit

Potassium channel blockers inhibit the flow of potassium ions through the channel. They either compete with potassium binding within the selectivity filter or bind outside the filter to occlude ion conduction. An example of one of these competitors is quaternary ammonium ions, which bind at the extracellular face[84][85]or central cavity of the channel.[86]For blocking from the central cavity quaternary ammonium ions are also known as open channel blockers, as binding classically requires the prior opening of the cytoplasmic gate.[87]

Bariumions can also block potassium channel currents,[88][89]by binding with high affinity within the selectivity filter.[90][91][92][93]This tight binding is thought to underliebarium toxicityby inhibiting potassium channel activity in excitable cells.

Medicallypotassium channel blockers,such as4-aminopyridineand3,4-diaminopyridine,have been investigated for the treatment of conditions such asmultiple sclerosis.[49]Off targetdrug effects can lead to drug inducedLong QT syndrome,a potentially life-threatening condition. This is most frequently due to action on thehERGpotassium channel in the heart. Accordingly, all new drugs are preclinically tested for cardiac safety.

Activators

edit

Muscarinic potassium channel

edit
Birth of an Idea(2007) byJulian Voss-Andreae.The sculpture was commissioned byRoderick MacKinnonbased on the molecule's atomic coordinates that were determined by MacKinnon's group in 2001.

Some types of potassium channels are activated bymuscarinic receptorsand these are calledmuscarinic potassium channels(IKACh). These channels are a heterotetramer composed of twoGIRK1and twoGIRK4subunits.[94][95]Examples are potassium channels in the heart, which, when activated byparasympatheticsignals throughM2 muscarinic receptors,cause an outward current of potassium, which slows down theheart rate.[96][97]

In fine art

edit

Roderick MacKinnoncommissionedBirth of an Idea,a 5-foot (1.5 m) tall sculpture based on the KcsA potassium channel.[98]The artwork contains a wire object representing the channel's interior with a blown glass object representing the main cavity of the channel structure.

See also

edit

References

edit
  1. ^Littleton JT, Ganetzky B (April 2000)."Ion channels and synaptic organization: analysis of the Drosophila genome".Neuron.26(1): 35–43.doi:10.1016/S0896-6273(00)81135-6.PMID10798390.S2CID5694563.
  2. ^Hille, Bertil (2001). "Chapter 5: Potassium Channels and Chloride Channels".Ion channels of excitable membranes.Sunderland, Mass: Sinauer. pp. 131–168.ISBN978-0-87893-321-1.
  3. ^Jessell TM,Kandel ER,Schwartz JH (2000). "Chapter 6: Ion Channels".Principles of Neural Science(4th ed.). New York: McGraw-Hill. pp.105–124.ISBN978-0-8385-7701-1.
  4. ^Lim C, Dudev T (2016). "Roles and Transport of Sodium and Potassium in Plants". In Sigel A, Sigel H, Sigel RK (eds.).The Alkali Metal Ions: Their Role for Life.Metal Ions in Life Sciences. Vol. 16. Springer. pp. 325–347.doi:10.1007/978-3-319-21756-7_9.ISBN978-3-319-21755-0.PMID26860305.{{cite book}}:|journal=ignored (help)
  5. ^indirectly cited from reference number 3,4,5,6 inRehm H, Lazdunski M (July 1988)."Purification and subunit structure of a putative K+-channel protein identified by its binding properties for dendrotoxin I".Proceedings of the National Academy of Sciences of the United States of America.85(13): 4919–4923.Bibcode:1988PNAS...85.4919R.doi:10.1073/pnas.85.13.4919.PMC280549.PMID2455300.
  6. ^abcdefghijklmnRang, HP (2015).Pharmacology(8 ed.). Edinburgh: Churchill Livingstone. p. 59.ISBN978-0-443-07145-4.
  7. ^Thompson J, Begenisich T (May 2000)."Electrostatic interaction between charybdotoxin and a tetrameric mutant of Shaker K(+) channels".Biophysical Journal.78(5): 2382–2391.Bibcode:2000BpJ....78.2382T.doi:10.1016/S0006-3495(00)76782-8.PMC1300827.PMID10777734.
  8. ^Naranjo D, Miller C (January 1996)."A strongly interacting pair of residues on the contact surface of charybdotoxin and a Shaker K+ channel".Neuron.16(1): 123–130.doi:10.1016/S0896-6273(00)80029-X.PMID8562075.S2CID16794677.
  9. ^Yu M, Liu SL, Sun PB, Pan H, Tian CL, Zhang LH (January 2016)."Peptide toxins and small-molecule blockers of BK channels".Acta Pharmacologica Sinica.37(1): 56–66.doi:10.1038/aps.2015.139.PMC4722972.PMID26725735.
  10. ^Candia S, Garcia ML, Latorre R (August 1992)."Mode of action of iberiotoxin, a potent blocker of the large conductance Ca(2+)-activated K+ channel".Biophysical Journal.63(2): 583–590.Bibcode:1992BpJ....63..583C.doi:10.1016/S0006-3495(92)81630-2.PMC1262182.PMID1384740.
  11. ^Stocker M, Krause M, Pedarzani P (April 1999)."An apamin-sensitive Ca2+-activated K+ current in hippocampal pyramidal neurons".Proceedings of the National Academy of Sciences of the United States of America.96(8): 4662–4667.Bibcode:1999PNAS...96.4662S.doi:10.1073/pnas.96.8.4662.PMC16389.PMID10200319.
  12. ^McLeod JF, Leempoels JM, Peng SX, Dax SL, Myers LJ, Golder FJ (November 2014)."GAL-021, a new intravenous BKCa-channel blocker, is well tolerated and stimulates ventilation in healthy volunteers".British Journal of Anaesthesia.113(5): 875–883.doi:10.1093/bja/aeu182.PMID24989775.
  13. ^Dopico AM, Bukiya AN, Kuntamallappanavar G, Liu J (2016)."Modulation of BK Channels by Ethanol".International Review of Neurobiology.128:239–279.doi:10.1016/bs.irn.2016.03.019.ISBN9780128036198.PMC5257281.PMID27238266.
  14. ^abPatnaik, Pradyot (2003).Handbook of inorganic chemicals.McGraw-Hill. pp.77–78.ISBN978-0-07-049439-8.
  15. ^Sackin H, Syn S, Palmer LG, Choe H, Walters DE (February 2001)."Regulation of ROMK by extracellular cations".Biophysical Journal.80(2): 683–697.Bibcode:2001BpJ....80..683S.doi:10.1016/S0006-3495(01)76048-1.PMC1301267.PMID11159436.
  16. ^Dhamoon AS, Jalife J (March 2005). "The inward rectifier current (IK1) controls cardiac excitability and is involved in arrhythmogenesis".Heart Rhythm.2(3): 316–324.doi:10.1016/j.hrthm.2004.11.012.PMID15851327.
  17. ^abcdefSwale DR, Kharade SV, Denton JS (April 2014)."Cardiac and renal inward rectifier potassium channel pharmacology: emerging tools for integrative physiology and therapeutics".Current Opinion in Pharmacology.15:7–15.doi:10.1016/j.coph.2013.11.002.PMC4097192.PMID24721648.
  18. ^Xynogalos P, Seyler C, Scherer D, Koepple C, Scholz EP, Thomas D, et al. (December 2014). "Class III antiarrhythmic drug dronedarone inhibits cardiac inwardly rectifying Kir2.1 channels through binding at residue E224".Naunyn-Schmiedeberg's Archives of Pharmacology.387(12): 1153–1161.doi:10.1007/s00210-014-1045-6.PMID25182566.S2CID10575229.
  19. ^Koepple C, Scherer D, Seyler C, Scholz E, Thomas D, Katus HA, Zitron E (May 2017)."Dual Mechanism for Inhibition of Inwardly Rectifying Kir2.x Channels by Quinidine Involving Direct Pore Block and PIP2-interference ".The Journal of Pharmacology and Experimental Therapeutics.361(2): 209–218.doi:10.1124/jpet.116.238287.PMID28188270.S2CID206502631.
  20. ^Caballero R, Dolz-Gaitón P, Gómez R, Amorós I, Barana A, González de la Fuente M, et al. (August 2010)."Flecainide increases Kir2.1 currents by interacting with cysteine 311, decreasing the polyamine-induced rectification".Proceedings of the National Academy of Sciences of the United States of America.107(35): 15631–15636.Bibcode:2010PNAS..10715631C.doi:10.1073/pnas.1004021107.PMC2932566.PMID20713726.
  21. ^Kobayashi T, Washiyama K, Ikeda K (March 2006)."Inhibition of G protein-activated inwardly rectifying K+ channels by ifenprodil".Neuropsychopharmacology.31(3): 516–524.doi:10.1038/sj.npp.1300844.PMID16123769.
  22. ^Soeda F, Fujieda Y, Kinoshita M, Shirasaki T, Takahama K (May 2016). "Centrally acting non-narcotic antitussives prevent hyperactivity in mice: Involvement of GIRK channels".Pharmacology, Biochemistry, and Behavior.144:26–32.doi:10.1016/j.pbb.2016.02.006.PMID26892760.S2CID30118634.
  23. ^Yamamoto G, Soeda F, Shirasaki T, Takahama K (April 2011)."[Is the GIRK channel a possible target in the development of a novel therapeutic drug of urinary disturbance?]".Yakugaku Zasshi.131(4): 523–532.doi:10.1248/yakushi.131.523.PMID21467791.
  24. ^Kawaura K, Honda S, Soeda F, Shirasaki T, Takahama K (May 2010)."[Novel antidepressant-like action of drugs possessing GIRK channel blocking action in rats]".Yakugaku Zasshi.130(5): 699–705.doi:10.1248/yakushi.130.699.PMID20460867.
  25. ^Jin W, Lu Z (September 1998). "A novel high-affinity inhibitor for inward-rectifier K+ channels".Biochemistry.37(38): 13291–13299.doi:10.1021/bi981178p.PMID9748337.
  26. ^Kawaura K, Ogata Y, Inoue M, Honda S, Soeda F, Shirasaki T, Takahama K (December 2009)."The centrally acting non-narcotic antitussive tipepidine produces antidepressant-like effect in the forced swimming test in rats"(PDF).Behavioural Brain Research.205(1): 315–318.doi:10.1016/j.bbr.2009.07.004.PMID19616036.S2CID29236491.
  27. ^Kaufmann K, Romaine I, Days E, Pascual C, Malik A, Yang L, et al. (September 2013)."ML297 (VU0456810), the first potent and selective activator of the GIRK potassium channel, displays antiepileptic properties in mice".ACS Chemical Neuroscience.4(9): 1278–1286.doi:10.1021/cn400062a.PMC3778424.PMID23730969.
  28. ^Serrano-Martín X, Payares G, Mendoza-León A (December 2006)."Glibenclamide, a blocker of K+(ATP) channels, shows antileishmanial activity in experimental murine cutaneous leishmaniasis".Antimicrobial Agents and Chemotherapy.50(12): 4214–4216.doi:10.1128/AAC.00617-06.PMC1693980.PMID17015627.
  29. ^Lawrence CL, Proks P, Rodrigo GC, Jones P, Hayabuchi Y, Standen NB, Ashcroft FM (August 2001)."Gliclazide produces high-affinity block of KATP channels in mouse isolated pancreatic beta cells but not rat heart or arterial smooth muscle cells".Diabetologia.44(8): 1019–1025.doi:10.1007/s001250100595.PMID11484080.
  30. ^abcdefEnyedi P, Czirják G (April 2010)."Molecular background of leak K+ currents: two-pore domain potassium channels".Physiological Reviews.90(2): 559–605.doi:10.1152/physrev.00029.2009.PMID20393194.S2CID9358238.
  31. ^abcdefLotshaw DP (2007). "Biophysical, pharmacological, and functional characteristics of cloned and native mammalian two-pore domain K+ channels".Cell Biochemistry and Biophysics.47(2): 209–256.doi:10.1007/s12013-007-0007-8.PMID17652773.S2CID12759521.
  32. ^Fink M, Lesage F, Duprat F, Heurteaux C, Reyes R, Fosset M, Lazdunski M (June 1998)."A neuronal two P domain K+ channel stimulated by arachidonic acid and polyunsaturated fatty acids".The EMBO Journal.17(12): 3297–3308.doi:10.1093/emboj/17.12.3297.PMC1170668.PMID9628867.
  33. ^Goldstein SA, Bockenhauer D, O'Kelly I, Zilberberg N (March 2001)."Potassium leak channels and the KCNK family of two-P-domain subunits".Nature Reviews. Neuroscience.2(3): 175–184.doi:10.1038/35058574.PMID11256078.S2CID9682396.
  34. ^Sano Y, Inamura K, Miyake A, Mochizuki S, Kitada C, Yokoi H, et al. (July 2003)."A novel two-pore domain K+ channel, TRESK, is localized in the spinal cord".The Journal of Biological Chemistry.278(30): 27406–27412.doi:10.1074/jbc.M206810200.PMID12754259.
  35. ^Czirják G, Tóth ZE, Enyedi P (April 2004)."The two-pore domain K+ channel, TRESK, is activated by the cytoplasmic calcium signal through calcineurin".The Journal of Biological Chemistry.279(18): 18550–18558.doi:10.1074/jbc.M312229200.PMID14981085.
  36. ^Kindler CH, Yost CS, Gray AT (April 1999)."Local anesthetic inhibition of baseline potassium channels with two pore domains in tandem".Anesthesiology.90(4): 1092–1102.doi:10.1097/00000542-199904000-00024.PMID10201682.
  37. ^abcMeadows HJ, Randall AD (March 2001). "Functional characterisation of human TASK-3, an acid-sensitive two-pore domain potassium channel".Neuropharmacology.40(4): 551–559.doi:10.1016/S0028-3908(00)00189-1.PMID11249964.S2CID20181576.
  38. ^Kindler CH, Paul M, Zou H, Liu C, Winegar BD, Gray AT, Yost CS (July 2003). "Amide local anesthetics potently inhibit the human tandem pore domain background K+ channel TASK-2 (KCNK5)".The Journal of Pharmacology and Experimental Therapeutics.306(1): 84–92.doi:10.1124/jpet.103.049809.PMID12660311.S2CID1621972.
  39. ^Punke MA, Licher T, Pongs O, Friederich P (June 2003)."Inhibition of human TREK-1 channels by bupivacaine".Anesthesia and Analgesia.96(6): 1665–1673.doi:10.1213/01.ANE.0000062524.90936.1F.PMID12760993.S2CID39630495.
  40. ^Lesage F, Guillemare E, Fink M, Duprat F, Lazdunski M, Romey G, Barhanin J (March 1996)."TWIK-1, a ubiquitous human weakly inward rectifying K+ channel with a novel structure".The EMBO Journal.15(5): 1004–1011.doi:10.1002/j.1460-2075.1996.tb00437.x.PMC449995.PMID8605869.
  41. ^Duprat F, Lesage F, Fink M, Reyes R, Heurteaux C, Lazdunski M (September 1997)."TASK, a human background K+ channel to sense external pH variations near physiological pH".The EMBO Journal.16(17): 5464–5471.doi:10.1093/emboj/16.17.5464.PMC1170177.PMID9312005.
  42. ^Reyes R, Duprat F, Lesage F, Fink M, Salinas M, Farman N, Lazdunski M (November 1998)."Cloning and expression of a novel pH-sensitive two pore domain K+ channel from human kidney".The Journal of Biological Chemistry.273(47): 30863–30869.doi:10.1074/jbc.273.47.30863.PMID9812978.
  43. ^Meadows HJ, Benham CD, Cairns W, Gloger I, Jennings C, Medhurst AD, et al. (April 2000). "Cloning, localisation and functional expression of the human orthologue of the TREK-1 potassium channel".Pflügers Archiv.439(6): 714–722.doi:10.1007/s004240050997.PMID10784345.
  44. ^"UniProtKB - Q9NPC2 (KCNK9_HUMAN)".Uniprot.Retrieved2019-05-29.
  45. ^abKennard LE, Chumbley JR, Ranatunga KM, Armstrong SJ, Veale EL, Mathie A (March 2005)."Inhibition of the human two-pore domain potassium channel, TREK-1, by fluoxetine and its metabolite norfluoxetine".British Journal of Pharmacology.144(6): 821–829.doi:10.1038/sj.bjp.0706068.PMC1576064.PMID15685212.
  46. ^Patel AJ, Honoré E, Lesage F, Fink M, Romey G, Lazdunski M (May 1999). "Inhalational anesthetics activate two-pore-domain background K+ channels".Nature Neuroscience.2(5): 422–426.doi:10.1038/8084.PMID10321245.S2CID23092576.
  47. ^Gray AT, Zhao BB, Kindler CH, Winegar BD, Mazurek MJ, Xu J, et al. (June 2000). "Volatile anesthetics activate the human tandem pore domain baseline K+ channel KCNK5".Anesthesiology.92(6): 1722–1730.doi:10.1097/00000542-200006000-00032.PMID10839924.S2CID45487917.
  48. ^Kirsch GE, Narahashi T (June 1978)."3,4-diaminopyridine. A potent new potassium channel blocker".Biophysical Journal.22(3): 507–512.Bibcode:1978BpJ....22..507K.doi:10.1016/s0006-3495(78)85503-9.PMC1473482.PMID667299.
  49. ^abJudge SI, Bever CT (July 2006). "Potassium channel blockers in multiple sclerosis: neuronal Kv channels and effects of symptomatic treatment".Pharmacology & Therapeutics.111(1): 224–259.doi:10.1016/j.pharmthera.2005.10.006.PMID16472864.
  50. ^Tiku PE, Nowell PT (December 1991)."Selective inhibition of K(+)-stimulation of Na,K-ATPase by bretylium".British Journal of Pharmacology.104(4): 895–900.doi:10.1111/j.1476-5381.1991.tb12523.x.PMC1908819.PMID1667290.
  51. ^Hille B (May 1967)."The selective inhibition of delayed potassium currents in nerve by tetraethylammonium ion".The Journal of General Physiology.50(5): 1287–1302.doi:10.1085/jgp.50.5.1287.PMC2225709.PMID6033586.
  52. ^Armstrong CM (October 1971)."Interaction of tetraethylammonium ion derivatives with the potassium channels of giant axons".The Journal of General Physiology.58(4): 413–437.doi:10.1085/jgp.58.4.413.PMC2226036.PMID5112659.
  53. ^"Amiodarone".Drugbank.Retrieved2019-05-28.
  54. ^Rogawski MA, Bazil CW (July 2008)."New molecular targets for antiepileptic drugs: Alpha (2)delta, SV2A, and K(v)7/KCNQ/M potassium channels".Current Neurology and Neuroscience Reports.8(4): 345–352.doi:10.1007/s11910-008-0053-7.PMC2587091.PMID18590620.
  55. ^abDoyle DA, Morais Cabral J, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, et al. (April 1998). "The structure of the potassium channel: molecular basis of K+ conduction and selectivity".Science.280(5360): 69–77.Bibcode:1998Sci...280...69D.doi:10.1126/science.280.5360.69.PMID9525859.
  56. ^MacKinnon R, Cohen SL, Kuo A, Lee A, Chait BT (April 1998). "Structural conservation in prokaryotic and eukaryotic potassium channels".Science.280(5360): 106–109.Bibcode:1998Sci...280..106M.doi:10.1126/science.280.5360.106.PMID9525854.S2CID33907550.
  57. ^Armstrong C (April 1998). "The vision of the pore".Science.280(5360): 56–57.doi:10.1126/science.280.5360.56.PMID9556453.S2CID35339674.
  58. ^"The Nobel Prize in Chemistry 2003".The Nobel Foundation.Retrieved2007-11-16.
  59. ^Zhou Y, Morais-Cabral JH, Kaufman A, MacKinnon R (November 2001). "Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2.0 A resolution".Nature.414(6859): 43–48.Bibcode:2001Natur.414...43Z.doi:10.1038/35102009.PMID11689936.S2CID205022645.
  60. ^Lodish H, Berk A, Kaiser C, Krieger M, Bretscher A, Ploegh H, et al. (2016).Molecular Cell Biology(8th ed.). New York, NY: W. H. Freeman and Company. p. 499.ISBN978-1-4641-8339-3.
  61. ^Sauer DB, Zeng W, Raghunathan S, Jiang Y (October 2011)."Protein interactions central to stabilizing the K+ channel selectivity filter in a four-sited configuration for selective K+ permeation".Proceedings of the National Academy of Sciences of the United States of America.108(40): 16634–16639.Bibcode:2011PNAS..10816634S.doi:10.1073/pnas.1111688108.PMC3189067.PMID21933962.
  62. ^abHellgren M, Sandberg L, Edholm O (March 2006). "A comparison between two prokaryotic potassium channels (KirBac1.1 and KcsA) in a molecular dynamics (MD) simulation study".Biophysical Chemistry.120(1): 1–9.doi:10.1016/j.bpc.2005.10.002.PMID16253415.
  63. ^Noskov SY, Roux B (February 2007)."Importance of hydration and dynamics on the selectivity of the KcsA and NaK channels".The Journal of General Physiology.129(2): 135–143.doi:10.1085/jgp.200609633.PMC2154357.PMID17227917.
  64. ^Noskov SY, Bernèche S, Roux B (October 2004). "Control of ion selectivity in potassium channels by electrostatic and dynamic properties of carbonyl ligands".Nature.431(7010): 830–834.Bibcode:2004Natur.431..830N.doi:10.1038/nature02943.PMID15483608.S2CID4414885.
  65. ^Varma S, Rempe SB (August 2007)."Tuning ion coordination architectures to enable selective partitioning".Biophysical Journal.93(4): 1093–1099.arXiv:physics/0608180.Bibcode:2007BpJ....93.1093V.doi:10.1529/biophysj.107.107482.PMC1929028.PMID17513348.
  66. ^Thomas M, Jayatilaka D, Corry B (October 2007)."The predominant role of coordination number in potassium channel selectivity".Biophysical Journal.93(8): 2635–2643.Bibcode:2007BpJ....93.2635T.doi:10.1529/biophysj.107.108167.PMC1989715.PMID17573427.
  67. ^Bostick DL, Brooks CL (May 2007)."Selectivity in K+ channels is due to topological control of the permeant ion's coordinated state".Proceedings of the National Academy of Sciences of the United States of America.104(22): 9260–9265.Bibcode:2007PNAS..104.9260B.doi:10.1073/pnas.0700554104.PMC1890482.PMID17519335.
  68. ^Derebe MG, Sauer DB, Zeng W, Alam A, Shi N, Jiang Y (January 2011)."Tuning the ion selectivity of tetrameric cation channels by changing the number of ion binding sites".Proceedings of the National Academy of Sciences of the United States of America.108(2): 598–602.Bibcode:2011PNAS..108..598D.doi:10.1073/pnas.1013636108.PMC3021048.PMID21187421.
  69. ^Morais-Cabral JH, Zhou Y, MacKinnon R (November 2001). "Energetic optimization of ion conduction rate by the K+ selectivity filter".Nature.414(6859): 37–42.Bibcode:2001Natur.414...37M.doi:10.1038/35102000.PMID11689935.S2CID4429890.
  70. ^abYuan P, Leonetti MD, Pico AR, Hsiung Y, MacKinnon R (July 2010)."Structure of the human BK channel Ca2+-activation apparatus at 3.0 A resolution".Science.329(5988): 182–186.Bibcode:2010Sci...329..182Y.doi:10.1126/science.1190414.PMC3022345.PMID20508092.
  71. ^abWu Y, Yang Y, Ye S, Jiang Y (July 2010)."Structure of the gating ring from the human large-conductance Ca(2+)-gated K(+) channel".Nature.466(7304): 393–397.Bibcode:2010Natur.466..393W.doi:10.1038/nature09252.PMC2910425.PMID20574420.
  72. ^abJiang Y, Pico A, Cadene M, Chait BT, MacKinnon R (March 2001)."Structure of the RCK domain from the E. coli K+ channel and demonstration of its presence in the human BK channel".Neuron.29(3): 593–601.doi:10.1016/S0896-6273(01)00236-7.PMID11301020.S2CID17880955.
  73. ^Jiang Y, Lee A, Chen J, Cadene M, Chait BT, MacKinnon R (May 2002). "Crystal structure and mechanism of a calcium-gated potassium channel".Nature.417(6888): 515–522.Bibcode:2002Natur.417..515J.doi:10.1038/417515a.PMID12037559.S2CID205029269.
  74. ^Kong C, Zeng W, Ye S, Chen L, Sauer DB, Lam Y, et al. (December 2012)."Distinct gating mechanisms revealed by the structures of a multi-ligand gated K(+) channel".eLife.1:e00184.doi:10.7554/eLife.00184.PMC3510474.PMID23240087.
  75. ^Cao Y, Jin X, Huang H, Derebe MG, Levin EJ, Kabaleeswaran V, et al. (March 2011)."Crystal structure of a potassium ion transporter, TrkH".Nature.471(7338): 336–340.Bibcode:2011Natur.471..336C.doi:10.1038/nature09731.PMC3077569.PMID21317882.
  76. ^Uysal S, Cuello LG, Cortes DM, Koide S, Kossiakoff AA, Perozo E (July 2011)."Mechanism of activation gating in the full-length KcsA K+ channel".Proceedings of the National Academy of Sciences of the United States of America.108(29): 11896–11899.Bibcode:2011PNAS..10811896U.doi:10.1073/pnas.1105112108.PMC3141920.PMID21730186.
  77. ^Clayton GM, Silverman WR, Heginbotham L, Morais-Cabral JH (November 2004)."Structural basis of ligand activation in a cyclic nucleotide regulated potassium channel".Cell.119(5): 615–627.doi:10.1016/j.cell.2004.10.030.PMID15550244.S2CID14149494.
  78. ^Jiang Y, Lee A, Chen J, Ruta V, Cadene M, Chait BT, MacKinnon R (May 2003). "X-ray structure of a voltage-dependent K+ channel".Nature.423(6935): 33–41.Bibcode:2003Natur.423...33J.doi:10.1038/nature01580.PMID12721618.S2CID4347957.
  79. ^Long SB, Campbell EB, Mackinnon R (August 2005)."Crystal structure of a mammalian voltage-dependent Shaker family K+ channel".Science.309(5736): 897–903.Bibcode:2005Sci...309..897L.doi:10.1126/science.1116269.PMID16002581.S2CID6072007.
  80. ^Antz C, Fakler B (August 1998). "Fast Inactivation of Voltage-Gated K(+) Channels: From Cartoon to Structure".News in Physiological Sciences.13(4): 177–182.doi:10.1152/physiologyonline.1998.13.4.177.PMID11390785.S2CID38134756.
  81. ^Cheng WW, McCoy JG, Thompson AN,Nichols CG,Nimigean CM (March 2011)."Mechanism for selectivity-inactivation coupling in KcsA potassium channels".Proceedings of the National Academy of Sciences of the United States of America.108(13): 5272–5277.Bibcode:2011PNAS..108.5272C.doi:10.1073/pnas.1014186108.PMC3069191.PMID21402935.
  82. ^Cuello LG, Jogini V, Cortes DM, Perozo E (July 2010)."Structural mechanism of C-type inactivation in K(+) channels".Nature.466(7303): 203–208.Bibcode:2010Natur.466..203C.doi:10.1038/nature09153.PMC3033749.PMID20613835.
  83. ^Cuello LG, Jogini V, Cortes DM, Pan AC, Gagnon DG, Dalmas O, et al. (July 2010)."Structural basis for the coupling between activation and inactivation gates in K(+) channels".Nature.466(7303): 272–275.Bibcode:2010Natur.466..272C.doi:10.1038/nature09136.PMC3033755.PMID20613845.
  84. ^Luzhkov VB, Aqvist J (February 2005). "Ions and blockers in potassium channels: insights from free energy simulations".Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics.1747(1): 109–120.doi:10.1016/j.bbapap.2004.10.006.PMID15680245.
  85. ^Luzhkov VB, Osterberg F, Aqvist J (November 2003)."Structure-activity relationship for extracellular block of K+ channels by tetraalkylammonium ions".FEBS Letters.554(1–2): 159–164.Bibcode:2003FEBSL.554..159L.doi:10.1016/S0014-5793(03)01117-7.PMID14596932.S2CID32031835.
  86. ^Posson DJ, McCoy JG, Nimigean CM (February 2013)."The voltage-dependent gate in MthK potassium channels is located at the selectivity filter".Nature Structural & Molecular Biology.20(2): 159–166.doi:10.1038/nsmb.2473.PMC3565016.PMID23262489.
  87. ^Choi KL, Mossman C, Aubé J, Yellen G (March 1993). "The internal quaternary ammonium receptor site of Shaker potassium channels".Neuron.10(3): 533–541.doi:10.1016/0896-6273(93)90340-w.PMID8461140.S2CID33361945.
  88. ^Piasta KN, Theobald DL, Miller C (October 2011)."Potassium-selective block of barium permeation through single KcsA channels".The Journal of General Physiology.138(4): 421–436.doi:10.1085/jgp.201110684.PMC3182450.PMID21911483.
  89. ^Neyton J, Miller C (November 1988)."Potassium blocks barium permeation through a calcium-activated potassium channel".The Journal of General Physiology.92(5): 549–567.doi:10.1085/jgp.92.5.549.PMC2228918.PMID3235973.
  90. ^Lockless SW, Zhou M, MacKinnon R (May 2007)."Structural and thermodynamic properties of selective ion binding in a K+ channel".PLOS Biology.5(5): e121.doi:10.1371/journal.pbio.0050121.PMC1858713.PMID17472437.
  91. ^Jiang Y, MacKinnon R (March 2000)."The barium site in a potassium channel by x-ray crystallography".The Journal of General Physiology.115(3): 269–272.doi:10.1085/jgp.115.3.269.PMC2217209.PMID10694255.
  92. ^Lam YL, Zeng W, Sauer DB, Jiang Y (August 2014)."The conserved potassium channel filter can have distinct ion binding profiles: structural analysis of rubidium, cesium, and barium binding in NaK2K".The Journal of General Physiology.144(2): 181–192.doi:10.1085/jgp.201411191.PMC4113894.PMID25024267.
  93. ^Guo R, Zeng W, Cui H, Chen L, Ye S (August 2014)."Ionic interactions of Ba2+ blockades in the MthK K+ channel".The Journal of General Physiology.144(2): 193–200.doi:10.1085/jgp.201411192.PMC4113901.PMID25024268.
  94. ^Krapivinsky G, Gordon EA, Wickman K, Velimirović B, Krapivinsky L, Clapham DE (March 1995). "The G-protein-gated atrial K+ channel IKACh is a heteromultimer of two inwardly rectifying K(+)-channel proteins".Nature.374(6518): 135–141.Bibcode:1995Natur.374..135K.doi:10.1038/374135a0.PMID7877685.S2CID4334467.
  95. ^Corey S, Krapivinsky G, Krapivinsky L, Clapham DE (February 1998)."Number and stoichiometry of subunits in the native atrial G-protein-gated K+ channel, IKACh".The Journal of Biological Chemistry.273(9): 5271–5278.doi:10.1074/jbc.273.9.5271.PMID9478984.
  96. ^Kunkel MT, Peralta EG (November 1995)."Identification of domains conferring G protein regulation on inward rectifier potassium channels".Cell.83(3): 443–449.doi:10.1016/0092-8674(95)90122-1.PMID8521474.S2CID14720432.
  97. ^Wickman K, Krapivinsky G, Corey S, Kennedy M, Nemec J, Medina I, Clapham DE (April 1999)."Structure, G protein activation, and functional relevance of the cardiac G protein-gated K+ channel, IKACh".Annals of the New York Academy of Sciences.868(1): 386–398.Bibcode:1999NYASA.868..386W.doi:10.1111/j.1749-6632.1999.tb11300.x.PMID10414308.S2CID25949938.Archived fromthe originalon 2006-01-29.
  98. ^Ball P (March 2008)."The crucible: Art inspired by science should be more than just a pretty picture".Chemistry World.5(3): 42–43.Retrieved2009-01-12.
edit