Inquantum physics,awave function(orwavefunction) is a mathematical description of thequantum stateof an isolatedquantum system.The most common symbols for a wave function are the Greek lettersψandΨ(lower-case and capitalpsi,respectively). Wave functions arecomplex-valued.For example, a wave function might assign a complex number to each point in a region of space. TheBorn rule[1][2][3]provides the means to turn these complexprobability amplitudesinto actual probabilities. In one common form, it says that thesquared modulusof a wave function that depends upon position is theprobability densityofmeasuringa particle as being at a given place. The integral of a wavefunction's squared modulus over all the system's degrees of freedom must be equal to 1, a condition callednormalization.Since the wave function is complex-valued, only its relative phase and relative magnitude can be measured; its value does not, in isolation, tell anything about the magnitudes or directions of measurable observables. One has to applyquantum operators,whose eigenvalues correspond to sets of possible results of measurements, to the wave functionψand calculate the statistical distributions for measurable quantities.

Quantum harmonic oscillatorsfor a single spinless particle. The oscillations have no trajectory, but are instead represented each as waves; the vertical axis shows the real part (blue) and imaginary part (red) of the wave function. Panels (A-D) show four different standing-wave solutions of theSchrödinger equation.Panels (E–F) show two different wave functions that are solutions of the Schrödinger equation but not standing waves.
The wave function of an initially very localized free particle.

Wave functions can befunctionsof variables other than position, such asmomentum.The information represented by a wave function that is dependent upon position can be converted into a wave function dependent upon momentum and vice versa, by means of aFourier transform.Some particles, likeelectronsandphotons,have nonzerospin,and the wave function for such particles includes spin as an intrinsic, discrete degree of freedom; other discrete variables can also be included, such asisospin.When a system has internal degrees of freedom, the wave function at each point in the continuous degrees of freedom (e.g., a point in space) assigns a complex number foreachpossible value of the discrete degrees of freedom (e.g., z-component of spin). These values are often displayed in acolumn matrix(e.g., a2 × 1column vector for a non-relativistic electron with spin12).

According to thesuperposition principleof quantum mechanics, wave functions can be added together and multiplied by complex numbers to form new wave functions and form aHilbert space.The inner product of two wave functions is a measure of the overlap between the corresponding physical states and is used in the foundational probabilistic interpretation of quantum mechanics, theBorn rule,relating transition probabilities to inner products. TheSchrödinger equationdetermines how wave functions evolve over time, and a wave function behaves qualitatively like otherwaves,such aswater wavesor waves on a string, because the Schrödinger equation is mathematically a type ofwave equation.This explains the name "wave function", and gives rise towave–particle duality.However, the wave function in quantum mechanics describes a kind of physical phenomenon, as of 2023 still open to differentinterpretations,which fundamentally differs from that ofclassic mechanicalwaves.[4][5][6][7][8][9][10]

Historical background

edit

In 1900,Max Planckpostulated the proportionality between the frequencyof a photon and its energy,,[11][12] and in 1916 the corresponding relation between a photon'smomentumandwavelength,,[13] whereis thePlanck constant.In 1923, De Broglie was the first to suggest that the relation,now called theDe Broglie relation,holds formassiveparticles, the chief clue beingLorentz invariance,[14]and this can be viewed as the starting point for the modern development of quantum mechanics. The equations representwave–particle dualityfor both massless and massive particles.

In the 1920s and 1930s, quantum mechanics was developed usingcalculusandlinear algebra.Those who used the techniques of calculus includedLouis de Broglie,Erwin Schrödinger,and others, developing "wave mechanics".Those who applied the methods of linear algebra includedWerner Heisenberg,Max Born,and others, developing "matrix mechanics".Schrödinger subsequently showed that the two approaches were equivalent.[15]

In 1926, Schrödinger published the famous wave equation now named after him, theSchrödinger equation.This equation was based onclassicalconservation of energyusingquantum operatorsand the de Broglie relations and the solutions of the equation are the wave functions for the quantum system.[16]However, no one was clear on how to interpret it.[17]At first, Schrödinger and others thought that wave functions represent particles that are spread out with most of the particle being where the wave function is large.[18]This was shown to be incompatible with the elastic scattering of a wave packet (representing a particle) off a target; it spreads out in all directions.[1] While a scattered particle may scatter in any direction, it does not break up and take off in all directions. In 1926, Born provided the perspective ofprobability amplitude.[1][2][19]This relates calculations of quantum mechanics directly to probabilistic experimental observations. It is accepted as part of theCopenhagen interpretationof quantum mechanics. There are many otherinterpretations of quantum mechanics.In 1927,HartreeandFockmade the first step in an attempt to solve theN-bodywave function, and developed theself-consistency cycle:aniterativealgorithmto approximate the solution. Now it is also known as theHartree–Fock method.[20]TheSlater determinantandpermanent(of amatrix) was part of the method, provided byJohn C. Slater.

Schrödinger did encounter an equation for the wave function that satisfiedrelativisticenergy conservationbeforehe published the non-relativistic one, but discarded it as it predicted negativeprobabilitiesand negativeenergies.In 1927,Klein,Gordonand Fock also found it, but incorporated theelectromagneticinteractionand proved that it wasLorentz invariant.De Broglie also arrived at the same equation in 1928. This relativistic wave equation is now most commonly known as theKlein–Gordon equation.[21]

In 1927,Pauliphenomenologically found a non-relativistic equation to describe spin-1/2 particles in electromagnetic fields, now called thePauli equation.[22]Pauli found the wave function was not described by a single complex function of space and time, but needed two complex numbers, which respectively correspond to the spin +1/2 and −1/2 states of the fermion. Soon after in 1928,Diracfound an equation from the first successful unification ofspecial relativityand quantum mechanics applied to theelectron,now called theDirac equation.In this, the wave function is aspinorrepresented by four complex-valued components:[20]two for the electron and two for the electron'santiparticle,thepositron.In the non-relativistic limit, the Dirac wave function resembles the Pauli wave function for the electron. Later, otherrelativistic wave equationswere found.

Wave functions and wave equations in modern theories

edit

All these wave equations are of enduring importance. The Schrödinger equation and the Pauli equation are under many circumstances excellent approximations of the relativistic variants. They are considerably easier to solve in practical problems than the relativistic counterparts.

TheKlein–Gordon equationand theDirac equation,while being relativistic, do not represent full reconciliation of quantum mechanics and special relativity. The branch of quantum mechanics where these equations are studied the same way as the Schrödinger equation, often calledrelativistic quantum mechanics,while very successful, has its limitations (see e.g.Lamb shift) and conceptual problems (see e.g.Dirac sea).

Relativity makes it inevitable that the number of particles in a system is not constant. For full reconciliation,quantum field theoryis needed.[23] In this theory, the wave equations and the wave functions have their place, but in a somewhat different guise. The main objects of interest are not the wave functions, but rather operators, so calledfield operators(or just fields where "operator" is understood) on the Hilbert space of states (to be described next section). It turns out that the original relativistic wave equations and their solutions are still needed to build the Hilbert space. Moreover, thefree fields operators,i.e. when interactions are assumed not to exist, turn out to (formally) satisfy the same equation as do the fields (wave functions) in many cases.

Thus the Klein–Gordon equation (spin0) and the Dirac equation (spin12) in this guise remain in the theory. Higher spin analogues include theProca equation(spin1),Rarita–Schwinger equation(spin32), and, more generally, theBargmann–Wigner equations.Formasslessfree fields two examples are the free fieldMaxwell equation(spin1) and the free fieldEinstein equation(spin2) for the field operators.[24] All of them are essentially a direct consequence of the requirement ofLorentz invariance.Their solutions must transform under Lorentz transformation in a prescribed way, i.e. under a particularrepresentation of the Lorentz groupand that together with few other reasonable demands, e.g. thecluster decomposition property,[25] with implications forcausalityis enough to fix the equations.

This applies to free field equations; interactions are not included. If a Lagrangian density (including interactions) is available, then the Lagrangian formalism will yield an equation of motion at the classical level. This equation may be very complex and not amenable to solution. Any solution would refer to afixednumber of particles and would not account for the term "interaction" as referred to in these theories, which involves the creation and annihilation of particles and not external potentials as in ordinary "first quantized" quantum theory.

Instring theory,the situation remains analogous. For instance, a wave function in momentum space has the role of Fourier expansion coefficient in a general state of a particle (string) with momentum that is not sharply defined.[26]

Definition (one spinless particle in one dimension)

edit
Travelling waves of a free particle.
Thereal partsof position wave functionΨ(x)and momentum wave functionΦ(p),and corresponding probability densities|Ψ(x)|2and|Φ(p)|2,for one spin-0 particle in onexorpdimension. The colour opacity of the particles corresponds to the probability density (notthe wave function) of finding the particle at positionxor momentump.

For now, consider the simple case of a non-relativistic single particle, withoutspin,in one spatial dimension. More general cases are discussed below.

According to thepostulates of quantum mechanics,thestateof a physical system, at fixed time,is given by the wave function belonging to aseparablecomplexHilbert space.[27][28]As such, theinner productof two wave functionsΨ1andΨ2can be defined as the complex number (at timet)[nb 1]

.

More details are givenbelow.However, the inner product of a wave functionΨwith itself,

,

isalwaysa positive real number. The numberΨ(notΨ2) is called thenormof the wave functionΨ. Theseparable Hilbert spacebeing considered is infinite-dimensional,[nb 2]which means there is no finite set ofsquare integrable functionswhich can be added together in various combinations to create every possiblesquare integrable function.

Position-space wave functions

edit

The state of such a particle is completely described by its wave function,wherexis position andtis time. This is acomplex-valued functionof two real variablesxandt.

For one spinless particle in one dimension, if the wave function is interpreted as aprobability amplitude;the squaremodulusof the wave function, the positive real number is interpreted as theprobability densityfor a measurement of the particle's position at a given timet.The asterisk indicates thecomplex conjugate.If the particle's position ismeasured,its location cannot be determined from the wave function, but is described by aprobability distribution.

Normalization condition

edit

The probability that its positionxwill be in the intervalaxbis the integral of the density over this interval: wheretis the time at which the particle was measured. This leads to thenormalization condition: because if the particle is measured, there is 100% probability that it will besomewhere.

For a given system, the set of all possible normalizable wave functions (at any given time) forms an abstract mathematicalvector space,meaning that it is possible to add together different wave functions, and multiply wave functions by complex numbers. Technically, wave functions form arayin aprojective Hilbert spacerather than an ordinary vector space.

Quantum states as vectors

edit

At a particular instant of time, all values of the wave functionΨ(x,t)are components of a vector. There are uncountably infinitely many of them and integration is used in place of summation. InBra–ket notation,this vector is written and is referred to as a "quantum state vector", or simply "quantum state". There are several advantages to understanding wave functions as representing elements of an abstract vector space:

  • All the powerful tools oflinear algebracan be used to manipulate and understand wave functions. For example:
    • Linear algebra explains how a vector space can be given abasis,and then any vector in the vector space can be expressed in this basis. This explains the relationship between a wave function in position space and a wave function in momentum space and suggests that there are other possibilities too.
    • Bra–ket notationcan be used to manipulate wave functions.
  • The idea thatquantum statesare vectors in an abstract vector space is completely general in all aspects of quantum mechanics andquantum field theory,whereas the idea that quantum states are complex-valued "wave" functions of space is only true in certain situations.

The time parameter is often suppressed, and will be in the following. Thexcoordinate is a continuous index. The|xare calledimproper vectorswhich, unlikeproper vectorsthat are normalizable to unity, can only be normalized to a Dirac delta function.[nb 3][nb 4][29] thus and which illuminates theidentity operator which is analogous to completeness relation of orthonormal basis in N-dimensional Hilbert space.

Finding the identity operator in a basis allows the abstract state to be expressed explicitly in a basis, and more (the inner product between two state vectors, and other operators for observables, can be expressed in the basis).

Momentum-space wave functions

edit

The particle also has a wave function inmomentum space: wherepis themomentumin one dimension, which can be any value from−∞to+∞,andtis time.

Analogous to the position case, the inner product of two wave functionsΦ1(p,t)andΦ2(p,t)can be defined as:

One particular solution to the time-independent Schrödinger equation is aplane wave,which can be used in the description of a particle with momentum exactlyp,since it is an eigenfunction of the momentum operator. These functions are not normalizable to unity (they are not square-integrable), so they are not really elements of physical Hilbert space. The set forms what is called themomentum basis.This "basis" is not a basis in the usual mathematical sense. For one thing, since the functions are not normalizable, they are insteadnormalized to a delta function,[nb 4]

For another thing, though they are linearly independent, there are too many of them (they form an uncountable set) for a basis for physical Hilbert space. They can still be used to express all functions in it using Fourier transforms as described next.

Relations between position and momentum representations

edit

Thexandprepresentations are

Now take the projection of the stateΨonto eigenfunctions of momentum using the last expression in the two equations,

Then utilizing the known expression for suitably normalized eigenstates of momentum in the position representation solutions of thefree Schrödinger equation one obtains

Likewise, using eigenfunctions of position,

The position-space and momentum-space wave functions are thus found to beFourier transformsof each other.[30]They are two representations of the same state; containing the same information, and either one is sufficient to calculate any property of the particle.

In practice, the position-space wave function is used much more often than the momentum-space wave function. The potential entering the relevant equation (Schrödinger, Dirac, etc.) determines in which basis the description is easiest. For theharmonic oscillator,xandpenter symmetrically, so there it does not matter which description one uses. The same equation (modulo constants) results. From this, with a little bit of afterthought, it follows that solutions to the wave equation of the harmonic oscillator are eigenfunctions of the Fourier transform inL2.[nb 5]

Definitions (other cases)

edit

Following are the general forms of the wave function for systems in higher dimensions and more particles, as well as including other degrees of freedom than position coordinates or momentum components.

Finite dimensional Hilbert space

edit

WhileHilbert spacesoriginally refer to infinite dimensionalcompleteinner product spacesthey, by definition, include finite dimensionalcompleteinner product spacesas well.[31] In physics, they are often referred to asfinite dimensional Hilbert spaces.[32]For every finite dimensional Hilbert space there existorthonormal basiskets thatspanthe entire Hilbert space.

If theN-dimensional setis orthonormal, then the projection operator for the space spanned by these states is given by:

where the projection is equivalent to identity operator sincespans the entire Hilbert space, thus leaving any vector from Hilbert space unchanged. This is also known as completeness relation of finite dimensional Hilbert space.

The wavefunction is instead given by:

where,is a set of complex numbers which can be used to construct a wavefunction using the above formula.

Probability interpretation of inner product

edit

If the setare eigenkets of a non-degenerateobservablewith eigenvalues,by thepostulates of quantum mechanics,the probability of measuring the observable to beis given according toBorn ruleas:[33]

For non-degenerateof some observable, if eigenvalueshave subset of eigenvectors labelled as,by thepostulates of quantum mechanics,the probability of measuring the observable to beis given by:

whereis a projection operator of states to subspace spanned by.The equality follows due to orthogonal nature of.

Hence,which specify state of the quantum mechanical system, have magnitudes whose square gives the probability of measuring the respectivestate.

Physical significance of relative phase

edit

While the relative phase has observable effects in experiments, the global phase of the system is experimentally indistinguishable. For example in a particle in superposition of two states, the global phase of the particle cannot be distinguished by finding expectation value of observable or probabilities of observing different states but relative phases can affect the expectation values of observables.

While the overall phase of the system is considered to be arbitrary, the relative phase for each stateof a prepared state in superposition can be determined based on physical meaning of the prepared state and its symmetry. For example, the construction of spin states along x direction as a superposition of spin states along z direction, can done by applying appropriate rotation transformation on the spin along z states which provides appropriate phase of the states relative to each other.

Application to include spin

edit

An example of finite dimensional Hilbert space can be constructed using spin eigenkets of-spin particles which forms adimensionalHilbert space.However, the general wavefunction of a particle that fully describes its state, is always from an infinite dimensionalHilbert spacesince it involves a tensor product withHilbert spacerelating to the position or momentum of the particle. Nonetheless, the techniques developed for finite dimensional Hilbert space are useful since they can either be treated independently or treated in consideration of linearity of tensor product.

Since thespin operatorfor a given-spin particles can be represented as a finitematrixwhich acts onindependent spin vector components, it is usually preferable to denote spin components using matrix/column/row notation as applicable.

For example, each|szis usually identified as a column vector:

but it is a common abuse of notation, because the kets|szare not synonymous or equal to the column vectors. Column vectors simply provide a convenient way to express the spin components.

Corresponding to the notation, the z-component spin operator can be written as:

since theeigenvectorsof z-component spin operator are the above column vectors, with eigenvalues being the corresponding spin quantum numbers.

Corresponding to the notation, a vector from such a finite dimensional Hilbert space is hence represented as:

whereare corresponding complex numbers.

In the following discussion involving spin, the complete wavefunction is considered as tensor product of spin states from finite dimensional Hilbert spaces and the wavefunction which was previously developed. The basis for this Hilbert space are hence considered:.

One-particle states in 3d position space

edit

The position-space wave function of a single particle without spin in three spatial dimensions is similar to the case of one spatial dimension above:whereris theposition vectorin three-dimensional space, andtis time. As alwaysΨ(r, t)is a complex-valued function of real variables. As a single vector inDirac notation

All the previous remarks on inner products, momentum space wave functions, Fourier transforms, and so on extend to higher dimensions.

For a particle withspin,ignoring the position degrees of freedom, the wave function is a function of spin only (time is a parameter); whereszis thespin projection quantum numberalong thezaxis. (Thezaxis is an arbitrary choice; other axes can be used instead if the wave function is transformed appropriately, see below.) Theszparameter, unlikerandt,is adiscrete variable.For example, for aspin-1/2particle,szcan only be+1/2or−1/2,and not any other value. (In general, for spins,szcan bes,s− 1,..., −s+ 1, −s). Inserting each quantum number gives a complex valued function of space and time, there are2s+ 1of them. These can be arranged into acolumn vector

Inbra–ket notation,these easily arrange into the components of a vector:

The entire vectorξis a solution of the Schrödinger equation (with a suitable Hamiltonian), which unfolds to a coupled system of2s+ 1ordinary differential equations with solutionsξ(s,t),ξ(s− 1,t),...,ξ(−s,t).The term "spin function" instead of "wave function" is used by some authors. This contrasts the solutions to position space wave functions, the position coordinates being continuous degrees of freedom, because then the Schrödinger equation does take the form of a wave equation.

More generally, for a particle in 3d with any spin, the wave function can be written in "position–spin space" as: and these can also be arranged into a column vector in which the spin dependence is placed in inde xing the entries, and the wave function is a complex vector-valued function of space and time only.

All values of the wave function, not only for discrete butcontinuous variablesalso, collect into a single vector

For a single particle, thetensor productof its position state vector|ψand spin state vector|ξgives the composite position-spin state vector with the identifications

The tensor product factorization of energy eigenstates is always possible if the orbital and spin angular momenta of the particle are separable in theHamiltonian operatorunderlying the system's dynamics (in other words, the Hamiltonian can be split into the sum of orbital and spin terms[34]). The time dependence can be placed in either factor, and time evolution of each can be studied separately. Under such Hamiltonians, any tensor product state evolves into another tensor product state, which essentially means any unentangled state remains unentangled under time evolution. This is said to happen when there is no physical interaction between the states of the tensor products. In the case of non separable Hamiltonians, energy eigenstates are said to be some linear combination of such states, which need not be factorizable; examples include a particle in amagnetic field,andspin–orbit coupling.

The preceding discussion is not limited to spin as a discrete variable, the totalangular momentumJmay also be used.[35]Other discrete degrees of freedom, likeisospin,can expressed similarly to the case of spin above.

Many-particle states in 3d position space

edit
Traveling waves of two free particles, with two of three dimensions suppressed. Top is position-space wave function, bottom is momentum-space wave function, with corresponding probability densities.

If there are many particles, in general there is only one wave function, not a separate wave function for each particle. The fact thatonewave function describesmanyparticles is what makesquantum entanglementand theEPR paradoxpossible. The position-space wave function forNparticles is written:[20] whereriis the position of thei-th particle in three-dimensional space, andtis time. Altogether, this is a complex-valued function of3N+ 1real variables.

In quantum mechanics there is a fundamental distinction betweenidentical particlesanddistinguishableparticles. For example, any two electrons are identical and fundamentally indistinguishable from each other; the laws of physics make it impossible to "stamp an identification number" on a certain electron to keep track of it.[30]This translates to a requirement on the wave function for a system of identical particles: where the+sign occurs if the particles areall bosonsandsign if they areall fermions.In other words, the wave function is either totally symmetric in the positions of bosons, or totally antisymmetric in the positions of fermions.[36]The physical interchange of particles corresponds to mathematically switching arguments in the wave function. The antisymmetry feature of fermionic wave functions leads to thePauli principle.Generally, bosonic and fermionic symmetry requirements are the manifestation ofparticle statisticsand are present in other quantum state formalisms.

ForNdistinguishableparticles (no two beingidentical,i.e. no two having the same set of quantum numbers), there is no requirement for the wave function to be either symmetric or antisymmetric.

For a collection of particles, some identical with coordinatesr1,r2,...and others distinguishablex1,x2,...(not identical with each other, and not identical to the aforementioned identical particles), the wave function is symmetric or antisymmetric in the identical particle coordinatesrionly:

Again, there is no symmetry requirement for the distinguishable particle coordinatesxi.

The wave function forNparticles each with spin is the complex-valued function

Accumulating all these components into a single vector,

For identical particles, symmetry requirements apply to both position and spin arguments of the wave function so it has the overall correct symmetry.

The formulae for the inner products are integrals over all coordinates or momenta and sums over all spin quantum numbers. For the general case ofNparticles with spin in 3-d, this is altogetherNthree-dimensionalvolume integralsandNsums over the spins. The differential volume elementsd3riare also written "dVi"or"dxidyidzi".

The multidimensional Fourier transforms of the position or position–spin space wave functions yields momentum or momentum–spin space wave functions.

Probability interpretation

edit

For the general case ofNparticles with spin in 3d, ifΨis interpreted as a probability amplitude, the probability density is

and the probability that particle 1 is in regionR1with spinsz1=m1andparticle 2 is in regionR2with spinsz2=m2etc. at timetis the integral of the probability density over these regions and evaluated at these spin numbers:

Physical significance of phase

edit

In non-relativistic quantum mechanics, it can be shown using Schrodinger's time dependent wave equation that the equation:

is satisfied, whereis the probability density and,is known as theprobability fluxin accordance with the continuity equation form of the above equation.

Using the following expression for wavefunction:whereis the probability density andis the phase of the wavefunction, it can be shown that:

Hence the spacial variation of phase characterizes theprobability flux.

In classical analogy, for,the quantityis analogous with velocity. Note that this does not imply a literal interpretation ofas velocity since velocity and position cannot be simultaneously determined as per theuncertainty principle.Substituting the form of wavefunction in Schrodinger's time dependent wave equation, and taking the classical limit,:

Which is analogous toHamilton-Jacobi equationfrom classical mechanics. This interpretation fits withHamilton–Jacobi theory,in which,whereSisHamilton's principal function.[37]

Time dependence

edit

For systems in time-independent potentials, the wave function can always be written as a function of the degrees of freedom multiplied by a time-dependent phase factor, the form of which is given by the Schrödinger equation. ForNparticles, considering their positions only and suppressing other degrees of freedom, whereEis the energy eigenvalue of the system corresponding to the eigenstateΨ.Wave functions of this form are calledstationary states.

The time dependence of the quantum state and the operators can be placed according to unitary transformations on the operators and states. For any quantum state|Ψ⟩and operatorO,in the Schrödinger picture|Ψ(t)⟩changes with time according to the Schrödinger equation whileOis constant. In the Heisenberg picture it is the other way round,|Ψ⟩is constant whileO(t)evolves with time according to the Heisenberg equation of motion. The Dirac (or interaction) picture is intermediate, time dependence is places in both operators and states which evolve according to equations of motion. It is useful primarily in computingS-matrix elements.[38]

Non-relativistic examples

edit

The following are solutions to the Schrödinger equation for one non-relativistic spinless particle.

Finite potential barrier

edit
Scattering at a finite potential barrier of heightV0.The amplitudes and direction of left and right moving waves are indicated. In red, those waves used for the derivation of the reflection and transmission amplitude.E>V0for this illustration.

One of the most prominent features of wave mechanics is the possibility for a particle to reach a location with a prohibitive (in classical mechanics)force potential.A common model is the "potential barrier",the one-dimensional case has the potential and the steady-state solutions to the wave equation have the form (for some constantsk,κ)

Note that these wave functions are not normalized; seescattering theoryfor discussion.

The standard interpretation of this is as a stream of particles being fired at the step from the left (the direction of negativex): settingAr= 1corresponds to firing particles singly; the terms containingArandCrsignify motion to the right, whileAlandCl– to the left. Under this beam interpretation, putCl= 0since no particles are coming from the right. By applying the continuity of wave functions and their derivatives at the boundaries, it is hence possible to determine the constants above.

3D confined electron wave functions in a quantum dot. Here, rectangular and triangular-shaped quantum dots are shown. Energy states in rectangular dots are mores-typeandp-type.However, in a triangular dot the wave functions are mixed due to confinement symmetry. (Click for animation)

In a semiconductorcrystallitewhose radius is smaller than the size of itsexcitonBohr radius,the excitons are squeezed, leading toquantum confinement.The energy levels can then be modeled using theparticle in a boxmodel in which the energy of different states is dependent on the length of the box.

Quantum harmonic oscillator

edit

The wave functions for thequantum harmonic oscillatorcan be expressed in terms ofHermite polynomialsHn,they are wheren= 0, 1, 2,....

The electron probability density for the first fewhydrogen atomelectronorbitalsshown as cross-sections. These orbitals form anorthonormal basisfor the wave function of the electron. Different orbitals are depicted with different scale.

Hydrogen atom

edit

The wave functions of an electron in aHydrogen atomare expressed in terms ofspherical harmonicsandgeneralized Laguerre polynomials(these are defined differently by different authors—see main article on them and the hydrogen atom).

It is convenient to use spherical coordinates, and the wave function can be separated into functions of each coordinate,[39] whereRare radial functions andYm
(θ,φ)
arespherical harmonicsof degreeand orderm.This is the only atom for which the Schrödinger equation has been solved exactly. Multi-electron atoms require approximative methods. The family of solutions is:[40] wherea0= 4πε0ħ2/mee2is theBohr radius, L2+ 1
n− 1
are thegeneralized Laguerre polynomialsof degreen− 1,n= 1, 2,...is theprincipal quantum number,= 0, 1,...,n− 1theazimuthal quantum number,m= −,−+ 1,...,− 1,themagnetic quantum number.Hydrogen-like atomshave very similar solutions.

This solution does not take into account the spin of the electron.

In the figure of the hydrogen orbitals, the 19 sub-images are images of wave functions in position space (their norm squared). The wave functions represent the abstract state characterized by the triple of quantum numbers(n,,m),in the lower right of each image. These are the principal quantum number, the orbital angular momentum quantum number, and the magnetic quantum number. Together with one spin-projection quantum number of the electron, this is a complete set of observables.

The figure can serve to illustrate some further properties of the function spaces of wave functions.

  • In this case, the wave functions are square integrable. One can initially take the function space as the space of square integrable functions, usually denotedL2.
  • The displayed functions are solutions to the Schrödinger equation. Obviously, not every function inL2satisfies the Schrödinger equation for the hydrogen atom. The function space is thus a subspace ofL2.
  • The displayed functions form part of a basis for the function space. To each triple(n,,m),there corresponds a basis wave function. If spin is taken into account, there are two basis functions for each triple. The function space thus has acountable basis.
  • The basis functions are mutuallyorthonormal.

Wave functions and function spaces

edit

The concept offunction spacesenters naturally in the discussion about wave functions. A function space is a set of functions, usually with some defining requirements on the functions (in the present case that they aresquare integrable), sometimes with analgebraic structureon the set (in the present case avector spacestructure with aninner product), together with atopologyon the set. The latter will sparsely be used here, it is only needed to obtain a precise definition of what it means for a subset of a function space to beclosed.It will be concluded below that the function space of wave functions is aHilbert space.This observation is the foundation of the predominant mathematical formulation of quantum mechanics.

Vector space structure

edit

A wave function is an element of a function space partly characterized by the following concrete and abstract descriptions.

  • The Schrödinger equation is linear. This means that the solutions to it, wave functions, can be added and multiplied by scalars to form a new solution. The set of solutions to the Schrödinger equation is a vector space.
  • The superposition principle of quantum mechanics. IfΨandΦare two states in the abstract space ofstatesof a quantum mechanical system, andaandbare any two complex numbers, thenaΨ +bΦis a valid state as well. (Whether thenull vectorcounts as a valid state ( "no system present" ) is a matter of definition. The null vector doesnotat any rate describe thevacuum statein quantum field theory.) The set of allowable states is a vector space.

This similarity is of course not accidental. There are also a distinctions between the spaces to keep in mind.

Representations

edit

Basic states are characterized by a set of quantum numbers. This is a set of eigenvalues of amaximal setofcommutingobservables.Physical observables are represented by linear operators, also called observables, on the vectors space. Maximality means that there can be added to the set no further algebraically independent observables that commute with the ones already present. A choice of such a set may be called a choice ofrepresentation.

  • It is a postulate of quantum mechanics that a physically observable quantity of a system, such as position, momentum, or spin, is represented by a linearHermitian operatoron the state space. The possible outcomes of measurement of the quantity are theeigenvaluesof the operator.[18]At a deeper level, most observables, perhaps all, arise as generators ofsymmetries.[18][41][nb 6]
  • The physical interpretation is that such a set represents what can – in theory – simultaneously be measured with arbitrary precision. TheHeisenberg uncertainty relationprohibits simultaneous exact measurements of two non-commuting observables.
  • The set is non-unique. It may for a one-particle system, for example, be position and spinz-projection,(x,Sz),or it may be momentum and spiny-projection,(p,Sy).In this case, the operator corresponding to position (amultiplication operatorin the position representation) and the operator corresponding to momentum (adifferential operatorin the position representation) do not commute.
  • Once a representation is chosen, there is still arbitrariness. It remains to choose a coordinate system. This may, for example, correspond to a choice ofx,y- andz-axis, or a choice ofcurvilinear coordinatesas exemplified by thespherical coordinatesused for the Hydrogen atomic wave functions. This final choice also fixes a basis in abstract Hilbert space. The basic states are labeled by the quantum numbers corresponding to the maximal set of commuting observables and an appropriate coordinate system.[nb 7]

The abstract states are "abstract" only in that an arbitrary choice necessary for a particularexplicitdescription of it is not given. This is the same as saying that no choice of maximal set of commuting observables has been given. This is analogous to a vector space without a specified basis. Wave functions corresponding to a state are accordingly not unique. This non-uniqueness reflects the non-uniqueness in the choice of a maximal set of commuting observables. For one spin particle in one dimension, to a particular state there corresponds two wave functions,Ψ(x,Sz)andΨ(p,Sy),both describing thesamestate.

  • For each choice of maximal commuting sets of observables for the abstract state space, there is a corresponding representation that is associated to a function space of wave functions.
  • Between all these different function spaces and the abstract state space, there are one-to-one correspondences (here disregarding normalization and unobservable phase factors), the common denominator here being a particular abstract state. The relationship between the momentum and position space wave functions, for instance, describing the same state is theFourier transform.

Each choice of representation should be thought of as specifying a unique function space in which wave functions corresponding to that choice of representation lives. This distinction is best kept, even if one could argue that two such function spaces are mathematically equal, e.g. being the set of square integrable functions. One can then think of the function spaces as two distinct copies of that set.

Inner product

edit

There is an additional algebraic structure on the vector spaces of wave functions and the abstract state space.

  • Physically, different wave functions are interpreted to overlap to some degree. A system in a stateΨthat doesnotoverlap with a stateΦcannot be found to be in the stateΦupon measurement. But ifΦ12,…overlapΨtosomedegree, there is a chance that measurement of a system described byΨwill be found in statesΦ12,….Alsoselection rulesare observed apply. These are usually formulated in the preservation of some quantum numbers. This means that certain processes allowable from some perspectives (e.g. energy and momentum conservation) do not occur because the initial and finaltotalwave functions do not overlap.
  • Mathematically, it turns out that solutions to the Schrödinger equation for particular potentials areorthogonalin some manner, this is usually described by an integralwherem,nare (sets of) indices (quantum numbers) labeling different solutions, the strictly positive functionwis called a weight function, andδmnis theKronecker delta.The integration is taken over all of the relevant space.

This motivates the introduction of aninner producton the vector space of abstract quantum states, compatible with the mathematical observations above when passing to a representation. It is denoted(Ψ, Φ),or in theBra–ket notation⟨Ψ|Φ⟩.It yields a complex number. With the inner product, the function space is aninner product space.The explicit appearance of the inner product (usually an integral or a sum of integrals) depends on the choice of representation, but the complex number(Ψ, Φ)does not. Much of the physical interpretation of quantum mechanics stems from theBorn rule.It states that the probabilitypof finding upon measurement the stateΦgiven the system is in the stateΨis whereΦandΨare assumed normalized. Consider ascattering experiment.In quantum field theory, ifΦoutdescribes a state in the "distant future" (an "out state" ) after interactions between scattering particles have ceased, andΨinan "in state" in the "distant past", then the quantitiesoutin),withΦoutandΨinvarying over a complete set of in states and out states respectively, is called theS-matrixorscattering matrix.Knowledge of it is, effectively, havingsolvedthe theory at hand, at least as far as predictions go. Measurable quantities such asdecay ratesandscattering cross sectionsare calculable from the S-matrix.[42]

Hilbert space

edit

The above observations encapsulate the essence of the function spaces of which wave functions are elements. However, the description is not yet complete. There is a further technical requirement on the function space, that ofcompleteness,that allows one to take limits of sequences in the function space, and be ensured that, if the limit exists, it is an element of the function space. A complete inner product space is called aHilbert space.The property of completeness is crucial in advanced treatments and applications of quantum mechanics. For instance, the existence ofprojection operatorsororthogonal projectionsrelies on the completeness of the space.[43]These projection operators, in turn, are essential for the statement and proof of many useful theorems, e.g. thespectral theorem.It is not very important in introductory quantum mechanics, and technical details and links may be found in footnotes like the one that follows.[nb 8] The spaceL2is a Hilbert space, with inner product presented later. The function space of the example of the figure is a subspace ofL2.A subspace of a Hilbert space is a Hilbert space if it is closed.

In summary, the set of all possible normalizable wave functions for a system with a particular choice of basis, together with the null vector, constitute a Hilbert space.

Not all functions of interest are elements of some Hilbert space, sayL2.The most glaring example is the set of functionse2πip·xh.These are plane wave solutions of the Schrödinger equation for afree particlethat are not normalizable, hence not inL2.But they are nonetheless fundamental for the description. One can, using them, express functions thatarenormalizable usingwave packets.They are, in a sense, a basis (but not a Hilbert space basis, nor aHamel basis) in which wave functions of interest can be expressed. There is also the artifact "normalization to a delta function" that is frequently employed for notational convenience, see further down. The delta functions themselves are not square integrable either.

The above description of the function space containing the wave functions is mostly mathematically motivated. The function spaces are, due to completeness, verylargein a certain sense. Not all functions are realistic descriptions of any physical system. For instance, in the function spaceL2one can find the function that takes on the value0for all rational numbers and-ifor the irrationals in the interval[0, 1].Thisissquare integrable,[nb 9] but can hardly represent a physical state.

Common Hilbert spaces

edit

While the space of solutions as a whole is a Hilbert space there are many other Hilbert spaces that commonly occur as ingredients.

  • Square integrable complex valued functions on the interval[0, 2π].The set{eint/2π,nZ}is a Hilbert space basis, i.e. a maximal orthonormal set.
  • TheFourier transformtakes functions in the above space to elements ofl2(Z),the space ofsquare summablefunctionsZC.The latter space is a Hilbert space and the Fourier transform is an isomorphism of Hilbert spaces.[nb 10]Its basis is{ei,iZ}withei(j) =δij,i,jZ.
  • The most basic example of spanning polynomials is in the space of square integrable functions on the interval[–1, 1]for which theLegendre polynomialsis a Hilbert space basis (complete orthonormal set).
  • The square integrable functions on theunit sphereS2is a Hilbert space. The basis functions in this case are thespherical harmonics.The Legendre polynomials are ingredients in the spherical harmonics. Most problems with rotational symmetry will have "the same" (known) solution with respect to that symmetry, so the original problem is reduced to a problem of lower dimensionality.
  • Theassociated Laguerre polynomialsappear in the hydrogenic wave function problem after factoring out the spherical harmonics. These span the Hilbert space of square integrable functions on the semi-infinite interval[0, ∞).

More generally, one may consider a unified treatment of all second order polynomial solutions to theSturm–Liouville equationsin the setting of Hilbert space. These include the Legendre and Laguerre polynomials as well asChebyshev polynomials,Jacobi polynomialsandHermite polynomials.All of these actually appear in physical problems, the latter ones in theharmonic oscillator,and what is otherwise a bewildering maze of properties ofspecial functionsbecomes an organized body of facts. For this, seeByron & Fuller (1992,Chapter 5).

There occurs also finite-dimensional Hilbert spaces. The spaceCnis a Hilbert space of dimensionn.The inner product is the standard inner product on these spaces. In it, the "spin part" of a single particle wave function resides.

  • In the non-relativistic description of an electron one hasn= 2and the total wave function is a solution of thePauli equation.
  • In the corresponding relativistic treatment,n= 4and the wave function solves theDirac equation.

With more particles, the situations is more complicated. One has to employtensor productsand use representation theory of the symmetry groups involved (therotation groupand theLorentz grouprespectively) to extract from the tensor product the spaces in which the (total) spin wave functions reside. (Further problems arise in the relativistic case unless the particles are free.[44]See theBethe–Salpeter equation.) Corresponding remarks apply to the concept ofisospin,for which the symmetry group isSU(2).The models of the nuclear forces of the sixties (still useful today, seenuclear force) used the symmetry groupSU(3).In this case, as well, the part of the wave functions corresponding to the inner symmetries reside in someCnor subspaces of tensor products of such spaces.

  • In quantum field theory the underlying Hilbert space isFock space.It is built from free single-particle states, i.e. wave functions when a representation is chosen, and can accommodate any finite, not necessarily constant in time, number of particles. The interesting (or rather thetractable) dynamics lies not in the wave functions but in thefield operatorsthat are operators acting on Fock space. Thus theHeisenberg pictureis the most common choice (constant states, time varying operators).

Due to the infinite-dimensional nature of the system, the appropriate mathematical tools are objects of study infunctional analysis.

Simplified description

edit
Continuity of the wave function and its first spatial derivative (in thexdirection,yandzcoordinates not shown), at some timet.

Not all introductory textbooks take the long route and introduce the full Hilbert space machinery, but the focus is on the non-relativistic Schrödinger equation in position representation for certain standard potentials. The following constraints on the wave function are sometimes explicitly formulated for the calculations and physical interpretation to make sense:[45][46]

  • The wave function must besquare integrable.This is motivated by the Copenhagen interpretation of the wave function as a probability amplitude.
  • It must be everywherecontinuousand everywherecontinuously differentiable.This is motivated by the appearance of the Schrödinger equation for most physically reasonable potentials.

It is possible to relax these conditions somewhat for special purposes.[nb 11] If these requirements are not met, it is not possible to interpret the wave function as a probability amplitude.[47]Note that exceptions can arise to the continuity of derivatives rule at points of infinite discontinuity of potential field. For example, inparticle in a boxwhere the derivative of wavefunction can be discontinuous at the boundary of the box where the potential is known to have infinite discontinuity.

This does not alter the structure of the Hilbert space that these particular wave functions inhabit, but the subspace of the square-integrable functionsL2,which is a Hilbert space, satisfying the second requirementis not closedinL2,hence not a Hilbert space in itself.[nb 12] The functions that does not meet the requirements are still needed for both technical and practical reasons.[nb 13][nb 14]

More on wave functions and abstract state space

edit

As has been demonstrated, the set of all possible wave functions in some representation for a system constitute an in generalinfinite-dimensionalHilbert space. Due to the multiple possible choices of representation basis, these Hilbert spaces are not unique. One therefore talks about an abstract Hilbert space,state space,where the choice of representation and basis is left undetermined. Specifically, each state is represented as an abstract vector in state space.[48]A quantum state|Ψ⟩in any representation is generally expressed as a vector[citation needed] where

  • |α,ωthe basis vectors of the chosen representation
  • dmω=12...madifferential volume elementin the continuous degrees of freedom
  • a component of the vector,called thewave functionof the system
  • α= (α1,α2,...,αn)dimensionless discrete quantum numbers
  • ω= (ω1,ω2,...,ωm)continuous variables (not necessarily dimensionless)

These quantum numbers index the components of the state vector. More, allαare in ann-dimensionalsetA=A1×A2×... ×Anwhere eachAiis the set of allowed values forαi;allωare in anm-dimensional "volume"Ω ⊆ ℝmwhereΩ = Ω1× Ω2×... × Ωmand eachΩiRis the set of allowed values forωi,asubsetof thereal numbersR.For generalitynandmare not necessarily equal.

Example:

  1. For a single particle in 3d with spins,neglecting other degrees of freedom, using Cartesian coordinates, we could takeα= (sz)for the spin quantum number of the particle along the z direction, andω= (x,y,z)for the particle's position coordinates. HereA= {−s,−s+ 1,...,s− 1,s}is the set of allowed spin quantum numbers andΩ =R3is the set of all possible particle positions throughout 3d position space.
  2. An alternative choice isα= (sy)for the spin quantum number along the y direction andω= (px,py,pz)for the particle's momentum components. In this caseAandΩare the same as before.

Theprobability densityof finding the system at timeat state|α,ωis

The probability of finding system withαin some or all possible discrete-variable configurations,DA,andωin some or all possible continuous-variable configurations,C⊆ Ω,is the sum and integral over the density,[nb 15]

Since the sum of all probabilities must be 1, the normalization condition must hold at all times during the evolution of the system.

The normalization condition requiresρ dmωto be dimensionless, bydimensional analysisΨmust have the same units as(ω1ω2...ωm)−1/2.

Ontology

edit

Whether the wave function exists in reality, and what it represents, are major questions in theinterpretation of quantum mechanics.Many famous physicists of a previous generation puzzled over this problem, such asErwin Schrödinger,Albert EinsteinandNiels Bohr.Some advocate formulations or variants of theCopenhagen interpretation(e.g. Bohr,Eugene WignerandJohn von Neumann) while others, such asJohn Archibald WheelerorEdwin Thompson Jaynes,take the more classical approach[49]and regard the wave function as representing information in the mind of the observer, i.e. a measure of our knowledge of reality. Some, including Schrödinger,David BohmandHugh Everett IIIand others, argued that the wave function must have an objective, physical existence. Einstein thought that a complete description of physical reality should refer directly to physical space and time, as distinct from the wave function, which refers to an abstract mathematical space.[50]

See also

edit

Notes

edit

Remarks

edit
  1. ^The functions are here assumed to be elements ofL2,the space of square integrable functions. The elements of this space are more precisely equivalence classes of square integrable functions, two functions declared equivalent if they differ on a set ofLebesgue measure0.This is necessary to obtain an inner product (that is,(Ψ, Ψ) = 0 ⇒ Ψ ≡ 0) as opposed to asemi-inner product.The integral is taken to be theLebesgue integral.This is essential for completeness of the space, thus yielding a complete inner product space = Hilbert space.
  2. ^In quantum mechanics, onlyseparable Hilbert spacesare considered, which usingZorn's Lemma,implies it admits a countably infiniteSchauder basisrather than an orthonormal basis in the sense of linear algebra (Hamel basis).
  3. ^As, technically, they are not in the Hilbert space. SeeSpectral theoremfor more details.
  4. ^abAlso called "Dirac orthonormality", according toGriffiths, David J.Introduction to Quantum Mechanics(3rd ed.).
  5. ^The Fourier transform viewed as a unitary operator on the spaceL2has eigenvalues±1, ±i.The eigenvectors are "Hermite functions", i.e.Hermite polynomialsmultiplied by aGaussian function.SeeByron & Fuller (1992)for a description of the Fourier transform as a unitary transformation. For eigenvalues and eigenvalues, refer to Problem 27 Ch. 9.
  6. ^For this statement to make sense, the observables need to be elements of a maximal commuting set. To see this, it is a simple matter to note that, for example, the momentum operator of the i'th particle in a n-particle system isnota generator of any symmetry in nature. On the other hand, thetotalmomentumisa generator of a symmetry in nature; the translational symmetry.
  7. ^The resulting basis may or may not technically be a basis in the mathematical sense of Hilbert spaces. For instance, states of definite position and definite momentum are not square integrable. This may be overcome with the use ofwave packetsor by enclosing the system in a "box". See further remarks below.
  8. ^In technical terms, this is formulated the following way. The inner product yields anorm.This norm, in turn, induces ametric.If this metric iscomplete,then the aforementioned limits will be in the function space. The inner product space is then called complete. A complete inner product space is aHilbert space.The abstract state space is always taken as a Hilbert space. The matching requirement for the function spaces is a natural one. The Hilbert space property of the abstract state space was originally extracted from the observation that the function spaces forming normalizable solutions to the Schrödinger equation are Hilbert spaces.
  9. ^As is explained in a later footnote, the integral must be taken to be theLebesgue integral,theRiemann integralis not sufficient.
  10. ^Conway 1990.This means that inner products, hence norms, are preserved and that the mapping is a bounded, hence continuous, linear bijection. The property of completeness is preserved as well. Thus this is the right concept of isomorphism in thecategoryof Hilbert spaces.
  11. ^One such relaxation is that the wave function must belong to theSobolev spaceW1,2.It means that it is differentiable in the sense ofdistributions,and itsgradientissquare-integrable.This relaxation is necessary for potentials that are not functions but are distributions, such as theDirac delta function.
  12. ^It is easy to visualize a sequence of functions meeting the requirement that converges to adiscontinuousfunction. For this, modify an example given inInner product space#Some examples.This element thoughisan element ofL2.
  13. ^For instance, inperturbation theoryone may construct a sequence of functions approximating the true wave function. This sequence will be guaranteed to converge in a larger space, but without the assumption of a full-fledged Hilbert space, it will not be guaranteed that the convergence is to a function in the relevant space and hence solving the original problem.
  14. ^Some functions not being square-integrable, like the plane-wave free particle solutions are necessary for the description as outlined in a previous note and also further below.
  15. ^Here:is a multiple sum.

Citations

edit
  1. ^abcBorn 1926a,translated inWheeler & Zurek 1983at pages 52–55.
  2. ^abBorn 1926b,translated inLudwig 1968,pp. 206–225. AlsohereArchived2020-12-01 at theWayback Machine.
  3. ^Born, M.(1954).
  4. ^Born 1927,pp. 354–357.
  5. ^Heisenberg 1958,p. 143.
  6. ^Heisenberg, W.(1927/1985/2009). Heisenberg is translated byCamilleri 2009,p. 71, (fromBohr 1985,p. 142).
  7. ^Murdoch 1987,p. 43.
  8. ^de Broglie 1960,p. 48.
  9. ^Landau & Lifshitz 1977,p. 6.
  10. ^Newton 2002,pp. 19–21.
  11. ^"Planck - A very short biography of Planck".spark.iop.org.Institute of Physics.Retrieved12 February2023.
  12. ^C/CS Pys C191:Representations and Wave Functions 》 1. Planck-Einstein Relation E=hv(PDF).EESC Instructional and Electronics Support,University of California, Berkeley.30 September 2008. p. 1.Retrieved12 February2023.
  13. ^Einstein 1916,pp. 47–62, and a nearly identical versionEinstein 1917,pp. 121–128 translated inter Haar 1967,pp. 167–183.
  14. ^de Broglie 1923,pp. 507–510, 548, 630.
  15. ^Hanle 1977,pp. 606–609.
  16. ^Schrödinger 1926,pp. 1049–1070.
  17. ^Tipler, Mosca & Freeman 2008.
  18. ^abcWeinberg 2013.
  19. ^Young & Freedman 2008,p. 1333.
  20. ^abcAtkins 1974.
  21. ^Martin & Shaw 2008.
  22. ^Pauli 1927,pp. 601–623..
  23. ^Weinberg (2002)takes the standpoint that quantum field theory appears the way it does because it is theonlyway to reconcile quantum mechanics with special relativity.
  24. ^Weinberg (2002)See especially chapter 5, where some of these results are derived.
  25. ^Weinberg 2002Chapter 4.
  26. ^Zwiebach 2009.
  27. ^Applications of Quantum Mechanics.
  28. ^Griffiths 2004,p. 94.
  29. ^Shankar 1994,p. 117.
  30. ^abGriffiths 2004.
  31. ^Treves 2006,p. 112-125.
  32. ^B. Griffiths, Robert."Hilbert Space Quantum Mechanics"(PDF).p. 1.
  33. ^Landsman 2009.
  34. ^Shankar 1994,pp. 378–379.
  35. ^Landau & Lifshitz 1977.
  36. ^Zettili 2009,p. 463.
  37. ^Sakurai, Jun John; Napolitano, Jim (2021).Modern quantum mechanics(3rd ed.). Cambridge: Cambridge University Press. pp.94–97.ISBN978-1-108-47322-4.
  38. ^Weinberg 2002Chapter 3, Scattering matrix.
  39. ^Physics for Scientists and Engineers – with Modern Physics (6th Edition), P. A. Tipler, G. Mosca, Freeman, 2008,ISBN0-7167-8964-7
  40. ^Griffiths 2008,pp. 162ff.
  41. ^Weinberg 2002.
  42. ^Weinberg 2002,Chapter 3.
  43. ^Conway 1990.
  44. ^Greiner & Reinhardt 2008.
  45. ^Eisberg & Resnick 1985.
  46. ^Rae 2008.
  47. ^Atkins 1974,p. 258.
  48. ^Cohen-Tannoudji, Diu & Laloë 2019,pp. 103, 215.
  49. ^Jaynes 2003.
  50. ^Einstein 1998,p. 682.

References

edit

Further reading

edit
edit